Analysis 1, Woche 2. Reelle Zahlen. 2.1 Ordnung. Definition 2.1 Man nennt eine Ordnung für K, wenn. 1. für alle a K gilt a a (Reflexivität),

Größe: px
Ab Seite anzeigen:

Download "Analysis 1, Woche 2. Reelle Zahlen. 2.1 Ordnung. Definition 2.1 Man nennt eine Ordnung für K, wenn. 1. für alle a K gilt a a (Reflexivität),"

Transkript

1 Aalysis, Woche 2 Reelle Zahle A 2. Ordug Defiitio 2. Ma et eie Ordug für K, we. für alle a K gilt a a (Reflexivität), 2. für alle a, b K mit a b ud b a gilt a = b (Atisymmetrie), 3. für alle a, b, c K mit a b ud b c gilt a c (Trasitivität). Statt b a ka ma auch a b schreibe. Ma sagt b kleier gleich a, beziehugsweise a größer gleich b. Ma verwedet a < b, we a b ud a b. Für N, Z ud Q ist, we ichts aderes gesagt wird, immer die übliche Ordug. Defiitio 2.2 (K, ) et ma total geordet, we eie Ordug für K ist ud zusätzlich gilt 4. a b oder b a für alle a, b K. Die Zahlemege N, Z ud Q mit der Stadardordug sid total geordet. Beispiel 2.. Nehme wir (Q Q, ), wobei,,(q, q 2 ) (p, p 2 ) defiiert wird durch,,q p ud q 2 p 2, da ist eie Ordug. Es ist keie totale Ordug, de für r = (, ( 2 3 3) ud s =, 2 2) gilt weder r s och s r. Defiitio 2.3 (K, +,, ) heißt ei total geordeter Körper, we. (K, +, ) ei Körper ist, 2. (K, ) total geordet ist, 3. für alle a, b, c K mit a b gilt a + c b + c, 4. für alle a, b, c K mit a b ud 0 c gilt a c b c. 3

2 4 6. Jauar 207 Woche 2, Reelle Zahle Beispiel 2.2. (Q, +,, ) mit der übliche Ordug ist ei total geordeter Körper. (K, +, ) heißt eie total geordete Gruppe, we (K, +) eie Gruppe ist ud die Bediguge 2 ud 3 aus Defiitio 2.3 erfüllt sid. Defiitio 2.4 Sei (K, ) total geordet. Eie Folge {a } N mit a K heißt mooto wachsed, we a a + für alle N. Eie Folge {a } N mit a K heißt mooto falled, we a a + für alle N. Gilt zusätzlich, dass a a + für alle N, da heißt die Folge streg mooto wachsed, beziehugsweise streg mooto falled. We (K, ) total geordet ist, da heißt k K eie obere Schrake für die Teilmege A K, we für alle a A gilt, dass a k. Die Zahl k K ist eie obere Schrake für die Folge {a } N i K, we für alle N gilt, dass a k. We eie Mege oder Folge eie obere Schrake hat, da heißt sie ach obe beschräkt. Ählich defiiert ma utere Schrake ud ach ute beschräkt. Ist die Mege oder die Folge sowohl ach obe als ach ute beschräkt, da et ma sie beschräkt. 2.2 Eiführug der reelle Zahle Defiitio 2.5 Eie Relatio auf M heißt Äquivalezrelatio, we. für alle x M gilt: x x (Reflexivität), 2. für alle x, y M gilt: x y = y x (Symmetrie), 3. für alle x, y, z M gilt: (x y y z) = x z (Trasitivität). Eie erste Kostruktio für die Eiführug der reelle Zahle verwedet die Ordug ud eier Äquivalezrelatio. Defiitio 2.6 (R als Grezwerte beschräkter mooto wachseder Folge). Sei F die Mege aller Folge ratioaler Zahle, die mooto wachsed ud ach obe beschräkt sid. (beide Folge sid äquiva- 2. Für {a } =0, {b } =0 F sagt ma {a } =0 {b } =0 let), we für jedes q Q gilt a q für alle N b q für alle N. Aders gesagt: beide Folge habe die gleiche obere Schrake. 3. R := (F, ), das heißt, ma idetifiziert äquivalete Folge ud defiiert R als die Mege der Äquivalezklasse.

3 2.2 Eiführug der reelle Zahle 6. Jauar a a 2 a 3 a 4 a 5 a 6 a 7 a 8 a Abbildug 2.: Eie wachsede Folge Ma ka Q als Teilmege vo R betrachte, idem ma für q Q die Äquivalezklasse der Folge {q, q, q, q, q,... } immt. We ma jedoch jedes mal ei Elemet vo R als Äquivalezklasse eier bestimmte Folge beschreibe würde, wird ma schell müde. Stattdesse versucht ma solche Elemete kürzer zu beschreibe. Wir gebe ei paar Beispiele. Die Äquivalezklasse zu {a } =0, die ma i (.5) defiiert hat, et ma 2. Die Äquivalezklasse zu {( + ) } et ma e. =0 Ma ka zeige, dass diese Folge tatsächlich wachsed ist. Als erste Schritt zeige wir Dies folgt aus: m + m für m. (2.) ( m + ) ( + ) = 2 m + 2 m + 2 m + 2 = ( m + 2). Mit der Ugleichug i (2.) für m k fide wir, dass ( k) ( ) k = k!... k + + k! +... k + 2 = ( ) ( ) k +. (2.2) k + + Aus (2.2) folgt wiederum, dass die Folge mooto wachsed ist: ( + ) ( ) ( k = k) k ( = + k) ( ) k k= ( + + ) ( ) k k + k= + ( + ) ( ) k ( = + ) +. k + + Die Folge ist auch beschräkt: ( + ) ( = k) ( ) k = k!... k + k! + + k (k ) = k=2 k (k ) ( = 2 + = 2 + k (k ) k ) = k k=2 k=2 ( = 2 + ) ( ) ( ) = =

