Randomisierte Algorithmen

Größe: px
Ab Seite anzeigen:

Download "Randomisierte Algorithmen"

Transkript

1 Randomisierte Algorithmen Randomisierte Algorithmen Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2018/ / 40

2 Überblick Überblick Grundlegendes zu Markov-Ketten 2 / 40

3 Grundlegendes zu Markov-Ketten Überblick Grundlegendes zu Markov-Ketten 3 / 40

4 Grundlegendes zu Markov-Ketten Markov-Kette stochastischer Prozess in diskreter Zeit schrittweiser Übergang von einem Zustand zum nächsten festgelegt durch M = (S, P): S: (bei uns immer) endliche Menge von Zuständen P = (P ij ): zeilenstochastische S S-Matrix von Übergangswahrscheinlichkeiten: für i, j S ist 0 P ij 1 und j P ij = 1 P ij ist Wahrscheinlichkeit (W.keit), dass M von Zustand i in Zustand j übergeht. Beachte: P ij hängt nur von i und j ab nicht etwa von noch früheren Zuständen oder Anzahl Schritte oder... 4 / 40

5 Grundlegendes zu Markov-Ketten Markov-Ketten Graphen jeder Markov-Kette M entspricht ein Graph G M : Kante zwischen i und j genau dann, wenn P ij > 0 u. U. gewichtet mit P ij jedem Graph G entspricht Markov-Kette M G (einfacher Random Walk) P ij = 0, falls keine Kante zwischen i und j P ij = 1/d(i) sonst 5 / 40

6 Grundlegendes zu Markov-Ketten Vereinbarung X t : Zufallsvariable für Zustand zum Zeitpunkt t, bei Markovketten also P(X t+1 = j X t = i, X t 1 = i t 1,..., X 0 = i 0 ) = P(X t+1 = j X t = i) = P ij X 0... Anfangszustand... im allgemeinen randomisiert manchmal egal... 6 / 40

7 Grundlegendes zu Markov-Ketten Rechnung wenn zum Zeitpunkt t q Zeilenvektor q i W.keit für Zustand i dann zum Zeitpunkt t + 1 qp entsprechender Zeilenvektor: P(X t+1 = j) = P(X t = i) P(X t+1 = j X t = i) i = q i P ij = (qp) j qp k die Verteilung nach k Schritten W.keit P (k) ij in k Schritten von i nach j überzugehen i P (k) ij = (P k ) ij 7 / 40

8 Grundlegendes zu Markov-Ketten Abgeschlossene und irreduzible Teilmengen nichtleere Teilmenge C S von Zuständen abgeschlossen, falls i C : j S C : P ij = 0. S ist immer abgeschlossen C heißt irreduzibel, falls C abgeschlossen, aber keine echte Teilmenge von C abgeschlossen Markov-Kette irreduzibel, falls ganz S irreduzibel verschiedene irreduzible Teilmengen sind disjunkt 8 / 40

9 Grundlegendes zu Markov-Ketten Transiente und rekurrente Zustände Es seien C 1,..., C r alle irreduziblen Teilmengen einer Markov-Kette S und T = S (C 1 C r ). Die Zustände in T heißen transient, die Zustände in den C k rekurrent oder persistent. 9 / 40

10 Grundlegendes zu Markov-Ketten Notation Wahrscheinlichkeit, von i nach t Schritten erstmals nach j überzugehen: f (t) ij = P(X t = j 1 s t 1 : X s j X 0 = i) Wahrscheinlichkeit von Zustand i aus irgendwann Zustand j zu erreichen: fij = Erwartungswert für die benötigte Anzahl Schritte, um von Zustand i irgendwann erstmals Zustand j zu erreichen: t >0 f (t) ij m ij = { t 1 t f (t) ij falls fij = 1 sonst 10 / 40

11 Grundlegendes zu Markov-Ketten Charakterisierung transienter Zustände Für endliche Markov-Ketten gilt: Ein Zustand i ist genau dann transient, wenn eine der folgenden (äquivalenten) Bedingungen erfüllt ist: f ii < 1. t 0 p (t) ii <. Ein Random Walk, der in i startet, kehrt mit Wahrscheinlichkeit 0 unendlich oft nach i zurück. 11 / 40

12 Grundlegendes zu Markov-Ketten Charakterisierung rekurrenter Zustände Für endliche Markov-Ketten gilt: Ein Zustand i ist genau dann rekurrent, wenn eine der folgenden (äquivalenten) Bedingungen erfüllt ist: f ii = 1. t 0 p (t) ii =. Ein Random Walk, der in i startet, kehrt mit Wahrscheinlichkeit 1 unendlich oft nach i zurück. 12 / 40

13 Überblick Grundlegendes zu Markov-Ketten 13 / 40

14 Irreduzible Markov-Ketten für uns vor allem irreduzible Markov-Ketten interessant ganz S die einzige irreduzible Teilmenge es gibt keine transienten Zustände zugehöriger Graph streng zusammenhängend 14 / 40

15 Perioden und Aperiodizität Periode d i eines Zustandes i: größter gemeinsamer Teiler aller Zahlen in N i = {k N + P (k) ii > 0}. Zustand mit Periode 1 heißt auch aperiodisch. Ein aperiodischer rekurrenter Zustand heißt auch ergodisch. 15 / 40

16 Aperiodische und ergodische Markov-Ketten Eine Markov-Kette ist aperiodisch, wenn alle ihre Zustände aperiodisch sind. Eine irreduzible und aperiodische Markov-Kette heißt auch ergodisch. 16 / 40

17 Für aperiodische Zustände gilt nicht automatisch, dass P (k) ii > 0 ist für alle k. Aber immerhin / 40

18 Lemma Es sei M N eine Menge natürlicher Zahlen mit der Eigenschaft, dass M + M = {k + l k, l M} M und gcd M = 1. Dann gibt es ein k 0 N mit {k 0 } + N 0 = {k 0, k 0 + 1, k 0 + 2,... } M, d. h. M enthält ab irgendeinem k 0 alle natürlichen Zahlen. (Übungsaufgabe) 18 / 40

19 Konstruktion aperiodischer Markov-Ketten Aus nicht aperiodischer Markov-Kette M mit Matrix P kann man aperiodische Markov-Kette M konstruieren: 19 / 40