4 6 6. Jauar 207 Woche 2, Reelle Zahle Die Äquivalezklasse zu { } 8 (4k+)(4k+3) =0 et ma π. Dass dies tatsächlich mit dem Flächeihalt der Eiheitsscheibe zu tu hat, köe wir hier och icht beweise. Es stellt sich heraus, dass R eie verüftige Struktur hat ud auf atürliche Weise die Löcher i Q auffüllt, we wir Additio, Multiplikatio ud Ordug für R passed defiiere. Passed heißt, dass die Defiitio für Elemete aus Q die übliche bleibt ud sich auf atürliche Art ergäzt für Elemete aus R. Ei paar Sache werde wir zeige. Erstes die Additio. Die ist relativ eifach. Ma defiiert x + y, idem ma zwei Folge ratioaler Zahle zu x ud y immt, sage x : {x } =0 F ud y : {y } =0 F, ud schreibt x + y : {x + y } =0. Mit x : {x } =0 ist gemeit, dass {x } =0 ei Vertreter aus F ist für die Äquivalezklasse zu x (F, ). Ma ka zeige, dass {x + y } =0 F ud die dazu gehörede Äquivalezklasse icht abhägt vo de Vertreter {x } =0 ud {y } =0. Auch ka ma scho zeige, dass drei Eigeschafte eies Körpers (Assoziativität, Existez vo eiem eutrale Elemet ud Kommutativität bezüglich der Additio) erfüllt sid. Für die Existez eies additiv iverse Elemetes zu x ka ma icht eifach { x } =0 ehme, weil diese Folge icht mooto wachsed ist. We x (F, ), gibt es aber ei x (F, ), ud das sieht ma zum Beispiel mit Hilfe des folgede Algorithmus. Dieser liefert eie Folge {b } =0, die x vertritt. Algorithmus 2.. Sei q Q eie obere Schrake für x = {x } =0 ud setze b 0 := q, := 0 ud s :=. 2. We b s eie obere Schrake ist für {x } =0, setze b + := b + s We b s keie obere Schrake ist für {x } =0, setze 3. := + ud gehe zurück zu 2. b + := b ud s := 2 s. Die Folge {b } =0 soll x : {b } =0 liefer. Da muß ma aber och zeige, dass x + ( x) = 0 oder besser gesagt: dass 0 die kleiste obere Schrake für {x + b } =0 ist. Die Multiplikatio i R ist scho lästiger zu defiiere. We x : {x } =0 F ud y : {y } =0 F so sid, dass x ud y positiv sid für geüged groß, da setzt ma x y : {max (0, x ) max (0, y )} =0. Auch hier muß ma zeige, dass das Ergebis icht vom zufällige Vertreter abhägt. We für alle x gilt, dass x < 0, aber y > 0 für geüged groß, da beutzt ma zweimal de Algorithmus für das additiv Iverse ud defiiert ud so weiter. x y = (( x) y),

5 2.2 Eiführug der reelle Zahle 6. Jauar x x 2 x 3 x 4 x 56 7 b b 2 b 3 b 4 b 5 b x 6 7 x x 76 5 x 4 3 x 2 x 0 Abbildug 2.2: We x = {x, x 2,... } wachsed ist, da ist { x, x 2,... } falled ud deshalb icht passed für x. Für eie passede Defiitio vo x soll ma eie wachsede Folge bestimme. So eie Folge ist i grü dargestellt. Die Ordug wird wie folgt defiiert i R. Seie x, y vertrete durch mooto wachsede Folge {x } =0 ud {y } =0 F, da setzt ma x y, we: {x } =0 {y } =0 oder N N : N x y. (2.3) Auch hier muss ma kotrolliere, dass die Defiitio icht vo de spezifische Vertreter abhägt, dass ma so eie totale Ordug bekommt, ud sie die Ordug auf Q erweitert. Bemerkug 2.6. Bemerke, dass ur die zweite Hälfte i (2.3) als Defiitio der Ordug auf R immt, diese icht wohldefiiert ist. De mit ur dieser zweite Hälfte als Defiitio für x y, würde ma für x = ud y = fide, dass + : {} =0 ist icht kleier gleich { + Dies widerspricht die erste Bedigug eier Ordug. } =0 :. Das Gaze ist eie ziemliche lagwierige Sache ud die Ergebisse sid icht sehr überrasched. Ma fidet jedoch, dass für Elemete aus Q die übliche Additio, Multiplikatio ud Aordug erhalte bleibe. Auch gilt das folgede Ergebis. Theorem 2.7 (R, +,, ) ist ei total geordeter Körper. Notatio 2.8 Die folgede Teilmege vo R et ma Itervalle. Seie a, b R mit a < b. [a, b] := {x R; a x b}; (abgeschlossees Itervall) (a, b) := {x R; a < x < b}; (offees Itervall) (a, b] := {x R; a < x b}. Machmal sieht ma auch: (, b] := {x R; x b}. Die Bedeutug vo [a, b), [a, ), (a, ) ud so weiter ka ma errate. Wir habe hier die Symbole (egativ uedlich) ud (positiv uedlich) beutzt. ud sid keie Zahle ud liege icht i R. Ma schreibt ab ud zu trotzdem R := R {, }. Ma ka mit ( R, +, ) jedoch icht mehr wie mit eiem Körper arbeite. Zum Beispiel lässt sich icht verüftig defiiere.

6 8 6. Jauar 207 Woche 2, Reelle Zahle 2.3 Adere Eiführuge der reelle Zahle Statt mooto wachseder, ach obe beschräkter Folge i Q zu ehme, ka ma auf ähliche Art auch mooto ach ute beschräkte Folge i Q ehme. Das wäre eie zweite Kostruktio. b b b 87 b 6 b 5 b 4 b 3 b 2 Abbildug 2.3: Eie fallede Folge Für eie ächste Möglichkeit brauche wir die Betragsfuktio. Sei K eie Gruppe oder ei Körper mit eier totale Ordug. Da setzt ma { a we a 0, a = a we a < 0. Ud a < 0 bedeutet 0 a ud a 0. Defiitio 2.9 (R durch Cauchy-Folge vo ratioale Zahle) Eie dritte Kostruktio:. {a } =0 mit a Q heißt eie Cauchy-Folge (auch Fudametalfolge geat), we: ε > 0 N ε N, m N :, m N ε a a m < ε. Sei CF die Mege aller Cauchy-Folge i Q. (beide Folge sid äqui- 2. Für {a } =0, {b } =0 CF sagt ma {a } =0 {b } =0 valet) we 3. Setze R := (CF, ). ε > 0 M ε N, m N : M ε a b < ε. c c 3 c 5 c 7 c c 8 c 6 c 4 c 2 Abbildug 2.4: Eie Cauchy-Folge Beispiel 2.3. Defiiere a 0 = ud a + = a a für N. Diese Folge liegt i Q ud ist eie Cauchy-Folge. Sie ist weder wachsed och falled. Die erste Terme sid: a Ma ka zeige, dass a ach 2 geht Defiitio 2.0 (R durch Dedekidsche Schitte) Eie vierte Kostruktio:

7 2.3 Adere Eiführuge der reelle Zahle 6. Jauar (A, B) heißt Schitt vo Q, we A, B Q mit (a) A, B ud A B = Q ud A B =. (b) für jedes a A ud b B gilt a b. 2. we es q Q gibt mit a q für alle a A ud q b für alle b B, da sage wir die folgede Schitte sid äquivalet: (A\ {q}, B {q}) (A {q}, B\ {q}). 3. Sei S die Mege aller Schitte i Q. Setze R := (S, ). Abbildug 2.5: Ei Schitt Beispiel 2.4. Ei Schitt für 2 ist A = {a Q; a 0 oder a 2 2}, B = {a Q; a 0 ud a 2 2}. Weil es keie Zahl a Q gibt derart, dass a 2 = 2 folgt A B =. Defiitio 2. (R durch Itervallschachteluge) Eie füfte Kostruktio:. {I } =0 mit I = [a, b ] ud a < b heißt eie Itervallschachtelug, we (a) für jedes N gilt I + I ; (b) es für jedes ε > 0 ei Itervall I gibt mit Läge b a < ε. Sei I die Mege der Itervallschachteluge i Q. 2. Zwei Itervallschachteluge {I } =0 ud {J } =0 heiße äquivalet, we für jedes N gilt I J. 3. Setze R := (I, ). a a 2 a 3 a 4 a 5 a 6 7 ab 80 9 b b 8 b 7 6 b 5 b 4 b 3 b 2 b Abbildug 2.6: Eie Itervallschachtelug Beispiel 2.5. Eie Itervallschachtelug für 2 ist {[a, b ]} N mit a 0 = ud a + = 3a2 +2 4a für N, b 0 = 2 ud b + = 3b2 +2 4b für N.