20 Konstruktion aperiodischer Markov-Ketten Aus nicht aperiodischer Markov-Kette M mit Matrix P kann man aperiodische Markov-Kette M konstruieren: P = 1 (I + P) 2 I bezeichne die Einheitsmatrix. diese Vorgehensweise erhält folgende Eigenschaften Ist wp = w, dann ist auch wp = w und umgekehrt. Die beiden Matrizen haben die gleichen Eigenvektoren. Für die Eigenwerte gilt: Ist λ Eigenwert von P, dann ist 1/2 + λ/2 Eigenwert von P. wird später hier benutzt 19 / 40

21 8.16 Satz Potenzen ergodischer Markov-Ketten Satz Es sei P die Matrix einer ergodischen Markov-Kette. Dann gilt: W = lim t P t existiert. W besteht aus identischen Zeilen w. Alle Einträge von w = (w 1,..., w n ) sind echt größer 0 und ni=1 w i = / 40

22 Beweis (1) Da Markov-Kette ergodisch, gibt es eine Potenz P k, deren Einträge alle echt positiv sind. (Übungsaufgabe) O. B. d. A. habe schon P diese Eigenschaft (sonst: arbeite mit P k ). Sei d > 0 der kleinste in P vorkommende Eintrag. Sei zunächst y ein beliebiger Spaltenvektor. 1. Zeige: Wenn m 0 und M 0 der kleinste resp. der größte Wert eines Vektors y und m 1 und M 1 der kleinste resp. der größte Wert von Py, dann m 0 m 1 M 1 M 0 und M 1 m 1 (1 2d)(M 0 m 0 ) 21 / 40

23 Beweis (2) 1. M 1 m 1 (1 2d)(M 0 m 0 ): Die Einträge jeder Zeile von P addieren sich zu 1. Für jedes i ist (Py) i = j P ij y j. Offensichtlich ist m 1 = min i j P ij y j dm 0 + (1 d)m 0 m 0 M 1 = max i j P ij y j dm 0 + (1 d)m 0 M 0 Also M 1 m 1 (dm 0 + (1 d)m 0 ) (dm 0 + (1 d)m 0 ) = (1 2d)(M 0 m 0 ) m 0 m 1 M 1 M / 40

24 Beweis (3) 2. Induktion für kleinste und größte Einträge m k und M k von P k y: M k m k (1 2d) k (M 0 m 0 ) und m 0 m 1 m k M k M 1 M 0. Die Folgen m k und M k sind beschränkt und monoton, sie besitzen Grenzwerte m = lim k m k bzw. M = lim k M k. 23 / 40

25 Beweis (4) 3. O. B. d. A. habe P mindestens 2 Zeilen und Spalten. Dann ist 0 < d 1/2 und damit 0 1 2d < 1. M k m k (1 2d) k (M 0 m 0 ), also lim k M k m k = 0 und daher M = m. 4. Es sei u = M = m. Alle Einträge in P k y liegen zwischen m k und M k, Also ist lim k P k y = u, wobei u der konstante Vektor ist, dessen Einträge alle gleich u sind. 24 / 40

26 Beweis (5) 5. Betrachte y = e j (j-ter Einheitsvektor): P k e j ist die j-te Spalte von P k. Folge der P k e j konvergiert gegen einen konstanten Vektor also existiert lim k P k = W und besteht aus lauter konstanten Spalten, d. h. aus lauter gleichen Zeilen w 25 / 40

27 Beweis (6) 6. Alle Einträge in w sind echt größer 0: P hat keine Nulleinträge. Also gilt für jedes j: Pe j enthält nur echt positive Werte, d. h. m 1 > 0 und daher auch m > 0. Dieses m ist die j-te Komponente von w. 7. ni=1 w i = 1: alle Potenzen P k sind stochastische Matrizen, d. h. haben Zeilensumme 1 26 / 40

28 Stationäre Verteilung Eine Verteilung w heißt stationär, falls w = wp ist. 27 / 40

29 8.18 Satz Stationäre Verteilung ergodischer Markov-Ketten Satz Für jede ergodische Markov-Kette mit Matrix P und w wie eben gilt: 1. wp = w stationäre Verteilung 2. Falls vp = v ist, ist v = ( j v j )w. 3. Es gibt genau eine Wahrscheinlichkeitsverteilung v mit vp = v, nämlich v = w. 28 / 40

30 Beweis 1. WP = (lim k P k ) P = lim k P k+1 = W Insbesondere gilt also für jede Zeile w von W: wp = w. 2. Wenn vp = v ist, dann vp k = v für jedes k und vw = v. 3. r = j v j die Summe der Komponenten von v, dann vw = rw, also v = rw. 4. Unter allen Vektoren r w gibt es offensichtlich genau einen, für den die Summe aller Einträge gleich 1 ist. 29 / 40

31 Beobachtung Graph G = (V, E) mit V = n 2 und E = m sei endlich, zusammenhängend, ungerichtet und nicht bipartit. M G ist irreduzibel: G zusammenhängend M G ist aperiodisch: jeder Knoten in Zyklus der Länge 2 zu einem Nachbarn und zurück jeder Knoten von G in einem Zyklus ungerader Länge: G zusammenhängend und ein Knoten in einem Zyklus ungerader Länge, da G nicht bipartit Also ist M G ergodisch. 30 / 40

32 8.22 Lemma In der stationären Verteilung w von M G gilt für alle v V : w v = d(v)/2m. Insbesondere ist die stationäre Verteilung regulärer Graphen die Gleichverteilung. 31 / 40

33 8.23 Beweis stationäre Verteilung gegebenenfalls eindeutig rechne nach, dass q mit q v = d(v)/2m stationäre Verteilung ist: (qp) v = q u P uv = q u P uv = = u V (u,v) E (v,u) E (u,v) E d(u) 2m 1 d(u) 1 2m = d(v) 2m = q v. 32 / 40

34 Stationäre Verteilung irreduzibler Markov-Ketten Wegen früher angemerkter Erhaltungseigenschaften gilt der dritte Teil der von Satz 8.18 für irreduzible Markov-Ketten, auch bei Nichtaperiodizität: Jede irreduzible Markov-Kette P besitzt genau eine stationäre Verteilung w. Aber: lim k P k existiert für irreduzible Markov-Ketten im allgemeinen nicht. 33 / 40

35 Stationäre Verteilung irreduzibler Markov-Ketten Wegen früher angemerkter Erhaltungseigenschaften gilt der dritte Teil der von Satz 8.18 für irreduzible Markov-Ketten, auch bei Nichtaperiodizität: Jede irreduzible Markov-Kette P besitzt genau eine stationäre Verteilung w. Aber: lim k P k existiert für irreduzible Markov-Ketten im allgemeinen nicht. Beispiel: P = ( ) 0 1 und alle k: P 1 0 2k = I und P 2k+1 = P. 33 / 40

36 Bemerkung Für ergodische Markov-Ketten existiert lim t P t = W. Also existiert auch der Cesàro-Grenzwert lim t A t, mit A t = 1 t t+1 k=0 Pk und es ist lim t A t = W. (Übungsaufgabe) P (k) ij ist die Wahrscheinlichkeit, in k Schritten von i nach j zu gelangen. Also ist (A t ) ij der erwartete Anteil von Zeitpunkten zwischen 0 und t, zu denen man in Zustand j ist, wenn man in Zustand i startet. Das ist nicht nur für ergodische Markov-Ketten so / 40

37 8.26 Satz Es sei P die Übergangsmatrix einer irreduziblen Markov-Kette M. Dann gilt: lim t A t = W existiert. Alle Zeilen von W sind gleich. Die Zeile w ist die eindeutig bestimmte stationäre Verteilung von M. (ohne Beweis) 35 / 40

38 8.27 Satz Für jede ergodische Markov-Kette P und jede Verteilung v gilt: lim k vpk = w. 36 / 40

39 8.28 Beweis Es ist lim k vp k = vw. Da sich die Einträge in v zu 1 summieren und alle Zeilen von W gleich w sind, ist vw = w. 37 / 40

40 8.29 Satz Für jede irreduzible Markov-Kette mit stationärer Verteilung w = (w 1,..., w n ) gilt für alle i: w i = 1/m ii 38 / 40

41 8.30 Beweis 1. i j: m ij = P ij 1 + k j P ik (m k j + 1) = 1 + k j P ik m k j 2. i = j: m ii = P ii 1 + k i P ik (m ki + 1) = 1 + k i P ik m ki 3. Bezeichne E die Matrix, deren Einträge alle 1 seien, M die Matrix mit { m ij falls i j M ij = 0 falls i = j und D die Matrix mit D ij = { 0 falls i j m ii falls i = j 39 / 40

42 8.30 Beweis (2) Dann lassen sich die eben genannten Gleichungen ausdrücken als Matrixgleichung M + D = E + PM. Multiplizieren mit w von links ergibt Es ist wp = w, also wm + wd = we + wpm. wm + wd = we + wm und folglich wd = we. Das bedeutet aber ausgeschrieben nichts anderes als (w 1 m 11, w 2 m 22,..., w n m nn ) = (1, 1,..., 1) 40 / 40

für die Wahrscheinlichkeit, dass die Markov-Kette in t Schritten von Zustand i in Zustand j übergeht. Es ist also P (t) = (P t ) ij.

für die Wahrscheinlichkeit, dass die Markov-Kette in t Schritten von Zustand i in Zustand j übergeht. Es ist also P (t) = (P t ) ij. 8 Markov-Ketten 8.1 Grundlegendes zu Markov-Ketten Eine Markov-Kette ist ein stochastischer Prozess, der in diskreten Zeitschritten abläuft. Dabei wird jeweils von einem Zustand in einen nächsten übergegangen.

Mehr

DisMod-Repetitorium Tag 3

DisMod-Repetitorium Tag 3 DisMod-Repetitorium Tag 3 Markov-Ketten 21. März 2018 1 Markov-Ketten Was ist eine Markov-Kette? Was gehört alles dazu? Darstellung als Graph und als Matrix Stationäre Verteilung und Grenzverteilung Ergodizität

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2018/2019 1 / 25 Überblick Überblick Metropolis-Algorithmus

Mehr

Ein Zustand i mit f i = 1 heißt rekurrent. DWT 2.5 Stationäre Verteilung 420/476 c Ernst W. Mayr

Ein Zustand i mit f i = 1 heißt rekurrent. DWT 2.5 Stationäre Verteilung 420/476 c Ernst W. Mayr Definition 140 Wir bezeichnen einen Zustand i als absorbierend, wenn aus ihm keine Übergänge herausführen, d.h. p ij = 0 für alle j i und folglich p ii = 1. Ein Zustand i heißt transient, wenn f i < 1,

Mehr

7 Markov-Ketten. 7.1 Grundlegendes zu Markov-Ketten

7 Markov-Ketten. 7.1 Grundlegendes zu Markov-Ketten 58 7 Markov-Ketten 7. Grundlegendes zu Markov-Ketten Eine Markov-Kette ist ein stochastischer Prozess, der in diskreten Zeitschritten abläuft. Dabei wird jeweils von einem Zustand in einen nächsten übergegangen.

Mehr

Prozesse dieser Art sind in der Informatik z.b. bei der Untersuchung der Auslastung von Servern wichtig (Warteschlangenmodelle).

Prozesse dieser Art sind in der Informatik z.b. bei der Untersuchung der Auslastung von Servern wichtig (Warteschlangenmodelle). 77 Markowketten 77 Motivation Der Zustand eines Systems zur Zeit n N werde durch eine Zufallsvariable X n beschrieben und soll nur von X n abhängen (nicht jedoch von früheren Zuständen X n, X n 3, ) Wir

Mehr

16.3 Rekurrente und transiente Zustände

16.3 Rekurrente und transiente Zustände 16.3 Rekurrente und transiente Zustände Für alle n N bezeichnen wir mit f i (n) = P(X n = i,x n 1 i,...,x 1 i,x 0 = i) die Wahrscheinlichkeit, daß nach n Schritten erstmalig wieder der Zustand i erreicht