8 20 6. Jauar 207 Woche 2, Reelle Zahle 2.3. Nur eie vollstädige Erweiterug? Zu diese verschiedee Eiführuge vo R sollte ma aber eiige Frage kläre. Zum Beispiel: Liefer diese Verfahre alle das gleiche Ergebis? Ma fidet, mit Q agefage, eie größere Mege, die ma R et. We ma ei ähliches Verfahre loslässt auf R, bekommt ma da eie och größere Mege? Selbstverstädlich sid mooto wachsede Folge keie mooto fallede Folge ud ma hat streg geomme zwei verschiedee Ergebisse, we ma bei de erste beide Kostruktioe ur die Form der Kostruktio betrachtet. Trotzdem soll ma das Gefühl habe, dass diese zwei Methode keie wesetliche Uterschied herbeiführe. I der Mathematik verwedet ma de Begriff isomorph. Ma meit mit,,a ist isomorph zu B, dass es icht ur eie bijektive Abbildug vo A ach B gibt, soder dass diese Abbildug auch die Struktur behält. Bevor wir die zweite Frage beatworte köe, brauche wir: Defiitio 2.3 Sei (K, ) total geordet. Da heißt K vollstädig bezüglich der Ordug, we jede icht-leere ach obe beschräkte Mege M K eie kleiste obere Schrake hat. Diese kleiste obere Schrake vo M heißt das,,supremum vo M ud ma schreibt sup M. Theorem 2.4 Der total geordeter Körper (Q, +,, ) hat, bis auf Isomorphie, eie eideutige Erweiterug, die vollstädig ist bezüglich der Ordug, ämlich (R, +,, ). Es gibt Erweiteruge vo Q, die echt kleier sid als R, aber icht vollstädig bezüglich der Ordug sid. Zum Beispiel ist auch Q [ 2 ] := { p + q 2; p, q Q } eie Erweiterug vo Q. 2.4 Eigeschafte 2.4. Abzählbarkeit Wir habe gesehe, dass Q abzählbar uedlich ist. Wie ist das mit R? Theorem 2.5 R ist icht abzählbar. Beweis. Wir ehme a, {x 0, x, x 2,... } sei eie Abzählug vo R, ud werde eie Widerspruch erzeuge. Das fuktioiert wie folgt. Zu jedem x ka ma die Dezimaletwicklug als Folge ehme. So wie 2 die Äquivalezklasse vo der mooto wachsede Der Begriff Isomorphie hägt ab vo der betreffede Struktur. Defiitio 2.2 Zwei total geordete Körper (K, +,, ) ud (L,,, ) heiße isomorph, we es eie bijektive Abbildug ϕ : K L gibt, für die gilt:. ϕ(a + b) = ϕ(a) ϕ(b); 2. ϕ(a b) = ϕ(a) ϕ(b); 3. a b ϕ(a) ϕ(b).

9 2.4 Eigeschafte 6. Jauar ud beschräkte Folge {,.4,.4,.42,... } darstellt. Wir defiiere y durch eie Folge {y } =0, die wir als Dezimaletwicklug defiiere, wo die -te Dezimale vo y (eie Ziffer vo 0 bis 9) ugleich der -te Dezimale vo x gewählt wird (ud auch ugleich 9). Also zum Beispiel für die reelle Zahle x 0 : {50, 5, 5.3, 5.34, 5.343, } x : {400, 440, 444, 444.6, , } x 2 : {0,.,.9,.9,.92,.92, } x 3 : {3, 3., 3.2, 3.23, 3.234, ,... }... wäre die Dezimale, die zu meide sid, Wir ersetze da die Ziffer k durch k + oder k. Die Ziffer 9 ud 0 solle dabei vermiede werde. Nehme zum Beispiel y : {2, 2.7, 2.78, 2.784,... }. Die Zahl y liegt i R (die Folge ist mooto wachsed ud beschräkt) aber icht i der Abzählug, weil y sich vo jedem x i midestes eier Dezimalstelle uterscheidet ud daher keiem x gleicht. Die Ziffer 9 ud 0 solle vermiede werde, weil = Die Dezimaletwicklug vo reelle Zahle ist leider icht eideutig (surjektiv aber icht ijektiv!). Q ist abzählbar ud hat also deutlich weiger Elemete als das überabzählbare R. We ma jedoch bedekt, dass R mit Folge i Q kostruiert wurde, sollte ma ich überrascht sei, dass Folgedes gilt: Lemma 2.6 Für alle x, y R mit x < y gibt es ei q Q, so dass x < q < y. Q liegt dicht i R. Das letzte heißt, jedes x R ka ma beliebig ahe ierhalb Q approximiere, oder aders gesagt: Für jedes x R ud N +, gibt es q Q mit x q <. Dieses Lemma sollte ma selber beweise köe. Bemerkug 2.6. Übriges gilt auch: Für alle p, q Q mit p < q gibt es x R\Q so dass p < x < q. Ma ehme zum Beispiel x = p + q p Vollstädigkeit Eie gaz wichtige Bestadteil vo Theorem 2.4 möchte wir och mal betoe. Korollar 2.7 (R, ) ist vollstädig, das heißt, jede icht leere, beschräkte Mege aus R hat ei Supremum. Für eie adere Möglichkeit, diese Vollstädigkeit zu formuliere, braucht ma de Begriff Limes. Limes wird auch Grezwert geat.

10 22 6. Jauar 207 Woche 2, Reelle Zahle Defiitio 2.8 Sei {x } =0 eie Folge vo Zahle i R. Die Folge heißt eie Cauchy-Folge, we: ε > 0 N ε N, m N :, m > N ε = x x m < ε. Die Folge heißt koverget, we es a R gibt mit: ε > 0 N ε N, m N : N ε x a < ε. Ma schreibt lim x = a ud et a de Limes. Die Vollstädigkeit vo R ist der wesetliche Uterschied mit Q. Sie folgt aus der Defiitio vo R. Theorem 2.9 Sei R wie i Defiitio 2.6. Da gilt: Jede mooto wachsede, ach obe beschräkte Folge i R hat eie Limes i R. Jede mooto fallede, ach ute beschräkte Folge i R hat eie Limes i R. Jede beschräkte icht leere Mege i R hat ei Supremum i R. Jede Cauchy-Folge i R ist koverget i R. Bemerkug 2.9. Diese 4 Aussage sid äquivalet.