Mehr

Endliche Markov-Ketten - eine Übersicht

Endliche Markov-Ketten - eine Übersicht Endliche Markov-Ketten - eine Übersicht Diese Übersicht über endliche Markov-Ketten basiert auf dem Buch Monte Carlo- Algorithmen von Müller-Gronbach et. al. und dient als Sammlung von Definitionen und

Mehr

Die Abbildung zeigt die Kette aus dem "

Die Abbildung zeigt die Kette aus dem ½ Ô ½ 0 1 2 Õ Eine Markov-Kette mit absorbierenden Zustanden Die Abbildung zeigt die Kette aus dem " gamblers ruin problem\ fur m = 2. Man sieht sofort, dass hier sowohl 1 = (1; 0; 0) als auch 2 = (0;

Mehr

Einführung in Markoff-Ketten

Einführung in Markoff-Ketten Einführung in Markoff-Ketten von Peter Pfaffelhuber Version: 6. Juli 200 Inhaltsverzeichnis 0 Vorbemerkung Grundlegendes 2 Stationäre Verteilungen 6 3 Markoff-Ketten-Konvergenzsatz 8 0 Vorbemerkung Die

Mehr

Übungsaufgaben Lösungen

Übungsaufgaben Lösungen Übungsaufgaben Lösungen Stochastische Matrizen, Markov-Prozesse MV5.1 Eine N N-Matrix P heißt stochastisch, wenn ihre Matrixelemente nicht-negativ sind und alle Zeilensummen 1 ergeben. In Formeln: P ij

Mehr

Pr[X t+1 = k] = Pr[X t+1 = k X t = i] Pr[X t = i], also. (q t+1 ) k = p ik (q t ) i, bzw. in Matrixschreibweise. q t+1 = q t P.

Pr[X t+1 = k] = Pr[X t+1 = k X t = i] Pr[X t = i], also. (q t+1 ) k = p ik (q t ) i, bzw. in Matrixschreibweise. q t+1 = q t P. 2.2 Berechnung von Übergangswahrscheinlichkeiten Wir beschreiben die Situation zum Zeitpunkt t durch einen Zustandsvektor q t (den wir als Zeilenvektor schreiben). Die i-te Komponente (q t ) i bezeichnet

Mehr

Markov Ketten und Bonus Malus Systeme

Markov Ketten und Bonus Malus Systeme Grund Stoch Markov Ketten Bonus Malus Probleme L 1 / 46 Markov Ketten und Bonus Malus Systeme Klaus D. Schmidt Lehrstuhl für Versicherungsmathematik Technische Universität Dresden TU Wien 19. Mai 2010

Mehr

Kapitel 12: Markov-Ketten

Kapitel 12: Markov-Ketten Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse 21.01.2016 Kapitel 12: Markov-Ketten Ab jetzt betrachten wir stochastische Prozesse (X n ) n N0 mit 1. diskreter Zeit N 0 = {0,1,2,...},

Mehr

Der Ergodensatz. Hendrik Hülsbusch

Der Ergodensatz. Hendrik Hülsbusch Der Ergodensatz Hendrik Hülsbusch 1..212 Inhaltsverzeichnis Einleitung 3 5 Stationäre Verteilungen 5 6 Reversible Markovketten 11 2 Einleitung In meinem Vortrag beschäftigen wir uns mit dem asymptotischen

Mehr

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/45

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/45 Am Dienstag, den 16. Dezember, ist Eulenfest. 1/45 Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009

Mehr

Einführung in die Theorie der Markov-Ketten. Jens Schomaker

Einführung in die Theorie der Markov-Ketten. Jens Schomaker Einführung in die Theorie der Markov-Ketten Jens Schomaker Markov-Ketten Zur Motivation der Einführung von Markov-Ketten betrachte folgendes Beispiel: 1.1 Beispiel Wir wollen die folgende Situation mathematisch

Mehr

DWT 2.3 Ankunftswahrscheinlichkeiten und Übergangszeiten 400/467 Ernst W. Mayr

DWT 2.3 Ankunftswahrscheinlichkeiten und Übergangszeiten 400/467 Ernst W. Mayr 2. Ankunftswahrscheinlichkeiten und Übergangszeiten Bei der Analyse von Markov-Ketten treten oftmals Fragestellungen auf, die sich auf zwei bestimmte Zustände i und j beziehen: Wie wahrscheinlich ist es,

Mehr

Eigenwerte und Netzwerkanalyse. Page Rank

Eigenwerte und Netzwerkanalyse. Page Rank A Google versucht die Bedeutung von Webseiten mithilfe des sogenannten zu ermitteln. Der einer Seite basiert ausschließlich auf der Verweisstruktur des Webs. Der Inhalt einer Seite hat dagegen keinen direkten

Mehr

Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse

Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse Zu Markov-Prozessen: Bemerkungen: 17.01.2013 Wir betrachten im Folgenden eine Markovkette (X n ) n N0, wobei jedes X n Werte in Z = {0,1,2,...,s}

Mehr

Der Metropolis-Hastings Algorithmus

Der Metropolis-Hastings Algorithmus Der Algorithmus Michael Höhle Department of Statistics University of Munich Numerical Methods for Bayesian Inference WiSe2006/07 Course 30 October 2006 Markov-Chain Monte-Carlo Verfahren Übersicht 1 Einführung

Mehr

Übersicht. 1 Einführung in Markov-Chain Monte-Carlo Verfahren. 2 Kurze Wiederholung von Markov-Ketten

Übersicht. 1 Einführung in Markov-Chain Monte-Carlo Verfahren. 2 Kurze Wiederholung von Markov-Ketten Markov-Chain Monte-Carlo Verfahren Der Algorithmus Michael Höhle Department of Statistics University of Munich Numerical Methods for Bayesian Inference WiSe2006/07 Course 30 October 2006 Übersicht 1 Einführung

Mehr

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009

Mehr

Stochastische Prozesse Stoffzusammenfassung

Stochastische Prozesse Stoffzusammenfassung Stochastische Prozesse Stoffzusammenfassung Joachim Breitner 7. August 2018 Diese Zusammefassung ist natürlich alles andere als vollständig und zu knapp, um immer alle Aussagen mit Voraussetzungen korrekt

Mehr

3. Markov Ketten in stetiger Zeit, Teil II 3.2. Klassenstruktur

3. Markov Ketten in stetiger Zeit, Teil II 3.2. Klassenstruktur 3. Markov Ketten in stetiger Zeit, Teil II 3.2. Klassenstruktur Ein Zustand j ist erreichbar von i (i j), falls P i (X t = j für ein t 0) > 0. i j, wenn i erreichbar von j und j erreichbar von i ist. Die

Mehr

Seminar über Markovketten

Seminar über Markovketten Universität Siegen Fachbereich Mathematik Seminar über Markovketten Sommersemester 003 Dozent Dr. Edgar Kaufmann Seminarteilnehmer Tobias Kegel Alexander Luke Uwe Nowak Übergangswahrscheinlichkeiten höherer

Mehr

LANGZEITVERHALTEN VON MARKOW-KETTEN

LANGZEITVERHALTEN VON MARKOW-KETTEN LANGZEITVERHALTEN VON MARKOW-KETTEN NORA LOOSE. Buchstabensalat und Definition Andrei Andreewitsch Markow berechnete Anfang des 20. Jahrhunderts die Buchstabensequenzen in russischer Literatur. 93 untersuchte

Mehr

Markov-Ketten und Google s Page-Rank 1 / 70

Markov-Ketten und Google s Page-Rank 1 / 70 Markov-Ketten und Google s Page-Rank 1 / 70 Zielstellung 1 Wir geben einen kurzen Überblick über die Arbeitsweise von Suchmaschinen für das Internet. Eine Suchmaschine erwartet als Eingabe ein Stichwort

Mehr

Diskrete Wahrscheinlichkeitstheorie

Diskrete Wahrscheinlichkeitstheorie SS 2013 Diskrete Wahrscheinlichkeitstheorie Javier Esparza Fakultät für Informatik TU München http://www7.in.tum.de/um/courses/dwt/ss13 Sommersemester 2013 Teil VI Markov-Ketten Markov-Ketten Markov-Ketten

Mehr

Markov-Ketten und Google s Page-Rank 1 / 70

Markov-Ketten und Google s Page-Rank 1 / 70 Markov-Ketten und Google s Page-Rank 1 / 70 Zielstellung 1 Wir geben einen kurzen Überblick über die Arbeitsweise von Suchmaschinen für das Internet. Eine Suchmaschine erwartet als Eingabe ein Stichwort

Mehr

Arbeit: Page, Brin, Motwani, Winograd (1998). Ziel: Maß für absolute

Arbeit: Page, Brin, Motwani, Winograd (1998). Ziel: Maß für absolute 3.4 PageRank Arbeit: Page, Brin, Motwani, Winograd (1998). Ziel: Maß für absolute Wichtigkeit von Webseiten; nicht Relevanz bezüglich Benutzeranfrage. Anfrageunabhängiges Ranking. Ausgangspunkt: Eingangsgrad.

Mehr

10 Schnell mischende Markov-Ketten

10 Schnell mischende Markov-Ketten 10 Schnell mischende Markov-Ketten Allgemeines zu schnell mischenden Markov-Ketten findet man zum Beispiel in dem Buch Introduction to Markov Chains von Behrends (2000). Außerdem haben wir von einem Teil

Mehr

Bedingt unabhängige Zufallsvariablen

Bedingt unabhängige Zufallsvariablen 7. Markov-Ketten 7. Definition und Eigenschaften von Markov-Ketten Benannt nach Andrei A. Markov [856-9] Einige Stichworte: Markov-Ketten Definition Eigenschaften Konvergenz Hidden Markov Modelle Sei X

Mehr

9 Schnell mischende Markov-Ketten

9 Schnell mischende Markov-Ketten 9 Schnell mischende Markov-Ketten Allgemeines zu schnell mischenden Markov-Ketten findet man zum Beispiel in dem Buch Introduction to Markov Chains von Behrends (2000). Außerdem haben wir von einem Teil

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10 D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler Lösungen Serie 10 1. Für a 1 : 1 1 0, a 2 : 1 1, a 3 : 1 1 1, b : 2 2 2 1 und A : (a 1, a 2, a 3 ) gelten welche der folgenden Aussagen? (a) det(a)

Mehr

Bonus Malus Systeme und Markov Ketten

Bonus Malus Systeme und Markov Ketten / 5 onus Malus Systeme und Markov Ketten Klaus D. Schmidt Lehrstuhl für Versicherungsmathematik Technische Universität Dresden 6. Dresdner Kolloquium zur Mathematik und ihrer Didaktik 8. Februar 2 2 /

Mehr

Randomisierte Algorithmen 2. Erste Beispiele

Randomisierte Algorithmen 2. Erste Beispiele Randomisierte Algorithmen Randomisierte Algorithmen 2. Erste Beispiele Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 35 Randomisierter Identitätstest

Mehr

Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,...

Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,... Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,..., k, so dass gilt M = k c i P i i=1 k c i = r. i=1 Diskrete Strukturen 7.1 Matchings

Mehr

Matrizen. Stefan Keppeler. 28. November Mathematik I für Biologen, Geowissenschaftler und Geoökologen

Matrizen. Stefan Keppeler. 28. November Mathematik I für Biologen, Geowissenschaftler und Geoökologen Mathematik I für Biologen, Geowissenschaftler und Geoökologen Matrizen 28. November 2007 Summe & Produkt Beispiel: Einwohnerzahlen Beispiel Addition Multiplikation Inverse Addition & Multiplikation Anwendung

Mehr

Kapitel 4: Irreduzible und aperiodische Markov Ketten 1

Kapitel 4: Irreduzible und aperiodische Markov Ketten 1 Matrielnummer: 1152750 Projetseminar zur Stochasti Kapitel 4: Irreduzible und aperiodische Marov Ketten 1 Für einige besonders interessante Ergebnisse der Marov Theorie, werden zunächst bestimmte Annnahme

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 13 Allgemeine Theorie zu Markov-Prozessen (stetige Zeit, diskreter Zustandsraum) Literatur Kapitel 13 * Grimmett & Stirzaker: Kapitel 6.9 Wie am Schluss von Kapitel

Mehr

8 Markov-Kette mit kontinuierlicher Zeit

8 Markov-Kette mit kontinuierlicher Zeit 8 Markov-Kette mit kontinuierlicher Zeit In den vorhergehenden Kapiteln haben wir Markov-Ketten behandelt, bei denen die Zustandsänderungen in diskreten, äquidistanten Zeitpunkten stattfanden. In weiteren