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Ordnung. Definition 2.1 Man nennt eine Ordnung für K, wenn. 1. für alle a K gilt a a (Reflexivität),

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Ordnung. Definition 2.1 Man nennt eine Ordnung für K, wenn. 1. für alle a K gilt a a (Reflexivität), Aalysis 1, Woche 2 Reelle Zahle A1 2.1 Ordug Defiitio 2.1 Ma et eie Ordug für K, we 1. für alle a K gilt a a (Reflexivität), 2. für alle a, b K mit a b ud b a gilt a = b (Atisymmetrie), 3. für alle a,

Mehr

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37 Reelle Folge Der Begriff der Folge ist ei grudlegeder Baustei der Aalysis, weil damit u.a. Grezprozesse defiiert werde köe. Er beschreibt de Sachverhalt eier Abfolge vo Elemete, wobei die Reihefolge bzw.

Mehr

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa 20 I. Zahle, Kovergez ud Stetigkeit 4 Kovergete Folge 4. Dezimalzahle ud Itervallschachteluge. a) Reelle Zahle werde meist als Dezimalzahle dargestellt, etwa 7,304 = 0+7 +3 0 +0 00 +4 000. Edliche Dezimalzahle

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik für Iformatiker -- 9 Folge -- 6.1.215 1 Folge: Defiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reihefolge wichtig,

Mehr

Kapitel 3 Folgen von reellen Zahlen

Kapitel 3 Folgen von reellen Zahlen Wolter/Dah: Aalysis Idividuell 4 Kapitel 3 Folge vo reelle Zahle Wir befasse us i diesem Abschitt mit Zahlefolge, die u.a. zur Eiführug ud 3/0/0 Behadlug des für die Aalysis äußerst wichtige Grezwertbegriffes

Mehr

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Anordnung. Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität).

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Anordnung. Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität). Analysis 1, Woche 2 Reelle Zahlen 2.1 Anordnung Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität). 2. Für jeden a, b K mit a b und b a gilt a = b (Antisymmetrie).

Mehr

Grundkurs Mathematik II

Grundkurs Mathematik II Prof. Dr. H. Breer Osabrück SS 2017 Grudkurs Mathematik II Vorlesug 48 Itervallschachteluge Eie weitere Möglichkeit, reelle Zahle zu beschreibe, eizuführe, zu approximiere ud recherisch zu hadhabe, wird

Mehr

4 Konvergenz von Folgen

4 Konvergenz von Folgen 4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder

Mehr

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2014

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2014 Herzlich Willkomme zur Vorlesug Aalysis I SoSe 2014 Prof. Dr. Berd Dreseler Lebediges Lere: Aufgabe Ich Wir 2 Reelle Zahle 2.1 Körperstruktur vo (K1) Additio ud Multiplikatio kommutativ: a b b a, ab ba.

Mehr

Kompaktheit und gleichgradige Stetigkeit. 1 Einführung in die Kompaktheit in C 0

Kompaktheit und gleichgradige Stetigkeit. 1 Einführung in die Kompaktheit in C 0 Kompaktheit ud gleichgradige Stetigkeit Vortrag zum Prosemiar zur Aalysis, 14.06.2010 Mao Wiescherma Matthias Klupsch Dieser Vortrag beschäftigt sich mit Kompaktheit vo Teilräume vom Raum der stetige Abbilduge

Mehr

so spricht man von einer kommutativen Gruppe oder auch abelschen Gruppe.

so spricht man von einer kommutativen Gruppe oder auch abelschen Gruppe. Defiitioe ud Aussage zu ruppe Michael ortma Eie ruppe ist ei geordetes Paar (, ). Dabei ist eie icht-leere Mege, ist eie Verküpfug (Abbildug), wobei ma i.a. a b oder gar ur ab statt ( a, b) schreibt. Es

Mehr

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden Folge ud Reihe Folge Eie Folge ist eie Abbildug der atürliche Zahle N = {0, 1,,...} i die Mege der (zumidest i de meiste Fälle) reelle Zahle R. I diesem Fall ka ma sich eie Folge als Pukte i eiem Koordiatesystem

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004) Aufgabe 7. Ubeschräktes

Mehr

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln 6 Kovergete Folge Lerziele: Kozepte: Grezwertbegriff bei Folge, Wachstumsgeschwidigkeit vo Folge Resultat: Mootoe beschräkte Folge sid koverget. Methode: Hero-Verfahre, Erweiterug vo Differeze vo Quadratwurzel

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

Zahlenfolgen. Zahlenfolgen

Zahlenfolgen. Zahlenfolgen Zahlefolge Eie Zahlefolge a besteht aus Zahle a,a,a 3,a 4,a 5,... Die eizele Zahle eier Folge heiße Glieder oder Terme. Beispiele für Zahlefolge sid die atürliche Zahle: 3 4 5 6 7 8 9 0 3 4 5..., die gerade

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10. 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 6 Für Experte 8 Defiitioe ud Beispiele für Folge Defiitio Eie

Mehr

2 Konvergenz von Folgen

2 Konvergenz von Folgen Kovergez vo Folge. Eifache Eigeschafte Defiitio.. Eie Abbildug A : N C heißt Folge. Ma schreibt a statt A) für N ud a ) oder a ) statt A. We a R N, so heißt a ) reelle Folge. Defiitio.. Seie a ) eie Folge

Mehr

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id,

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id, Kreisabbilduge Im Folgede sehe wir us eie gaz spezielle Klasse vo dyamische Systeme a: Abbilduge auf dem Kreis. Diese sid eifach geug, so dass wir sie och recht leicht aalysiere köe, habe aber adererseits

Mehr

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2013

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2013 Herzlich Willkomme zur Vorlesug Aalysis I SoSe 2013 Prof. Dr. Berd Dreseler Lebediges Lere: Aufgabe Ich Wir Überblick Mittelwertsatz Differetialrechug Natürliche Zahle Iduktiosprizip Kombiatorik Körper

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr R Köig Dr M Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Mathematik für Physiker (Aalysis ) MA90 Witersem 07/8 Lösugsblatt 4 http://www-m5matumde/allgemeies/ma90 07W (007)

Mehr

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen . Der Grezwert vo mootoe, beschräkte Folge Der Grezwert vo mootoe, beschräkte Folge ist eifacher verstädlich als der allgemeie Fall. Deshalb utersuche wir zuerst diese Spezialfall ud verallgemeier aschliessed.

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik ür Iormatiker -- 8 Folge -- 11.10.2015 1 Folge: Deiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reiheolge wichtig,

Mehr

Denition 27: Die Fakultät ist eine Folge f : N N mit f(1) := 1 und f(n + 1) := (n + 1) f(n) für alle n N. Wir schreiben n! := f(n) für diese Folge.