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 206 Lineare Algebra und analytische Geometrie II Vorlesung 54 Stochastische Matrizen Definition 54.. Eine reelle quadratische Matrix M a ij i,j n heißt spaltenstochastisch,

Mehr

LANGZEITVERHALTEN VON MARKOW-KETTEN

LANGZEITVERHALTEN VON MARKOW-KETTEN LANGZEITVERHALTEN VON MARKOW-KETTEN NORA LOOSE. Buchstabensalat und Definition Andrei Andreewitsch Markow berechnete Anfang des 20. Jahrhunderts die Buchstabensequenzen in russischer Literatur. 93 untersuchte

Mehr

Markov-Prozesse. Markov-Prozesse. Franziskus Diwo. Literatur: Ronald A. Howard: Dynamic Programming and Markov Processes

Markov-Prozesse. Markov-Prozesse. Franziskus Diwo. Literatur: Ronald A. Howard: Dynamic Programming and Markov Processes Markov-Prozesse Franziskus Diwo Literatur: Ronald A. Howard: Dynamic Programming and Markov Processes 8.0.20 Gliederung Was ist ein Markov-Prozess? 2 Zustandswahrscheinlichkeiten 3 Z-Transformation 4 Übergangs-,

Mehr

Lösungen zu Übungsblatt 10 Höhere Mathematik Master KI Diskrete Zufallsgrößen/Markov-Ketten

Lösungen zu Übungsblatt 10 Höhere Mathematik Master KI Diskrete Zufallsgrößen/Markov-Ketten Lösungen zu Übungsblatt 0 Höhere Mathematik Master KI Hinweise: Die Aufgaben - beziehen sich auf das Thema Diskrete Zufallsgrößen, Ihre Verteilungen und Erwartungswerte. Siehe dazu auch das auf der Homepage

Mehr

Ba-Wü: BG Neuer Lehrplan Mathematik Modul-5: Prozesse Teil 3a: stochastische Übergangsprozesse. Februar und März

Ba-Wü: BG Neuer Lehrplan Mathematik Modul-5: Prozesse Teil 3a: stochastische Übergangsprozesse. Februar und März Ba-Wü: BG Neuer Lehrplan Mathematik Modul-5: Prozesse Teil 3a: stochastische Übergangsprozesse Februar und März 216 1 Stoffverteilungsplan 1 Woche Inhalte 1 + 2 Einstufige Prozesse Darstellung mit Tabellen,

Mehr

10 Markow-Ketten. Themen: Lineare Differenzengleichungen Irrfahrten Warteschlangen

10 Markow-Ketten. Themen: Lineare Differenzengleichungen Irrfahrten Warteschlangen 10 Markow-Ketten Themen: Lineare Differenzengleichungen Irrfahrten Warteschlangen 10.1 Lineare Differenzengleichungen Unter einer homogenen linearen Differenzengleichung der Ordnung r verstehen wir eine

Mehr

Stochastik Praktikum Markov Chain Monte Carlo Methoden

Stochastik Praktikum Markov Chain Monte Carlo Methoden Stochastik Praktikum Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 14.10.2010 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

Am Dienstag, den 15. Dezember, ist Eulenfest. 1/60

Am Dienstag, den 15. Dezember, ist Eulenfest. 1/60 Am Dienstag, den 15. Dezember, ist Eulenfest. 1/60 Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester

Mehr

Endliche Markov-Ketten

Endliche Markov-Ketten Endliche Markov-Ketten Michael Krühler 24. Oktober 2013 Inhaltsverzeichnis 1 Einführung 2 1.1 Mathematische Einführung......................... 2 1.2 Interpretation................................. 3 2

Mehr

Zentralübung Diskrete Wahrscheinlichkeitstheorie (zur Vorlesung Prof. Esparza)

Zentralübung Diskrete Wahrscheinlichkeitstheorie (zur Vorlesung Prof. Esparza) SS 2013 Zentralübung Diskrete Wahrscheinlichkeitstheorie (zur Vorlesung Prof. Esparza) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2013ss/dwt/uebung/ 10. Mai 2013

Mehr

1 A dp = P(A B). (1.3)

1 A dp = P(A B). (1.3) Markov-etten Seminar Stochastik vom 4-500 Version Oktober 00 Markus Penz Vorbemerkungen zu bedingten Wahrscheinlichkeiten Sei (Ω, F,P) ein Wahrscheinlichkeitsraum und X : Ω R eine F-messbare sowie integrierbare

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 1 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Übungen zur Vorlesung Stochastische Prozesse Musterlösungen Aufgabe 1: (Verzweigungsprozess) Die

Mehr

Matrizen. Nicht nur eine Matrix, sondern viele 0,5 0,2 0,3 A 0,2 0,7 0,1

Matrizen. Nicht nur eine Matrix, sondern viele 0,5 0,2 0,3 A 0,2 0,7 0,1 Nicht nur eine Matrix, sondern viele Matrizen 0,5 0,2 0,3 A 0,2 0,7 0,1 015 0,15 0,75 075 0,1 01 aber keine Matrize und auch keine Matratzen 1 Wie beschreibt man Prozesse? Makov-Modell Modell Markov- Prozess

Mehr

Methoden der Statistik Markov Chain Monte Carlo Methoden

Methoden der Statistik Markov Chain Monte Carlo Methoden Methoden der Statistik Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 08.02.2013 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

Wirtschaftsmathematik Formelsammlung

Wirtschaftsmathematik Formelsammlung Wirtschaftsmathematik Formelsammlung Binomische Formeln Stand März 2019 (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) (a b) = a 2 b 2 Fakultät (Faktorielle) n! = 1 2 3 4 (n 1) n Intervalle

Mehr

DIPLOMARBEIT. Abschätzungen der Konvergenzgeschwindigkeit von Markov-Ketten gegen die Gleichgewichtsverteilung