Denition 27: Die Fakultät ist eine Folge f : N N mit f(1) := 1 und f(n + 1) := (n + 1) f(n) für alle n N. Wir schreiben n! := f(n) für diese Folge. Vorkurs Mathematik, PD Dr. K. Halupczok, WWU Müster Fachbereich Mathematik ud Iformatik 22.9.20 Ÿ3.2 Folge ud Summe (Fortsetzug) Eie wichtige Möglichkeit, wie ma Zahlefolge deiere ka, ist die über eie

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

Grundlagen der Mathematik (LPSI/LS-M1)

Grundlagen der Mathematik (LPSI/LS-M1) Fachbereich Mathematik Algebra ud Zahletheorie Christia Curilla Grudlage der Mathematik (LPSI/LS-M1) Übugsklausur WiSe 2010/11 - C. Curilla/S. Koch/S. Ziegehage Liebe Studierede, im Folgede fide Sie eiige

Mehr

HTBLA VÖCKLABRUCK STET

HTBLA VÖCKLABRUCK STET HTBLA VÖCKLABRUCK STET Folge ud Reihe INHALTSVERZEICHNIS 1. EINFÜHRUNG... 3. DARSTELLUNG EINER FOLGE... 3 3. BEISPIELE... 4 4. ENDLICHE REIHE... 4 5. ARITHMETISCHE FOLGEN UND REIHEN... 4 6. GEOMETRISCHE

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 8. b n := 1 n. a k. k=1

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 8. b n := 1 n. a k. k=1 D-MATH, D-PHYS, D-CHAB Aalysis I HS 2017 Prof. Mafred Eisiedler Übugsblatt 8 1. Bereche Sie de Grezwert lim a für die Folge (a ) gegebe durch a) a = (2 1/ ) 10 (1 + 1/ 2 ) 10 1 1/ 2 1/, b) a = + 1, c)

Mehr

5-1 Elementare Zahlentheorie

5-1 Elementare Zahlentheorie 5- Elemetare Zahletheorie 5 Noch eimal: Zahletheoretische Fuktioe 5 Der Rig Φ als Rig der formale Dirichlet-Reihe! Erierug: Ei Polyom mit Koeffiziete i eiem Körper K ist ach Defiitio ichts aderes als eie

Mehr

Kapitel 2 Differentialrechnung in einer Variablen. 2.1 Folgen und Grenzwerte

Kapitel 2 Differentialrechnung in einer Variablen. 2.1 Folgen und Grenzwerte Kapitel 2 Differetialrechug i eier Variable 2. Folge ud Grezwerte 2.. Defiitio Eie Folge ist eie Zuordug N R, a, geschriebe als Liste (a,a 2,...) oder i der Form (a ) N. Hier sid ei paar Beispiele: 2,4,6,8,...

Mehr

Tutorial zum Grenzwert reeller Zahlenfolgen

Tutorial zum Grenzwert reeller Zahlenfolgen MAE Mathematik: Aalysis für Igeieure Herbstsemester 206 Dr. Christoph Kirsch ZHAW Witerthur Tutorial zum Grezwert reeller Zahlefolge I diesem Tutorial lere Sie, die logische Aussage i der Defiitio des

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Castrigiao Dr. M. Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Mathematik 3 für Physik (Aalysis 2) http://www-hm.ma.tum.de/ss10/ph2/ 23. Charakterisierug vo Cauchy-Folge

Mehr

Übung 2 (für Pharma/Geo/Bio) Uni Basel. Besprechung der Lösungen: 1. Oktober 2018 in den Übungsstunden

Übung 2 (für Pharma/Geo/Bio) Uni Basel. Besprechung der Lösungen: 1. Oktober 2018 in den Übungsstunden Mathematik I für Naturwisseschafte Dr. Christie Zehrt 7.09.18 Übug (für Pharma/Geo/Bio) Ui Basel Besprechug der Lösuge: 1. Oktober 018 i de Übugsstude Aufgabe 1 Sid die folgede Abbilduge f : X Y umkehrbar?

Mehr

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2 D-MATH Topologie FS 15 Theo Bühler Musterlösug 2 1. a) Per Defiitio ist A = {x : x berührt A}. I der Vorlesug wurde die Formel (X A) = ( A ) c gezeigt, also A = ( X A ) c. Daher ist A = A A = A (A ) c

Mehr

1 Funktionen und Flächen

1 Funktionen und Flächen Fuktioe ud Fläche. Fläche Defiitio: Die Ebee R ist defiiert als Mege aller geordete Paare vo reelle Zahle: R = {(,, R} Der erste Eitrag heißt da auch Koordiate ud der zweite Koordiate. Für zwei Pukte (,,

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

Normierte Vektorräume

Normierte Vektorräume Normierte Vektorräume Wir betrachte im Folgede ur Vektorräume über R 1. Sei also V ei Vektorraum. Wir möchte Metrike auf V betrachte, die im folgede Sie mit der Vektorraumstruktur verträglich sid:, y,

Mehr

Asymptotische Notationen

Asymptotische Notationen Foliesatz 2 Michael Brikmeier Techische Uiversität Ilmeau Istitut für Theoretische Iformatik Sommersemester 29 TU Ilmeau Seite 1 / 42 Asymptotische Notatioe TU Ilmeau Seite 2 / 42 Zielsetzug Igoriere vo

Mehr

Aufgrund der Körperaxiome ist jedoch

Aufgrund der Körperaxiome ist jedoch Hiweise: Der Doppelstrich // steht für eie Kommetarzeile. Tipp- ud Rechtschreibfehler köe trotz mehrfacher Kotrolle icht hudertprozetig vermiede werde. Die selbst erstellte Lösugsasätze orietiere sich

Mehr

HM I Tutorium 2. Lucas Kunz. 3. November 2017

HM I Tutorium 2. Lucas Kunz. 3. November 2017 HM I Tutorium 2 Lucas Kuz 3. November 2017 Ihaltsverzeichis 1 Theorie 2 1.1 Reelle Zahle.................................. 2 1.2 Itervalle..................................... 2 1.3 Beträge.....................................

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Sebastia Schwarz WS 04/05 0..04 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 4. Übugsblatt

Mehr

Der Durchschnitt einer Familie von σ-algebren auf M ist ebenfalls eine σ-algebra auf M. Ist also E M, so ist

Der Durchschnitt einer Familie von σ-algebren auf M ist ebenfalls eine σ-algebra auf M. Ist also E M, so ist Maßtheorie (Versio 0.3) 1. σ-algebra Ist M eie Mege, so et ma ei System vo Teilmege A M eie σ-algebra (auf M ), we gilt: A A A A c A Ist A N eie Familie vo Mege i A, so ist N A A A ist damit stabil uter

Mehr

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1 Istitut für Aalysis ud Algebra Mathematik I für Studierede der E-Techik Prof Dr Volker Bach WiSe 06/7 M Sc Birgit Komader M Sc Christoph Brauer Theme: Groe Übug - Lösuge Vollstädige Iduktio - Teleskopsumme

Mehr

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung...