DIPLOMARBEIT. Abschätzungen der Konvergenzgeschwindigkeit von Markov-Ketten gegen die Gleichgewichtsverteilung Studiengang Diplom-Mathematik mit Schwerpunkt Biowissenschaften DIPLOMARBEIT Abschätzungen der Konvergenzgeschwindigkeit von Markov-Ketten gegen die Gleichgewichtsverteilung von: Christina Boll geb. Wolf

Mehr

LINEARE ALGEBRA II. FÜR PHYSIKER

LINEARE ALGEBRA II. FÜR PHYSIKER LINEARE ALGEBRA II FÜR PHYSIKER BÁLINT FARKAS 4 Rechnen mit Matrizen In diesem Kapitel werden wir zunächst die so genannten elementaren Umformungen studieren, die es ermöglichen eine Matrix auf besonders

Mehr

Definition 7.1. Der Coxeter Graph zu W ist der ungerichtete gewichtete Graph Γ W = (V, E), mit Eckenmenge V und Kantenmenge E, gegeben durch V = und

Definition 7.1. Der Coxeter Graph zu W ist der ungerichtete gewichtete Graph Γ W = (V, E), mit Eckenmenge V und Kantenmenge E, gegeben durch V = und 7. Coxeter Graphen Um die endlichen Spiegelungsgruppen zu klassifizieren, wollen wir ihnen nun Graphen zuordnen, die die Gruppen bis auf Isomorphie eindeutig bestimmen. Im Folgenden sei wie vorher Π Φ

Mehr

W-Rechnung und Statistik für Ingenieure Übung 11

W-Rechnung und Statistik für Ingenieure Übung 11 W-Rechnung und Statistik für Ingenieure Übung 11 Aufgabe 1 Ein Fahrzeugpark enthält 6 Fahrzeuge. Jedes Fahrzeug hat die Wahrscheinlichkeit p = 0.1 (bzw. p = 0.3), dass es kaputt geht. Pro Tag kann nur

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 5. Zwei spieltheoretische Aspekte Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2015/2016 1 / 36 Überblick

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 24-6. Sitzung Marcus Georgi tutorium@marcusgeorgi.de 04.12.2009 1 Repräsentation von Graphen im Rechner Adjazenzlisten Adjazenzmatrizen Wegematrizen 2 Erreichbarkeitsrelationen

Mehr

Matrizen. Stefan Keppeler. 19. & 26. November Mathematik I für Biologen, Geowissenschaftler und Geoökologen

Matrizen. Stefan Keppeler. 19. & 26. November Mathematik I für Biologen, Geowissenschaftler und Geoökologen Mathematik I für Biologen, Geowissenschaftler und Geoökologen 19. & 26. November 2008 Definition, Summe & Produkt Transponierte Beispiel: Einwohnerzahlen Leslie-Populationsmodell Beispiel Addition Multiplikation

Mehr

Kapitel 16. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 16. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel 16 Aufgaben Verständnisfragen Aufgabe 16.1 Ist das Produkt quadratischer oberer bzw. unterer Dreiecksmatrizen wieder eine obere bzw. untere Dreiecksmatrix? Aufgabe 16.2 Bekanntlich gilt im Allgemeinen

Mehr

Aufgaben zu Kapitel 16

Aufgaben zu Kapitel 16 Aufgaben zu Kapitel 16 1 Aufgaben zu Kapitel 16 Verständnisfragen Aufgabe 16.1 Ist das Produkt quadratischer oberer bzw. unterer Dreiecksmatrizen wieder eine obere bzw. untere Dreiecksmatrix? Aufgabe 16.2

Mehr

Das Prinzip der Suchmaschine Google TM

Das Prinzip der Suchmaschine Google TM /9 Das Prinzip der Suchmaschine Google TM Numerische Mathematik WS 20/2 Basieren auf dem Paper The $25,000,000,000 Eigenvector: The Linear Algebra behind Google von Kurt Bryan und Tanya Leise (SIAM Review,

Mehr

Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen

Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Oktober 2018 Prof. Dr. Hans-Jörg

Mehr

Übersicht Kapitel 9. Vektorräume

Übersicht Kapitel 9. Vektorräume Vektorräume Definition und Geometrie von Vektoren Übersicht Kapitel 9 Vektorräume 9.1 Definition und Geometrie von Vektoren 9.2 Teilräume 9.3 Linearkombinationen und Erzeugendensysteme 9.4 Lineare Abhängigkeiten

Mehr

Markov-Ketten 1. Definition 2.1

Markov-Ketten 1. Definition 2.1 Marov-Ketten Definition 2. Sei P eine -Matrix mit Elementen {P i,j : i, j,...,}. Ein Zufallsprozess (X 0, X,...) mit endlichem Zustandsraum S{s,...,s } heißt homogene Marov-Kette mit Übergangsmatrix P,

Mehr

4.13. Permutationen. Definition. Eine Permutation der Elementen {1,..., n} ist eine bijektive Abbildung

4.13. Permutationen. Definition. Eine Permutation der Elementen {1,..., n} ist eine bijektive Abbildung 43 Permutationen Definition Eine Permutation der Elementen {,, n} ist eine bijektive Abbildung σ : {,,n} {,,n} Es ist leicht zu sehen, dass die Hintereinanderführung zweier Permutationen ergibt wieder

Mehr

2. Entsprechende Listen P i von Vorgängern von i 3. for i := 1 to n do. (ii) S i = Knoten 2 + 1}

2. Entsprechende Listen P i von Vorgängern von i 3. for i := 1 to n do. (ii) S i = Knoten 2 + 1} 1. Berechne für jeden Knoten i in BFS-Art eine Liste S i von von i aus erreichbaren Knoten, so dass (i) oder (ii) gilt: (i) S i < n 2 + 1 und Si enthält alle von i aus erreichbaren Knoten (ii) S i = n

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

80 7 MARKOV-KETTEN. 7.1 Definition und Eigenschaften von Markov-Ketten

80 7 MARKOV-KETTEN. 7.1 Definition und Eigenschaften von Markov-Ketten 80 7 MARKOV-KETTEN 7 Markov-Ketten 7. Definition und Eigenschaften von Markov-Ketten Sei X = (X 0, X, X 2,...) eine Folge von diskreten Zufallsvariablen, die alle Ausprägungen in einer endlichen bzw. abzählbaren

Mehr

Suchmaschinen und Markov-Ketten 1 / 42

Suchmaschinen und Markov-Ketten 1 / 42 Suchmaschinen und Markov-Ketten 1 / 42 Zielstellung 1 Wir geben einen kurzen Überblick über die Arbeitsweise von Suchmaschinen für das Internet. Eine Suchmaschine erwartet als Eingabe ein Stichwort oder

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 7. Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2018/2019 1 / 43 Überblick Überblick Ein randomisierter Algorithmus

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

Zeitstetige Markov-Prozesse: Einführung und Beispiele

Zeitstetige Markov-Prozesse: Einführung und Beispiele Zeitstetige Markov-Prozesse: Einführung und Beispiele Simone Wielart 08.12.10 Inhalt Q-Matrizen und ihre Exponentiale Inhalt Q-Matrizen und ihre Exponentiale Zeitstetige stochastische Prozesse Inhalt Q-Matrizen

Mehr

Allgemeine Hinweise. (a) Bereiten Sie sich durch aktives Lernen auf die Klausur vor.

Allgemeine Hinweise. (a) Bereiten Sie sich durch aktives Lernen auf die Klausur vor. Allgemeine Hinweise (a) Bereiten Sie sich durch aktives Lernen auf die Klausur vor. Bearbeiten Sie Übungsaufgaben, für die Sie wenige Punkte erhalten haben, andere Aufgaben aus dem Skript oder aus Textbüchern.

Mehr

Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist:

Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Svenja Hüning, Michael Kerber, Hannah Schreiber WS 2016/2017 Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Hinweise: Dieses Blatt präsentiert Beispiellösungen zu

Mehr

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle 2. Matrixalgebra Warum Beschäftigung mit Matrixalgebra? Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle bequeme mathematische

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Die Mathematik hinter Google

Die Mathematik hinter Google Die Mathematik hinter Google Wolfram Decker TU Kaiserslautern Neustadt, 5. Dezember 05 Elemente einer Suchmaschine WWW Crawler Module Page Repository User query independent Indexing Module 000 000 000

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein

Mehr

Modellierung WS 2014/15. Wahrscheinlichkeits-Modelle und stochastische Prozesse. (mit Folien von Prof. H. Schütze)

Modellierung WS 2014/15. Wahrscheinlichkeits-Modelle und stochastische Prozesse. (mit Folien von Prof. H. Schütze) Modellierung WS 2014/15 Wahrscheinlichkeits-Modelle und stochastische Prozesse (mit Folien von Prof. H. Schütze) Prof. Norbert Fuhr 1 / 63 Wahrscheinlichkeits-Modelle Wahrscheinlichkeits-Modelle Zufalls-Experiment

Mehr

Ecken des Zuordnungsproblems

Ecken des Zuordnungsproblems Total unimodulare Matrizen Ecken des Zuordnungsproblems Definition.6 Ein Zuordnungsproblem mit den Vorzeichenbedingungen 0 apple x ij apple für i, j =,...,n statt x ij 2{0, } heißt relaxiertes Zuordnungproblem.

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw. Kapitel 5 Lineare Algebra 5 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen

Mehr

3 Systeme linearer Gleichungen

3 Systeme linearer Gleichungen 3 Systeme linearer Gleichungen Wir wenden uns nun dem Problem der Lösung linearer Gleichungssysteme zu. Beispiel 3.1: Wir betrachten etwa das folgende System linearer Gleichungen: y + 2z = 1 (1) x 2y +

Mehr

Einführung und Grundlagen

Einführung und Grundlagen Kapitel 1 Einführung und Grundlagen Generelle Notation: Ω, A, P sei ein W-Raum im Hintergrund nie weiter spezifiziert Die betrachteten Zufallsvariablen seien auf Ω definiert, zb X : Ω, A M, A, wobei M,

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Schriftliche Ausarbeitung zum Seminarvortrag: Einführung in die Perfekte Simulation. Propp-Wilson-Algorithmus

Schriftliche Ausarbeitung zum Seminarvortrag: Einführung in die Perfekte Simulation. Propp-Wilson-Algorithmus Technische Universität Berlin Schriftliche Ausarbeitung zum Seminarvortrag: Einführung in die Perfekte Simulation Propp-Wilson-Algorithmus Lisa Brust Matrikelnummer: 330793 Master Mathematik 30. Juni 2016

Mehr

7.1.1 Zusammenhang zwischen der w.e. Funktion und den Momenten Da G X (s) := Pr[X = k] s k = E[s X ], k Pr[X = k] = E[X].

7.1.1 Zusammenhang zwischen der w.e. Funktion und den Momenten Da G X (s) := Pr[X = k] s k = E[s X ], k Pr[X = k] = E[X]. 7.1.1 Zusammenhang zwischen der w.e. Funktion und den Momenten Da G X (s) := gilt G X(1) = Pr[X = k] s k = E[s X ], k=0 k Pr[X = k] = E[X]. k=1 DWT 7.1 Einführung 182/476 Beispiel 73 Sei X binomialverteilt

Mehr

Big Data Analytics in Theorie und Praxis Theorieteil

Big Data Analytics in Theorie und Praxis Theorieteil Big Data Analytics in Theorie und Praxis Theorieteil Vorlesung entspricht 2V+1Ü SWS) Prof. Dr. Nicole Schweikardt Lehrstuhl Logik in der Informatik Institut für Informatik Humboldt-Universität zu Berlin

Mehr

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen 1 Zum Aufwärmen 1.1 Notationen In diesem Teil der Vorlesung bezeichnen wir Körper mit K, Matrizen mit Buchstaben A,B,..., Vektoren mit u,v,w,... und Skalare mit λ,µ,... Die Menge der m n Matrizen bezeichnen

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) WS 2011/12 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2011ws/ds/uebung/ 25. Januar 2012 ZÜ DS ZÜ XIII

Mehr

Vorlesung Big Data Analytics in Theorie und Praxis Theorieteil

Vorlesung Big Data Analytics in Theorie und Praxis Theorieteil Vorlesung Big Data Analytics in Theorie und Praxis Theorieteil Prof. Dr. Nicole Schweikardt Lehrstuhl Logik in der Informatik Institut für Informatik Humboldt-Universität zu Berlin Kapitel 1: PageRank:

Mehr