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung... KAPITEL 7 Zahlefolge 7. Kovergete Zahlefolge.............................. 30 7.2 Grezwertbestimmug............................... 32 7.3 Grezwertbestimmug durch Abschätzug..................... 35 7.4

Mehr

GNS-Konstruktion. 1 GNS-Konstruktion

GNS-Konstruktion. 1 GNS-Konstruktion Vortrag zum Semiar zur Fuktioalaalysis, 18.12.2008 Maximilia Brölsch Der Vortrag ist i zwei Teile gegliedert. Im erste Teil wird die eigeführt, ei Hilfsmittel um eie beliebige C -Algebra mit eier C -Uteralgebra

Mehr

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $ Mathematik für Iformatiker B, SS 202 Doerstag 4.6 $Id: reihe.tex,v.9 202/06/4 3:59:06 hk Exp $ 7 Reihe 7.4 Kovergezkriterie für Reihe 7.4. Alterierede Reihe Wir hatte gesehe das die harmoische Reihe divergiert,

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8 Mathematisches Istitut der Uiversität Müche Prof Dr Peter Otte WiSe 203/4 Lösug 8 032203 Übuge zur Aalysis für Iformatiker ud Statistiker Lösug zu Blatt 8 Aufgabe 8 [8 Pukte] (a) Für alle N sei = (+) Wir

Mehr

II Analysis Folgen Konvergenz von Folgen. a 2. a 4. a C " a " a 1. c D lim. R. Plato 27

II Analysis Folgen Konvergenz von Folgen. a 2. a 4. a C  a  a 1. c D lim. R. Plato 27 R. Plato 7 II Aalysis 4 Folge 4. Kovergez vo Folge Differeziatio ud Itegratio sid grudlegede mathematische Kozepte, dee ifiitesimale Prozesse zu Grude liege. Die geaue Beschreibug solcher Prozesse erfordert

Mehr

3 Grenzwerte. 3.1 Grenzwerte von Folgen

3 Grenzwerte. 3.1 Grenzwerte von Folgen 03-grezwerte.cdf 3 Grezwerte 3. Grezwerte vo Folge Kovergez Mache Folge zeige ei spezielles Verhalte, we der Idex sehr groß wird. Sie äher sich eier bestimmte Zahl. Betrachte wir zum Beispiel die Folge

Mehr

1.1. Aussagen, Beweise, vollständige Induktion 15

1.1. Aussagen, Beweise, vollständige Induktion 15 Aussage, Beweise, vollstädige Iduktio 5 Ei kovexes Polyeder, bei dem sämtliche Seitefläche regelmässige -Ecke sid ud i jedem Eckpukt geau m Seitefläche zusammetreffe (für feste atürliche Zahle, m 3), wird

Mehr

Einführung in die Grenzwerte

Einführung in die Grenzwerte Eiführug i die Grezwerte Dieser Text folgt hauptsächlich der Notwedigkeit i sehr kurzer Zeit eie Idee ud Teile ihrer Awedug zu präsetiere, so dass relativ schell mit dieser Idee gerechet werde ka. Der

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgabe ud e Ausarbeitug der Übugsstude zur Vorlesug Aalysis I Witersemester 008/009 Übug am 8..008 Übug 5 Eileitug Zuerst soll auf de aktuelle Übugsblatt ud Stoff der Vorlesug eigegage werde. Dazu werde

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

24 Konvergente Teilfolgen und Cauchy-Kriterium

24 Konvergente Teilfolgen und Cauchy-Kriterium 120 IV. Uedliche Reihe ud Taylor-Formel 24 Kovergete Teilfolge ud Cauchy-Kriterium Lerziele: Kozepte: Teilfolge, Häufugswerte, Limes superior ud iferior, Cauchy-Folge Resultate: Satz vo Bolzao-Weierstraß,

Mehr

Lösungen der Übungsaufgaben von Kapitel 2

Lösungen der Übungsaufgaben von Kapitel 2 Aalysis I Ei Lerbuch für de safte Wechsel vo der Schule zur Ui Lösuge der Übugsaufgabe vo Kapitel zu... Ma zeige: Jede Teilfolge eier Umordug eier Folge ka als Umordug eier Teilfolge geschriebe werde.

Mehr

Grenzwertberechnungen

Grenzwertberechnungen Katosschule Solothur Grezwertberechuge Grezwertberechuge Grezwertberechuge bei Folge ud Reihe Folge sid Fuktioe; die Begriffe beschräkt ud mooto trete daher auch bei Folge auf. Isbesodere habe sie eie

Mehr

Analysis II Sommer 2016 Prof. Dr. George Marinescu / Dr. Frank Lapp Übung

Analysis II Sommer 2016 Prof. Dr. George Marinescu / Dr. Frank Lapp Übung Aalysis II Sommer 06 Prof Dr George Mariescu / Dr Frak Lapp Übug Zuallererst sollt ihr die zusätzliche Übug utze um Lösuge vo Aufgabe zu bespreche, zu dere Besprechug ihr i de Übuge davor icht gekomme

Mehr

Höhere Mathematik I (Analysis) für die Fachrichtung Informatik

Höhere Mathematik I (Analysis) für die Fachrichtung Informatik Karlsruher Istitut für Techologie (KIT) Istitut für Aalysis Priv.-Doz. Dr. Gerd Herzog M. Sc. Adreas Hirsch WS 204/5 24.0.204 Höhere Mathematik I (Aalysis) für die Fachrichtug Iformatik Lösugsvorschlag

Mehr

6. Folgen und Grenzwerte

6. Folgen und Grenzwerte 56 Adreas Gathma 6. Folge ud Grezwerte Wie scho am Ede des letzte Kapitels ageküdigt wolle wir u zur eigetliche Aalysis, also zur lokale Utersuchug vo Fuktioe komme. Der zetrale Begriff ist dabei der des

Mehr

Kapitel 6 Differenzierbarkeit

Kapitel 6 Differenzierbarkeit Kapitel 6 Differezierbarkeit Ihalt 6.1 6.1Die Defiitio 6.2 6.2Die Eigeschafte 6.3 6.3Extremwerte Seite 2 Was heißt differezierbar? Differezierbare Fuktioe sid sid glatte Fuktioe. Wir Wir beschreibe diese

Mehr

Aufgaben zur Analysis I

Aufgaben zur Analysis I Aufgabe zur Aalysis I Es werde folgede Theme behadelt:. Logik, Iduktio, Mege, Abbilduge 2. Supremum, Ifimum 3. Folge, Fuktioefolge 4. Reihe, Potezreihe 5. Mootoie ud Stetigkeit 6. Differetialrechug 7.

Mehr

Analysis ZAHLENFOLGEN Teil 4 : Monotonie

Analysis ZAHLENFOLGEN Teil 4 : Monotonie Aalysis ZAHLENFOLGEN Teil 4 : Mootoie Datei Nr. 40051 Friedrich Buckel Juli 005 Iteretbibliothek für Schulmathematik Ihalt 1 Eiführugsbeispiele 1 Mootoie bei arithmetische Folge Defiitioe 3 3 Welche Beweistechik

Mehr

Analysis I - Zweite Klausur

Analysis I - Zweite Klausur Aalysis I - Zweite Klausur Witersemester 2004-2005 Vorame: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Aufgabe 9 Summe Aufgabe 4 Pukte Bestimme Sie (mit Beweis)

Mehr

Dann ist die Zahl auf der linken Seite gerade und die auf der rechten Seite ungerade. Also sind sie nicht gleich.

Dann ist die Zahl auf der linken Seite gerade und die auf der rechten Seite ungerade. Also sind sie nicht gleich. Lösuge. Es gibt drei Lösuge.. Lösug: Ato ist traurig ud er trikt keie Likör. Bruo isst Torte ud ist besorgt. Christa ist icht übel ud sie macht Purzelbäume.. Lösug: Ato ist traurig ud trikt keie Likör.

Mehr

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen Prof. Dr. Wolfgag Koe Mathematik WS0 08.0.0. Zahlefolge.. Wozu IformatikerIe Folge brauche Kovergez vo Folge ist die Grudlage der Aalysis (Differetial- ud Itegralrechug) Traszedete Gleichuge wie x l x

Mehr

KAPITEL 2. Zahlenfolgen

KAPITEL 2. Zahlenfolgen KAPITEL Zahlefolge. Kovergete Zahlefolge...................... 35. Grezwertbestimmug....................... 38.3 Grezwertbestimmug durch Abschätzug............. 4.4 Mootoe Folge..........................

Mehr

n=1 b n, deren Summe n=1 (a n + b n ) eine konvergente Reihe ist. Die Aussage ist WAHR, ein mögliches Beispiel sind die divergenten Reihen 1

n=1 b n, deren Summe n=1 (a n + b n ) eine konvergente Reihe ist. Die Aussage ist WAHR, ein mögliches Beispiel sind die divergenten Reihen 1 ANALYSIS WS 08/09 Vorlesug: Prof. Dr. P. Ullrich Übuge: Dr. I. Kharif/ Dr. M. Steihauer 9. ÜBUNGSBLATT- LÖSUNGSHINWEISE/Ergebisse Die folgede Bearbeituge sid - zum Teil - keie ausführliche Musterlösuge,

Mehr

1 Lösungen zu Analysis 1/ 12.Übung

1 Lösungen zu Analysis 1/ 12.Übung Lösuge ausgewählter Beispiele zu Aalysis I, G. Bergauer, Seite Lösuge zu Aalysis / 2.Übug. Eileitug Gleichmäßige Kovergez ist eie starke Eigeschaft eier Fuktioefolge. Formuliert ma sie für Netze, statt

Mehr

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015 Lösuge zum Feriekurs Aalysis, Vorlesug Witersemester 04/05 Fabia Hafer, Thomas Baldauf I Richtig oder Falsch Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche Aussage. Gebe Sie

Mehr

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen Prof. Dr. Wolfgag Koe Mathematik WS0 0.0.0. Zahlefolge.. Wozu IformatikerIe Folge brauche Kovergez vo Folge ist die Grudlage der Aalysis (Differetial- ud Itegralrechug) Traszedete Gleichuge wie l x 50

Mehr

6 Grenzwerte von Zahlenfolgen

6 Grenzwerte von Zahlenfolgen 6 Grezwerte vo Zahlefolge Ei zetraler Begriff der Aalysis ist der des Grezwertes. Wir begie mit der Betrachtug vo Grezwerte vo Zahlefolge. 6. Zahlefolge 6.. Grudbegriffe Defiitio 6... Eie Fuktio f : Z

Mehr

5 Folgen. 5.1 Konvergenz von Folgen. Definition: Zu jedem 0 existiert ein N so, daß. Eine Folge, die gegen 0 konvergiert, heißt

5 Folgen. 5.1 Konvergenz von Folgen. Definition: Zu jedem 0 existiert ein N so, daß. Eine Folge, die gegen 0 konvergiert, heißt Prof. Dr. Berd Dreseler 5 Folge 5.1 Kovergez vo Folge Defiitio: Eie Folge a heißt koverge t, we es eie Zahl a mit folgeder Eigeschaft gibt: Zu jedem 0 existiert ei N so, daß a a für alle > N Die Zahl a

Mehr

3 Konvergenz, Folgen und Reihen

3 Konvergenz, Folgen und Reihen 3 Kovergez, Folge ud Reihe Für die Eiführug der reelle Zahle ware Cauchy-Folge vo ratioale Zahle vo großer Bedeutug. Gaz Allgemei lasse sich Folge vo Elemete i eier beliebige Mege A betrachte. Defiitio

Mehr

Inhaltsverzeichnis. 2 Grenzwerte, Folgen und Reihen. 2.1 Intervalle in R. 2.2 Umgebungen (in R und C)

Inhaltsverzeichnis. 2 Grenzwerte, Folgen und Reihen. 2.1 Intervalle in R. 2.2 Umgebungen (in R und C) Ihaltsverzeichis 2 Grezwerte, Folge ud Reihe I diesem Kapitel führe wir de zetrale Begriff der Kovergez eier Folge vo Zahle (x ) N gege eie Grezwert x ei. Aschaulich bedeutet dies, dass i jeder och so

Mehr

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen Thema Fit i Mathe Musterlösuge 1 April Klassestufe 10 Wurzelfuktioe Uter der -te Wurzel eier icht-egative Zahl (i Zeiche: ) versteht ma die icht-egative Zahl, die mal mit sich selber multipliziert, die

Mehr

Aufgabe 4.2. (a) lim 7 + = (b) lim. ( 2n 3 6n 2 + 3n 1. (c) lim n n 2 ( 1) n n 3) = lim. (d) n n + 1. lim. (e) n n. Aufgabe 4.3.

Aufgabe 4.2. (a) lim 7 + = (b) lim. ( 2n 3 6n 2 + 3n 1. (c) lim n n 2 ( 1) n n 3) = lim. (d) n n + 1. lim. (e) n n. Aufgabe 4.3. Folge Eie Folge ist eie Aordug vo reelle Zahle. Die eizele Zahle heiße Glieder der Folge. Kapitel 4 Folge ud Reihe Formal: Eie Folge ist eie Abbildug a : N R, a Folge werde mit a i i oder kurz a i bezeichet.

Mehr

Konvergente Folgen. Kapitel Reelle Folgen und Reihen. Motivation: Ein einem Kreis K einbeschriebenes (regelmäßiges) n-eck E n 19/11/99.

Konvergente Folgen. Kapitel Reelle Folgen und Reihen. Motivation: Ein einem Kreis K einbeschriebenes (regelmäßiges) n-eck E n 19/11/99. Kapitel Kovergete Folge.0 Reelle Folge ud Reihe Motivatio: Ei eiem Kreis K eibeschriebees (regelmäßiges) -Eck E 9//99 approximiert die Fläche des Kreises: =6 Fläche (E ) Fläche(K) falls 0. Die mathematisch

Mehr

Die erste Zeile ("Nummerierung") denkt man sich also dazu. Häufig wird eine Indexschreibweise benutzt um ein Folgenglied zu kennzeichnen.

Die erste Zeile (Nummerierung) denkt man sich also dazu. Häufig wird eine Indexschreibweise benutzt um ein Folgenglied zu kennzeichnen. Folge ud Reihe (Izwische Stoff der Hochschule. ) Stad: 30.03.205. Folge Was sid Zahlefolge? Z.B. oder Das ist die vereifachte Wertetabelle eier Fuktio geschriebe wie üblich bei Fuktioe i eier Wertetabelle.

Mehr

Kapitel 4. Folgen und Reihen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38. a : N R, n a n

Kapitel 4. Folgen und Reihen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38. a : N R, n a n Kapitel 4 Folge ud Reihe Josef Leydold Auffrischugskurs Mathematik WS 2017/18 4 Folge ud Reihe 1 / 38 Folge Eie Folge ist eie Aordug vo reelle Zahle. Die eizele Zahle heiße Glieder der Folge. Formal: Eie

Mehr

Übungen zur Analysis I WS 2008/2009

Übungen zur Analysis I WS 2008/2009 Mathematisches Istitut der Uiversität Heidelberg Prof. Dr. E. Freitag /Thorste Heidersdorf Übuge zur Aalysis I WS 008/009 Blatt 3, Lösugshiweise Die folgede Hiweise sollte auf keie Fall als Musterlösuge

Mehr

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 4 LÖSUNGEN MAT/MAT3 ANALYSIS I HERBSTSEMESTER 00 PROF. DR. AMILLO DE LELLIS Aufgabe. Etscheide Sie für folgede Folge (wobei N \ {0}), ob diese koverget sid, ud bereche sie gegebeefalls ihre

Mehr

4-1 Elementare Zahlentheorie

4-1 Elementare Zahlentheorie 4-1 Elemetare Zahletheorie 4. Dirichlet s Satz über Primzahle i arithmetische Progressioe. Satz (Dirichlet 1837). Seie a, k atürliche Zahle. Sid die Zahle a, k teilerfremd, so gibt es uedlich viele Primzahle

Mehr

5. Übungsblatt Aufgaben mit Lösungen

5. Übungsblatt Aufgaben mit Lösungen 5. Übugsblatt Aufgabe mit Lösuge Aufgabe 2: Bestimme Sie alle Häufugspukte der komplexe) Folge mit de Glieder a) a = ) 5 + 7 + 2 ) b) b = i Lösug 2: a) Die Folge a ) zerfällt vollstädig i die beide Teilfolge

Mehr

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n)

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n) Übugsaufgabe Aalysis I Aufgabe. Beweise oder widerlege Sie: a Jede i R kovergete Folge ist beschräkt. b Es gibt Cauchy-Folge im R, die icht kovergiere. c Beschräkte Folge sid koverget. d Folge mit eiem

Mehr

Übungen zur Infinitesimalrechnung 2, H.-C. Im Hof 19. März Blatt 4. Abgabe: 26. März 2010, Nachmittag. e x2 dx + e x2 dx = 2 e x2 dx

Übungen zur Infinitesimalrechnung 2, H.-C. Im Hof 19. März Blatt 4. Abgabe: 26. März 2010, Nachmittag. e x2 dx + e x2 dx = 2 e x2 dx Übuge zur Ifiitesimalrechug, H.-C. Im Hof 9. März Blatt 4 Abgabe: 6. März, Nachmittag Aufgabe. Zeige e x dx π. Beweis. Wir bemerke als erstes, dass e x dx e x dx + e x dx e x dx formal sieht ma dies per

Mehr

Einführung in die Mathematik

Einführung in die Mathematik Eiführug i die Mathematik Fraz Hofbauer Leo Summerer Eie Vorlesug für das Lehramtstudium Ihaltsverzeichis Kapitel 1. Mege ud Fuktioe 1 1. Mege 1 2. Die atürliche Zahle 3 3. Variable, Summe, Idices 4 4.

Mehr

Übungen zum Ferienkurs Analysis 1, Vorlesung 2

Übungen zum Ferienkurs Analysis 1, Vorlesung 2 F. Hafer, T. Baldauf c Techische Uiversität Müche Übuge zum Feriekurs Aalysis, Vorlesug Witersemester 06/07. Richtig oder Falsch? Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche

Mehr

Analysis I. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Aalysis I 5. Übugsstude Steve Battilaa steveb@studet.ethz.ch battilaa.uk/teachig March 9, 07 Erierug Satz. Quotietekriterium (bei!,,...) Das Quotietekriterium zeigt absolute Kovergez. lim a +

Mehr

Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Folgen, Reihen, Potenzreihen, Exponentialfunktion. Musterlösung

Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Folgen, Reihen, Potenzreihen, Exponentialfunktion. Musterlösung Feriekurs Seite Techische Uiversität Müche Feriekurs Aalysis Haah Schamoi Folge, Reihe, Potezreihe, Expoetialfuktio Musterlösug 0.0.0. Folge I Utersuche Sie die Folge a N auf Kovergez bzw. Divergez ud

Mehr

Der Satz von Stone-Weierstraß. 1 Approximationssatz von Weierstraß

Der Satz von Stone-Weierstraß. 1 Approximationssatz von Weierstraß Der Satz vo Stoe-Weierstraß Vortrag zum Prosemiar Aalysis, 28.06.2010 Valetia Gerber, Sabria Kielma Aus der Vorlesug Aalysis I ud II kee wir das Kozept des Approximieres. Us wurde die Begriffe Taylor-

Mehr

Leitfaden Bielefeld SS 2007 III-4

Leitfaden Bielefeld SS 2007 III-4 Leitfade Bielefeld SS 2007 III-4 8.2. Der allgemeie Fall. Satz. Sei N 1, sei ω eie primitive -te Eiheitswurzel ud K = Q[ω ]. Da gilt: (a) [K : Q] = φ(), (b) Φ ist irreduzibel, (c) O K = Z[ω ]. (d) Eie

Mehr

mit (a 1 ) (0,0,,0). Dann ist die Menge,,a n,a 2 eine endliche Menge und besitzt ein grösstes Element ggt(a 1

mit (a 1 ) (0,0,,0). Dann ist die Menge,,a n,a 2 eine endliche Menge und besitzt ein grösstes Element ggt(a 1 Kapitel 1: Reste, Teiler, Vielfache Defiitio Es sei a 0. Die Zahl b 0 ist ei Teiler vo a, we es ei u 0 gibt, sodass ub= a. Ist b ei Teiler vo a, so ist a ei Vielfaches vo b. Bezeichug b a für b ist Teiler

Mehr

Metrisierbarkeit. Technische Universität Wien Seminararbeit aus Analysis WS 2014 Sinan Özcaliskan

Metrisierbarkeit. Technische Universität Wien Seminararbeit aus Analysis WS 2014 Sinan Özcaliskan Metrisierbarkeit Techische Uiversität Wie Semiararbeit aus Aalysis WS 04 Sia Özcaliska Ihaltsverzeichis Eileitug 3 Der Metrisierbarkeitssatz vo Alexadroff-Urysoh 3 3 Der Metrisierbarkeitssatz vo Nagata-Smirov

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Istitut für Aalysis Dr A Müller-Rettkowski Dr T Gauss WS 00/ Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. R. Köig Dr. M. Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Z8.. Kriterie für strege Mootoie Mathematik für Physiker 2 (Aalysis ) MA9202 Witersem. 207/8 Lösugsblatt 8

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 3..05 Höhere Mathemati für die Fachrichtug Physi Lösugsvorschläge zum 3. Übugsblatt Vorbemerug

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS vo Rolf Waldi 1 Kapitel I. Elemetare Zahletheorie 1 Grudlegede Regel ud Prizipie Es wird vorausgesetzt, daß der Leser mit gaze Zahle reche ka ud

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr