Übungen zur Theoretischen Physik 2 für das Lehramt L3 Blatt 3

Größe: px
Ab Seite anzeigen:

Download "Übungen zur Theoretischen Physik 2 für das Lehramt L3 Blatt 3"

Transkript

1 H. van Hees Sommersemester 218 Übungen zur Theoretischen Physik 2 für as Lehramt L3 Blatt 3 Aufgabe 1: Vektorproukt Im Manuskript haben wir as Vektorproukt zweier Vektoren a un b geometrisch efiniert. Demnach soll a b = c wieer ein Vektor sein, essen Betrag c = ab sin ( a, b) er Flächeninhalt es von a un b aufgespannten Parallelogramms ist. Die Richtung ist senkrecht zu a un b gemäß er Rechte-Han-Regel. Es ist ziemlich schwierig, aus ieser Definition as Distributivgesetz,.h. ( a + b) c = a c + b c zu beweisen. Nimmt man aber an, ass as Distributivgesetz gilt un ass e 1, e 2 un e 3 eine rechtshänige kartesische Basis bilen, so folgt für ie kartesischen Komponenten es Vektorproukts a 1 b 1 a 2 b 3 a 3 b 2 a 2 b 2 = a 3 b 1 a 1 b 3. (1) a 3 b 3 a 1 b 2 a 2 b 1 Wir efinieren nun einfach as Vektorproukt algebraisch auf iese Weise,.h. wir setzen voraus, ass (1) für ie kartesischen Vektorkomponenten gilt. Zeigen Sie ann ie folgenen Rechenregeln urch einfaches Nachrechnen a b = b a, (2) a ( a b) = b ( a b) =, (3) ( a + b) c = a c + b c, (4) a ( b c) = b( a c) c( a b), (5) a ( b c) = ( a b) c. (6) Lösungen: Gl. (2): Gl. (3): a b a 2 b 3 a 3 b 2 b 2 a 3 b 3 a 2 = a 3 b 1 a 1 b 3 = b 3 a 1 b 1 a 3 = b a. (7) a 1 b 2 a 2 b 1 b 1 a 2 b 2 a 1 a ( a b) a 1 a 2 b 3 a 3 b 2 = a 2 a 3 b 1 a 1 b 3 a 3 a 1 b 2 a 2 b 1 = a 1 (a 2 b 3 a 3 b 2 ) + a 2 (a 3 b 1 a 1 b 3 ) + a 3 (a 1 b 2 a 2 b 1 ) = a 1 a 2 b 3 a 1 a 3 b 2 + a 2 a 3 b 1 a 1 a 2 b 3 + a 1 a 3 b 2 a 2 a 3 b 2 =. (8) Analog rechnet man auch ie zweite Gleichung nach. Gl. (4): ( a + b) (a 2 + b 2 )c 3 (a 3 + b 3 )c 2 a 2 c 3 a 3 c 2 b 2 c 3 b 3 c 2 c = (a 3 + b 3 )c 1 (a 1 + b 1 )c 3 = a 3 c 1 a 1 c 3 + b 3 c 1 b 1 c 3 = a c + b c. (9) (a 1 + b 1 )c 2 (a 2 b 2 )c 1 a 1 c 2 a 2 c 1 b 1 c 2 b 2 c 1

2 Gl. (5): a ( b a 1 b 2 c 3 b 3 c 2 c) = a 2 b 3 c 1 b 1 c 3 a 3 b 1 c 2 b 2 c 1 a 2 (b 1 c 2 b 2 c 1 ) a 3 (b 3 c 1 b 1 c 3 ) = a 3 (b 2 c 3 b 3 c 2 ) a 1 (b 1 c 2 b 2 c 1 ) a 1 (b 3 c 1 b 1 c 3 ) a 2 (b 2 c 3 b 3 c 2 ) b 1 (a 2 c 2 + a 3 c 3 ) c 1 (a 2 b 2 + a 3 b 3 ) = b 2 (a 1 c 1 + a 3 c 3 ) c 2 (a 1 b 1 + a 3 b 3 ) b 3 (a 1 c 1 + a 2 c 2 ) c 3 (a 1 b 1 + a 2 b 2 ) b 1 (a 1 c 1 + a 2 c 2 + b 3 c 3 ) c 1 (a 1 b 1 + a 2 b 2 + a 3 b 3 ) = b 2 (a 1 c 1 + a 2 c 2 + b 3 c 3 ) c 2 (a 1 b 1 + a 2 b 2 + a 3 b 3 ) b 3 (a 1 c 1 + a 2 c 2 + a 3 c 3 ) c 3 (a 1 b 1 + a 2 b 2 + a 3 b 3 ) b 1 c 1 = b 2 a c c 2 a c b 3 c 3 = b( a c) c( a c). (1) Dabei haben wir ie roten Terme eingefügt um ie Klammern zu einem vollstänigen Vektorproukt zu ergänzen. Es zeigt sich, ass iese ergänzten Terme sich gegenseitig aufheben, so ass as Gleichheitszeichen tatsächlich gilt. Gl. (6): a ( b a 1 b 2 c 3 b 3 c 2 c) = a 2 b 3 c 1 b 1 c 3 a 3 b 1 c 2 b 2 c 1 = a 1 b 2 c 3 a 1 b 3 c 2 + a 2 b 3 c 1 a 2 b 1 c 3 + a 3 b 1 c 2 a 3 b 2 c 1 = c 1 (a 2 b 3 a 3 b 2 ) + c 2 (a 3 b 1 a 1 b 3 ) + c 3 (a 1 a 2 a 2 b 1 ) a 2 b 3 a 3 b 2 c 1 = a 3 b 1 a 1 b 3 c 2 a 1 b 2 a 2 b 1 c 3 = ( a b) c. (11) Zeigen Sie schließlich, ass in er Tat ie geometrische Beeutung erfüllt ist. Dass a un b beie auf a b senkrecht stehen, haben wir mit Gl. (3) schon gezeigt. Es fehlt also noch ie Berechnung es Betrags. Verwenen Sie azu nacheinaner (6) un (5), um ( a b) 2 = [ab sin ( a, b)] 2 (12) zu berechnen. Machen Sie sich anhan einer Skizze klar, ass as er Flächeninhalt es von a un b aufgespannten Parallelogramms ist.

3 Lösung: ( a b) 2 = ( a b) ( a b) = a [ b ( a b)] = a [ a( b b) b( b a)] = ( a a)( b b) ( a b) 2 (13) = a 2 b 2 a 2 b 2 cos 2 ( a, b) = a 2 b 2 [1 cos 2 ( a, b)] = a 2 b 2 sin 2 ( a, b) Die Skizze befinet sich in Abschnitt es Manuskripts. Aufgabe 2: Elektrisches Potential eines homogen gelaenen Zyliners Gegeben sei ein unenlich langer Zyliner parallel zur x 3 -Achse eines kartesischen Koorinatensystems. Der Mittelpunkt er Kreisquerschnittsflächen sei bei x 1 = x 2 = un er Kreisraius a. Der Zyliner bestehe aus homogen gelaener Materie,.h. im Zyliner sei ie Laungsichte ρ = const un außerhalb. Rechnen Sie in Zylinerkoorinaten. Die Formeln in Anhang A.2 es Manuskripts ürfen im Folgenen ohne Beweis verwenet weren. (a) Argumentieren Sie, ass aus Symmetriegrünen as elektrostatische Potential nur von R abhängen kann. Überlegen Sie azu zuerst, welche Symmetrien er Zyliner aufweist. Lösung: Der Zyliner wir offenbar urch Translationen in x 3 -Richtung sowie urch Rotationen um ie x 3 -Achse in sich selbst abgebilet. Das Potential Φ( r ) kann sich emnach ebenfalls unter iesen Transformationen nicht änern. Eine Translation um z in x 3 -Richtung ist in Zylinerkoorinaten eine Verschiebung von z,.h. sie wir urch z z z argestellt. Dabei arf sich Φ( r ) = Φ(R,ϕ, z) nicht änern,.h. es gilt Φ(R,ϕ, z) = Φ(R,ϕ, z z ). Da as für alle z R gilt, kann Φ nicht von z abhängen. Genauso argumentiert man, ass einer Drehung um ie x 3 -Achse un en Winkel ϕ einer Verschiebung von ϕ ϕ ϕ entspricht. Das beeutet aber, ass Φ auch nicht ϕ abhängen kann. Demnach gilt in er Tat er Ansatz Φ( r ) = V (R). (b) Verwenen Sie nun en Ansatz Φ( r ) = V (R), um ie Poisson-Gleichung Φ = ρ ε (14) urch einfache Integrationen zu lösen un berechnen Sie araus E = graφ. Tipp: Verwenen Sie ie Stetigkeit von Φ un E bei R = a sowie ie Beingung, ass Φ in R = keine Singularität besitzen arf, um ie auftretenen Integrationskonstanten für ie Bereiche R < a un R > a vollstänig festzulegen. Lösung: Mit Gl. (A.2.7) im Manuskript vereinfacht sich wegen es Ansatzes ie Poisson-Gleichung zu er gewöhnlichen DGL Φ = 1 R R R V = ρ ρ /ε = für R a, R ε für R > a. (15)

4 Lösen wir ie Gleichung zunächst für R > a. Wir nennen ie Lösung V > : 1 R R R V > R R R V > R = = R V > R = C 1 = const V > R = C 1 R V > (R) = C 1 ln R + C a 2. Dabei haben wir im Logarithmus R/a geschrieben, amit keine imensionsbehafteten Größen im Logarithmus auftauchen, un a ie einzige ausgezeichnete Größe von er Dimension einer Länge ist. Für R a sei ie Lösung mit V < bezeichnet. Aus (16) folgt 1 R R R R V < R R V < R = ρ ε = ρ ε R (16) R V < R = ρr2 2ε + D 1, V < R ρr + D 1 2ε R V < = ρr2 4ε + D 1 ln R + D a 2. (17) Jetzt müssen wir ie Integrationskonstanten C 1, C 2, D 1 un D 2 bestimmen. Da ie Laungsverteilung außer em Sprung bei R = a keine Singularitäten aufweist, müssen V un E stetig sein. Außerem kann es bei R = keine Singularität geben, so ass bereits D 1 = festgelegt ist. Weiter können wir über eine willkürliche aitive Konstante verfügen. Setzen wir also C 2 =. Damit gilt V (R) = ρr2 4ε + D 2 für R a, C 1 ln(r/a) für R > a. (18) Die Stetigkeit von V bei R = a verlangt Mit (A.2.4) im Manuskript folgt ρa2 4ε + D 2 = D 2 = ρa2 4ε. (19) E = grav (R) = e R R V (R) = ρr 2ε e R für R a, C 1 R e R für R > a. (2)

5 Die Stetigkeit bei r = a verlangt ρa = C 1 2ε a C 1 = ρa2 2ε. (21) Damit ist schließlich gemäß (18) un (2) ie Lösung gefunen: ρ(a 2 R 2 ) 4ε für R a, V (R) = ρa2 2ε ln(r/a) für R > a, ρr 2ε e E = R für R a, ρa 2 2ε R e R für R > a. (22) (23) (c) Überprüfen Sie ie Lösung, inem Sie zeigen, ass in er Tat überall iv E( r ) = 1 ε ρ( r ) (24) gilt. Lösung: Mit (A.2.5) aus em Manuskript folgt aus (23) iv E = 1 R ρ (RE R ) R = ε für R a, für R > a, (25).h. unsere Lösung erfüllt in er Tat as Gaußsche Gesetz, wie es sein muss. Aufgabe 3: Potentialwirbel Gegeben sei as Vektorfel (in kartesischen Koorinaten r = (x 1, x 2, x 3 )) r V ( r ) = e 3 x (26) x2 2 (a) Berechnen Sie Rotation un Divergenz in kartesischen Koorinaten! Lösung: Wir setzen zur Abkürzung x x2 2 = R2. Dann ist für R > un rotv = V 1 = 2 1 x 2 x R 2 1 = = (27) 3 2/R 2 2(x1 2 + x2 2 )/R4 iv V = V = 1 x2 R x1 R 2 = 2x 1 x 2 R 4 + 2x 1 x 2 R 4 =. (28) Bei R =,.h. entlang er gesamten x 3 -Achse, ist as Vektorfel singulär un aher auch Rotation un Divergenz nicht efiniert.

6 (b) Stellen Sie as Vektorfel in Stanarzylinerkoorinaten (R, ϕ, z) ar un berechnen Sie abermals Rotation un Divergenz. Dabei ürfen wieer ie Formeln in Anhang A.2 es Manuskripts verwenet weren. Lösung: Es gilt e 3 = e z, r = R e R + z e z un R 2 = x1 2 + x2 2 un amit V = 1 R 2 e z (R e R + z e z ) = 1 R e ϕ. (29) Damit finet man für R > mit Hilfe er Formeln (A.2.6) bzw. (A.2.5) für Rotation un Divergenz sofort (27) un (28). (c) Existiert ein skalares Potential, so ass gilt? V = Φ = graφ (3) Lösung: Da rot V = ist, sollte es zuminest lokal ein skalares Potential geben. Es ist klar, ass wir es in Zylinerkoorinaten am einfachsten bestimmen können. Mit (A.2.4) folgt, ass Φ = Φ(ϕ) sein muss, un ann gilt Φ = e ϕ 1 R ϕ Φ(ϕ)! = V = 1 R e ϕ. (31) Damit ist ϕ Φ = 1 un also Φ(ϕ) = ϕ. (32) Bemerkung: Es ist klar, ass as Potential eine Singularität besitzt, je nachem welches Intervall er Länge 2π man für ϕ efiniert. Eine Stanarwahl für iesen Fall ist ϕ ( π,π) zu wählen. Dann ist as Potential entlang er Halbebene ϕ = π, was as Gleiche ist wie ϕ = π singulär, enn nähert man sich er Halbebene von er einen Seite her, also ϕ π + wir Φ(ϕ) π un von er aneren Seite her ϕ π + + wir Φ(ϕ) π,.h. as Potential weist entlang er besagten Halbebene einen Sprung er Höhe 2π auf. Die Funktion (32) sieht abei gar nicht singulär aus, es liegt aber eine Koorinatensingularität vor, weil ϕ als Winkel eine zyklische Koorinate ist, un Werte, ie sich nur um ein ganzzahliges Vielfaches von 2π unterscheien, enselben geometrischen Ort bezeichnen. Das Potential wir aurch eineutig bestimmt, ass man eine beliebige Halbebene aus em Definitionsbereich herausnimmt, un as entsprechene Wegintegral von irgeneinem festgehaltenen Punkt aus bestimmt, wobei man nur Wege zulässt, ie iese Halbebene nicht überschreiten. Entlang er Halbebene springt Φ immer um en Wert 2π. () Berechnen Sie as Wegintegral J = r V K a (33) entlang es Kreises in er Ebene x 3 = mit Mittelpunkt bei x 1 = x 2 = x 3 = un Raius a, er urch cosϕ K a : r (ϕ) = a sinϕ, ϕ [,2π] (34) parametrisiert sei.

7 Lösung: Es gilt r = ϕ a e ϕ. (35) Mit (31) folgt araus sofort J = 2π ϕa e ϕ 1 a e ϕ = 2π ϕ = 2π. (36) (e) Zum Knobeln: Wie lässt sich as mit em in Abschnitt es Manuskripts besprochenen Lemma von Poincaré vereinbaren? Ist er Satz von Stokes auf as Wegintegral anwenbar? Lösung: Das Beispiel ist mit em Lemma von Poincaré vereinbar, enn es gilt nur, wenn er Definitionsbereich es wirbelfreien Vektorfeles ein einfach zusammenhängenes Gebiet ist. In unserem Fall besitzt as Vektorfel entlang er gesamten x 3 -Achse eine Singularität, un man kann en Kreis aus er vorigen Teilaufgabe nicht ganz innerhalb es Definitionsbereichs stetig auf einen Punkt zusammenziehen. Beim Beweis es Lemmas von Poincaré haben wir en Stokesschen Integralsatz verwenet. Um as für unsere Kreislinie K a tun zu können, müssten wir eine Fläche F finen, so ass er Ran F = K a ist, so ass ie Rotation es Vektorfeles entlang ieser gesamten Fläche efiniert ist. Eine jee solche Fläche schneiet aber unweigerlich ie x 3 -Achse, wo eben ie Rotation nicht efiniert ist. Homepage zu Vorlesung un Übungen:

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2)

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2) 2.4. GAUSSSCHER SATZ 23 2.4 Gaußscher Satz Das Fel einer Punktlaung genügt er Gleichung: E = 1 4 π ε 0 Q r 2 Desweiteren berechnet sich ie Oberfläche einer Kugel, eren Punkte vom Mittelpunkt en Abstan

Mehr

10. Vorlesung Wintersemester

10. Vorlesung Wintersemester 10. Vorlesung Wintersemester 1 Existenz von Potentialen Für einimensionale Bewegungen unter er Einwirkung einer Kraft, ie nur vom Ort abhängt, existiert immer ein Potential, a man immer eine Stammfunktion

Mehr

1. Probeklausur. φ = 2x 2 y(z 1).

1. Probeklausur. φ = 2x 2 y(z 1). Übungen zur T: Theoretische Mechanik, SoSe04 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45. Probeklausur Dr. Reinke Sven Isermann Reinke.Isermann@lmu.e Übung.: Gegeben sei ie Funktion φ = x y z. a Berechnen

Mehr

8.1. Das unbestimmte Integral

8.1. Das unbestimmte Integral 8 Das unbestimmte Integral So wie ie Bilung von Reihen, also Summenfolgen, ein zur Bilung er Differenzenfolgen inverser Prozess ist, kann man ie Integration als Umkehrung er Differentiation ansehen Stammfunktionen

Mehr

Aufgaben zum Wochenende (2)

Aufgaben zum Wochenende (2) Aufgaben zum Wochenene () Alle Koorinatensysteme seien kartesisch.. Berechnen Sie zu a =(, 3, ) un b =(,, ), c =(, 3, ) : a 3, 4 a b, b ( a c), a 4 b ( ) c. Rechnen Sie möglichst praktisch.. Lösen Sie

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 4. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu en Hausaufgaben: Aufgabe H. a)

Mehr

Übungen zum Ferienkurs Theoretische Mechanik

Übungen zum Ferienkurs Theoretische Mechanik Übungen zum Ferienkurs Theoretische Mechanik Lagrange un Hamilton Mechanik Übungen, ie mit einem Stern markiert sin, weren als besoners wichtig erachtet. 2.1 3D Faenpenel Betrachten Sie ein Faenpenel er

Mehr

1. Tangente, Ableitung, Dierential

1. Tangente, Ableitung, Dierential 1. Tangente, Ableitung, Dierential Variablen un Funktionen 1.1. Verallgemeinern Sie ie folgenen Gruppen von Gleichungen mithilfe von Variablen. (1) 5 + 3 = 3 + 5, 1 2 = 2 + 1. (2) 3 2 + 5 2 = (3 + 5) 2,

Mehr

Lösung - Serie 20. D-MAVT/D-MATL Analysis II FS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 20. D-MAVT/D-MATL Analysis II FS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) D-MVT/D-MTL nalysis II FS 8 Dr. nreas Steiger Lösung - Serie MC-ufgaben (Online-bgabe). Es sei ie Einheitskugel um en Ursprung. Für welches er Vektorfeler (x, y, z) v(x, y, z) arf er Divergenzsatz für

Mehr

Übung (9) . Geben Sie auch eine geometrische Deutung des Resultats an. 2 3j, e jπ7/4, 2e 4jπ/3.

Übung (9) . Geben Sie auch eine geometrische Deutung des Resultats an. 2 3j, e jπ7/4, 2e 4jπ/3. Übung (9). Drücken Sie 3 ³ b (4 a ( 5) c) aus urch a b c. Geben Sie auch eine geometrische Deutung es Resultats an.. Vereinfachen Sie: ( x 4 y) (3 y 5 x). ³ ³³ ³ 3. Vereinfachen Sie en Ausruck a 3 b 3

Mehr

Physik II Übung 10 - Lösungshinweise

Physik II Übung 10 - Lösungshinweise Physik II Übung 0 - Lösungshinweise Stefan Reutter SoSe 202 Moritz Kütt Stan: 04.07.202 Franz Fujara Aufgabe Lolli Die kleine Carla hat von einem netten Onkel einen großen, runen Lolli geschenkt bekommen.

Mehr

Lösungen zur Theoretischen Physik 1 für das Lehramt L3 Blatt 1

Lösungen zur Theoretischen Physik 1 für das Lehramt L3 Blatt 1 H. van Hees Wintersemester 18/19 Lösungen zur Theoretischen Physik 1 für das Lehramt L3 Blatt 1 Schul-Mathe-Test Ziel dieses Mathe-Tests ist es, dass wir (Dozent und Tutoren) Ihre Vorkenntnisse in der

Mehr

Einführung in die theoretische Physik 1

Einführung in die theoretische Physik 1 Mathey Einführung in ie theor. Physik 1 Einführung in ie theoretische Physik 1 Prof. Dr. L. Mathey Dienstag 15:45 16:45 un Donnerstag 1:45 12: Beginn: 23.1.12 Jungius 9, Hörs 2 1 Mathey Einführung in ie

Mehr

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird,

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird, Determinanten Wir entwickeln eine Lösungsformel für Gleichungssysteme mit zwei Variablen. ax + cy = e b bx + y = f a } abx bcy = be + abx + ay = af ya bc = af be Man schreibt y = af be a bc = a e b f analog

Mehr

Musterlösungen. Theoretische Physik I: Klassische Mechanik

Musterlösungen. Theoretische Physik I: Klassische Mechanik Blatt 4 08.11.01 Musterlösungen Theoretische Physik I: Klassische Mechanik Prof. Dr. G. Alber MSc Nena Balanesković Die Lagrange Methoe zweiter Art, Symmetrien un Erhaltungsgrößen 1. y r x Gegeben sei

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:

Mehr

Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 9

Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 9 Prof. Rolan Gunesch Sommersemester 2010 Übungen zur Vorlesung Einführung in Dynamische Systeme Musterlösungen zu Aufgabenblatt 9 Aufgabe 1: Eine Isometrie eines metrischen Raums X ist eine Abbilung f :

Mehr

f x durch die Funktionsgleichung

f x durch die Funktionsgleichung 1. Aufgabe In einem ebenen Geläne soll für eine neue Bahntrasse auf einer Strecke von km er zugehörige Bahnamm neu errichtet weren. Dabei sollen ie folgenen, in er Abbilung angeeuteten Beingungen eingehalten

Mehr

7.6 Relativitätstheorie und Elektrodynamik

7.6 Relativitätstheorie und Elektrodynamik 7.6. RELATIVITÄTSTHEORIE UND ELEKTRODYNAMIK 77 7.6 Relativitätstheorie un Elektroynamik Für eine Beschreibung von Kenngrößen in er Natur, ie mit er speziellen Relativitätstheorie verträglich ist, ist es

Mehr

Implizite Differentiation

Implizite Differentiation Implizite Differentiation -E -E Implizite Darstellung Eine Funktion ist in impliziter Form gegeben, wenn ie Funktionsgleichung nach keiner er beien Variablen x un y aufgelöst ist. Beispielsweise x y =

Mehr

Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte)

Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte) Aufgabe K: Potential einer Hohlkugel ( + 7 + = Punkte) (a) Leiten Sie die integrale Form der Maxwell Gleichungen der Elektrostatik aus den entsprechenden differentiellen Gleichungen her. Differentielle

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Keyl M. Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis 2 MA9203 http://www-m5.ma.tum.e/allgemeines/ma9203 2016S Sommersem. 2016 Lösungsblatt 9 (10.6.2016

Mehr

Mathematik III. Vorlesung 87. Die äußere Ableitung

Mathematik III. Vorlesung 87. Die äußere Ableitung Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 87 Die äußere Ableitung In ieser Vorlesung weren wir ein neuartiges mathematisches Objekt kennenlernen, ie sogenannte äußere Ableitung.

Mehr

Mathematikaufgaben > Analysis > Kurven (Polarkoordinaten)

Mathematikaufgaben > Analysis > Kurven (Polarkoordinaten) Michael Buhlmann Mathematikaufgaben > Analysis > Kurven Polarkoorinaten Aufgabe: Gegeben sei für reelle Winkel φ ie Kurve K als Karioie Herzkurve in Polarkoorinaten: im x-y-koorinatensystem. r, φ a Skizziere

Mehr

Differentialrechnung

Differentialrechnung Differentialrechnung Um Funktionen genauer zu untersuchen bzw. sie zu analysieren, ist es notwenig, etwas über ihren Verlauf, as qualitative Verhalten er Funktion, sagen zu können. Das heisst, wir suchen

Mehr

Technisches Lemma aus der Linearen Algebra

Technisches Lemma aus der Linearen Algebra echnisches Lemma aus er Linearen Algebra Lemma. Sei t A(t) Mat(n, n) eine glatte, matrixwertige Funktion auf em Intervall ( ε,ε), welche A(t) = I erfülle. Dann gilt: t et(a(t)) t=0 = trace(ȧ(0)). Beispiel.

Mehr

4 Integralsätze. 4.1 Der Integralsatz von Gauß. G ε

4 Integralsätze. 4.1 Der Integralsatz von Gauß. G ε Nach em Hauptsatz er Integralrechnung hängt er Wert eines gewöhnlichen Integrals nur von en Werten er Stammfunktion an en renzen es Integrationsintervalls ab: b a f x x= F b F a mit f x= F x Für Mehrfachintegrale

Mehr

1.1.8 Radialsymmetrisches elektrisches Feld, Coulomb-Gesetz; Kapazität des Kugelkondensators

1.1.8 Radialsymmetrisches elektrisches Feld, Coulomb-Gesetz; Kapazität des Kugelkondensators 8 Raialsymmetrisches elektrisches Fel, Coulomb-Gesetz; Kapazität es Kugelkonensators Die Felstärke im raialen Fel - as Coulombsche Gesetz Am Ene es letzten Kapitels wure ie Grungleichung es elektrischen

Mehr

Serie 6 - Funktionen II + Differentialrechnung

Serie 6 - Funktionen II + Differentialrechnung Analysis D-BAUG Dr. Meike Akvel HS 05 Serie 6 - Funktionen II + Differentialrechnung. a) Sei Lösung 3, falls < 0, f : R R, f) c +, falls 0, + 8, falls >. Bestimmen Sie c R un R, so ass f überall stetig

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Universität Paerborn, en 16.07.2007 Differential- un Integralrechnung Ein Repetitorium vor er Klausur Kai Gehrs 1 Übersicht Inhaltlicher Überblick: I. Differentialrechnung I.1. Differenzierbarkeit un er

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Vektorräume: Basen und lineare Unabhängigkeit

TECHNISCHE UNIVERSITÄT MÜNCHEN. Vektorräume: Basen und lineare Unabhängigkeit TECHNISCHE UNIERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Frierich Roesler Ralf Franken, PhD Max Lein Lineare Algebra WS 26/7 en Blatt 8.2.26 ektorräume: Basen un lineare Unabhängigkeit Zentralübungsaufgaben

Mehr

Kristallographisches Praktikum I

Kristallographisches Praktikum I Kristallographisches Praktikum I 3 Kristallographisches Praktikum I Versuch G1: Optisches Zweikreisgoniometer 1. Erläuterungen zum Zweikreis-Reflexionsgoniometer Nach em Gesetz er Winkelkonstanz (Nicolaus

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:

Mehr

f x n ) 2 1 Gleichung (*) f' x 1 f'' x 1

f x n ) 2 1 Gleichung (*) f' x 1 f'' x 1 Das Newtonsche Näherungsverfahren, Teil Theorie - Konvergenzkriterium f x n Allgemeine Lösung: x n = x n f' x f' x n n 0 Nach er Fachliteratur (Bronstein/Semenjajew) arf man hier von einer Cauchy-Folge

Mehr

Das elektrische Feld als Energiespeicher

Das elektrische Feld als Energiespeicher Laungsquantelung Das elektrische Fel als Energiespeicher 79. Das elektrische Fel als Energiespeicher a) Welche Beobachtung legt nahe, ass in einem elektrischen Fel Energie gespeichert ist? b) Zeigen Sie,

Mehr

9 Konvexe Funktionen, Stütz- und Distanzfunktion

9 Konvexe Funktionen, Stütz- und Distanzfunktion U BREHM: Konvexgeometrie 9-9 Konvexe Funktionen, Stütz- un Distanzfunktion Definition: Sei K IR, f : K IR eine Abbilung f heißt konvex, wenn K konvex ist un für alle x, y K un alle, gilt f( x( ) y) f(

Mehr

Mathematik II Lösung 9. Lösung zu Serie 9

Mathematik II Lösung 9. Lösung zu Serie 9 D-EDW, D-HEST, D-USYS Dr. Ana annas 5. April 6 Lösung zu Serie 9. Überprüfung des Satzes von Green Für die Kreisscheibe mit adius a um Null gilt, dass die äußere Einheitsnormalen in einem Punkt (x, y auf

Mehr

Algorithmen für Planare Graphen Übung am

Algorithmen für Planare Graphen Übung am Algorithmen für Planare Graphen Übung am 02.05.2017 INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität es Lanes Baen-Württemberg un Algorithmen nationales Forschungszentrum

Mehr

6 Lineare Kongruenzen

6 Lineare Kongruenzen 6 Lineare Kongruenzen Sei m > 0 un a, b beliebig. Wir wollen ie Frage untersuchen, unter welchen Beingungen an a, b un m eine Zahl x 0 existiert, so aß ax 0 b mo m. Wenn ein solches x 0 existiert, sagen

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:

Mehr

1 Lokale Umkehrbarkeit und implizite Funktionen

1 Lokale Umkehrbarkeit und implizite Funktionen Christina Schinler Karolina Stoiber Ferienkurs Analysis 2 für Physiker SS 2013 A 1 Lokale Umkehrbarkeit un implizite Funktionen In iesem Kapitel weren Kriterien vorgestellt, wann eine Funktion umkehrbar

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13

Mathematischer Vorkurs für Physiker WS 2012/13 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+

Mehr

Klassische Theoretische Physik III (Elektrodynamik)

Klassische Theoretische Physik III (Elektrodynamik) rev: 1.17 WiSe 017/18 Klassische Theoretische Phsik III Elektrodnamik) Vorlesung: Prof. Dr. D. Zeppenfeld Übung: Dr. M. Sekulla Übungsblatt 8 Ausgabe: Fr, 15.1.17 Abgabe: Fr,.1.17 Besprechung: Mi, 10.01.18

Mehr

Aufgaben zur Großübung

Aufgaben zur Großübung Mathematische Methoen II (SoSe 07) Aufgaben zur Großübung Aufgaben für 03. April 07. Bestimmen Sie jeweils f() eplizit un geben Sie en maimalen Definitionsbereich von g(), h() un f() an. f() = (g h)(),

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/2013 Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Aufgabe 1: Bruchrechnung Lösen Sie die folgenden Gleichungen nach x auf (a) x x 2 1

Mehr

Theoretischen Physik II SS 2007 Klausur I - Aufgaben und Lösungen

Theoretischen Physik II SS 2007 Klausur I - Aufgaben und Lösungen Theoretischen Physik II SS 7 Klausur I - Aufgaben und Lösungen Aufgabe Elektrostatik Im Mittelpunkt einer leitenden und geerdeten Hohlkugel RadiusR) befindet sich eine kleine Kugel mit homogener Ladungsverteilung

Mehr

Musterlösung Analysis 3 - Funktionentheorie

Musterlösung Analysis 3 - Funktionentheorie Musterlösung Analysis 3 - Funktionentheorie 3. Mär Aufgabe : Zum Aufwärmen (i) Betrachte ie Lauranterlegung von f : C C, f() = sin un eige mit Hilfe er Zerlegung, ass ie Singularität bei = hebbar ist.

Mehr

Erste schriftliche Wettbewerbsrunde. Klasse 7

Erste schriftliche Wettbewerbsrunde. Klasse 7 Erste schriftliche Wettbewerbsrune Die hinter en Lösungen stehenen Prozentzahlen zeigen, wie viel Prozent er Wettbewerbsteilnehmer ie gegebene Lösung angekreuzt haben. Die richtigen Lösungen weren fettgeuckt

Mehr

Lösungen für Klausur A

Lösungen für Klausur A Lösungen für Klausur A Aufgabe Skizze es Zelts im Querschnitt: h. (a) Aus sin folgt cos un aher h tan, also h. (b) Aus 9 4 4 folgt urch Wurzelziehen. Einsetzen von m in ie Beziehung aus (a) liefert h 6

Mehr

7 Anwendungen der Linearen Algebra

7 Anwendungen der Linearen Algebra 7 Anwenungen er Linearen Algebra 7.1 Extremwertaufgaben mit Nebenbeingungen Bemerkung 7.1. Wir behaneln as Problem: Gegeben ist eine zweimal stetig ifferenzierbare Funktion f : R n R un ein stetig ifferenzierbares

Mehr

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus.

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. bschlussprüfung 013 an en Realschulen in ayern athematik II usterlösung Lösung iese Lösung wure erstellt von ornelia anzenbacher. ie ist keine offizielle Lösung es ayerischen taatsministeriums für Unterricht

Mehr

Übungsklausur Lineare Algebra I - Wintersemester 2008/09

Übungsklausur Lineare Algebra I - Wintersemester 2008/09 1 Übungsklausur Lineare Algebra I - Wintersemester 008/09 Teil 1: Multiple Choice (1 Punkte Für ie ganze Klausur bezeichne K einen beliebigen Körper. 1. Welche er folgenen Aussagen sin ann un nur ann erfüllt,

Mehr

Abbildung 1: Geordnete Paare im zweidimensionalen euklidischem Raum

Abbildung 1: Geordnete Paare im zweidimensionalen euklidischem Raum Vektorrechnung Wir werden den Vektorbegriff anschaulich einführen und beschränken uns zunächst auf den zweidimensionalen euklidischen Raum. Die Elemente dieses Raumes sind Punkte P, Q, R, S,.... Geordnete

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

Übungsblatt

Übungsblatt Übungsblatt 13.11.018 1) Zerlegen Sie folgene gebrochen rationale Funktionen in rein reelle Partialbrüche: a) f() = + 13 + 5 6 c) h() = + 3 + 1 3 + b) g() = 3 + + 5 + 5 + 3 3 + 5 + 5 + ) Untersuchen Sie

Mehr

2.2 Elektrisches Feld

2.2 Elektrisches Feld 2.2. ELEKTRISCHES FELD 9 2.2 Elektrisches Fel Coulomb Gesetz: F i Q i F i = Q i 1 Q j Rij 2 R i R j R ij 4π ɛ j+i 0 }{{} elektrisches Fel am Ort R i Das elektrische Fel, as ie Laung am Ort R i spürt -

Mehr

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen

Mehr

mathphys-online Abschlussprüfung Berufliche Oberschule 2009 Mathematik 12 Nichttechnik - A II - Lösung

mathphys-online Abschlussprüfung Berufliche Oberschule 2009 Mathematik 12 Nichttechnik - A II - Lösung Abschlussprüfung Berufliche Oberschule 9 Mathemati Nichttechni - A II - Lösung Teilaufgabe. Gegeben sin ie reellen Funtionen f ( x) = x x mit IR un ID = IR. fa Der Graph einer solchen Funtion wir mit G

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:

Mehr

2.5 Kondensatoren und Feldenergie

2.5 Kondensatoren und Feldenergie 30 KAPITEL 2. ELEKTOSTATIK 2.5 Konensatoren un Felenergie Aus en echnungen für eine unenlich ausgeehnte Platte mit homogener Laungsichte, ie wir in en Abschnitten 2.2 un 2.4 vorgenommen haben, können wir

Mehr

Einführung in die theoretische Physik II Sommersemester 2015

Einführung in die theoretische Physik II Sommersemester 2015 Einführung in die theoretische Physik II Sommersemester 25 martin.eckstein@mpsd.cfel.de Ausgewählte Aufgaben zur Klausurvorbereitung Lösungshinweise Aufgabe : Elektrostatik Betrachten Sie eine geladene

Mehr

2.5 Komplexe Wurzeln. Mathematik für Naturwissenschaftler I 2.5

2.5 Komplexe Wurzeln. Mathematik für Naturwissenschaftler I 2.5 Mathematik für Naturwissenschaftler I 2.5 Die Periodizität von e z ist der Grund, warum im Komplexen Logarithmen etwas schwieriger zu behandeln sind als im Reellen: Der natürliche Logarithmus ist die Umkehrung

Mehr

Vektorprodukt. Der Vektor. ist zu a und b orthogonal, gemäß der. Rechten-Hand-Regel orientiert und hat die Länge c = a b

Vektorprodukt. Der Vektor. ist zu a und b orthogonal, gemäß der. Rechten-Hand-Regel orientiert und hat die Länge c = a b Vektorprodukt Der Vektor c = a b ist zu a und b orthogonal, gemäß der Rechten-Hand-Regel orientiert und hat die Länge c = a b sin( ( a, b)), die dem Flächeninhalt des von den Vektoren a und b aufgespannten

Mehr

mathphys-online Aufgaben zur Differentialrechnung - Lösung Tangentenaufgaben Aufgabe 1 Definition des Feldindex in Vektoren und Matrizen: ORIGIN 1

mathphys-online Aufgaben zur Differentialrechnung - Lösung Tangentenaufgaben Aufgabe 1 Definition des Feldindex in Vektoren und Matrizen: ORIGIN 1 Aufgaben zur Differentialrechnung - Lösung Tangentenaufgaben Definition es Felinex in Vektoren un Matrizen: ORIGIN Aufgabe Gegeben ist ie Funktion f mit em Funktionsterm f( x) = x x, wobei x IR. a) Bestimmen

Mehr

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen Komplexe Zahlen Allgemeines Definition Eine komplexe Zahl z x + y i besteht aus einem Realteil Re(z) x und einem Imaginärteil Im(z) y. Der Imaginärteil wird mit der Imaginären-Einheit i multipliziert.

Mehr

Beispiel. Die Reihe ( 1) k k + 1 xk+1 für 1 < x < 1 konvergiert auch für x = +1. Somit ist nach dem Abelschen Grenzwertsatz insbesondere die Gleichung

Beispiel. Die Reihe ( 1) k k + 1 xk+1 für 1 < x < 1 konvergiert auch für x = +1. Somit ist nach dem Abelschen Grenzwertsatz insbesondere die Gleichung Beispiel. Die Reihe log + x) = ) k k + xk+ für < x < konvergiert auch für x = +. Somit ist nach em Abelschen Grenzwertsatz insbesonere ie Gleichung log + ) = gültig. Daraus folgt ie Darstellung log2) =

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 6 Hausübungen (Abgabe: )

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 6 Hausübungen (Abgabe: ) Prof. C. Greiner, Dr. H. van Hees Wintersemester 212/213 Übunen zur Theoretischen Physik 1 Lösunen zu Blatt 6 Hausübunen (Ababe: 14.12.212) (H14) Arbeit eines Kraftfeles (2 Punkte) r = (6m/s 2 t 2m/s,3m/s

Mehr

14 Erhaltungssätze und das Variationsprinzip

14 Erhaltungssätze und das Variationsprinzip 14 Erhaltungssätze un as Variationsprinzip 14.1 Globale Erhaltungssätze Bisher haben wir nur Variationen es Wirkungsintegrals betrachtet, ie ie Werte er Freiheitsgrae (r, v, φ, A) an en Enpunkten es Zeitintegrals

Mehr

Felder und Wellen WS 2017/2018 C = U = φ(2) φ(1)

Felder und Wellen WS 2017/2018 C = U = φ(2) φ(1) Feler un Wellen WS 017/018 Musterlösung zum 6. Tutorium 1. Aufgabe (**) Kapazität kann für jee beliebige Leiteranornung efiniert weren C = εe = f E s s }{{} φ() φ(1) Sin mehrere Leiter vorhanen, befinen

Mehr

Formatieren. Kategorie «Sonderformat» Kategorie «Benutzerdefiniert» Zellen. Theorieteil

Formatieren. Kategorie «Sonderformat» Kategorie «Benutzerdefiniert» Zellen. Theorieteil 321 Beispiel: In Zelle A2 A befinet sich ie Zahl 32, er 2 Nachkommastellen zugewiesen wuren. In Zelle B2 B befinet sich ieselbe Zahl 32, jeoch als Text formatiert. Kategorie «Sonerformat» Die Kategorie

Mehr

Übungen zur Ingenieur-Mathematik III WS 2017/2018 Blatt

Übungen zur Ingenieur-Mathematik III WS 2017/2018 Blatt Übungen zur Ingenieur-Mahemaik III WS 7/8 Bla 7..7 Aufgabe 9: Berechnen Sie ie Länge zweier Kurven auf er Eroberfläche (im Kugelmoell, ie S. Peersburg ( N, O mi Anchorage in Alaska ( N, 5 W verbinen. Lösung:

Mehr

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18 D-MAVT/D-MATL FS 7 Dr. Andreas Steiger Analysis IILösung - Serie8. Klicken Sie die falsche Aussage an. a) Der Operator div ) ordnet einem Vektorfeld v ein Skalarfeld div v zu. v b) div v = x, v y, v )

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total 3 4 5 6 -

Mehr

Vorkurs Mathematik. Übungsaufgaben

Vorkurs Mathematik. Übungsaufgaben Vorkurs Mathematik Zusammenfassung es für as Chemiestuium notwenigen mathematischen Wissens aus er gymnasialen Oberstufe Übungsaufgaben. Version vom. Oktober 6 Institut für Chemie Mathematisch-Naturwissenschaftliche

Mehr

3 Trennungs- und Stützeigenschaften, sowie elementare Hilfssätze

3 Trennungs- und Stützeigenschaften, sowie elementare Hilfssätze U BREHM: Konvegeoetrie 3-1 3 Trennungs- un Stützeigenschaften, sowie eleentare Hilfssätze Zunächst einige Hilfssätze, in enen Begriffe aus er Konveität it topologischen Eigenschaften zusaengebracht weren

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrgliedriger Termee. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB

Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrgliedriger Termee. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB Schule Thema Personen Bunesgymnasium für Berufstätige Salzburg Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrglieriger Termee 1F Wintersemester 01/013 Unterlagen: LehrerInnenteam GFB Ein neues Problem

Mehr

Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik

Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik (Aufgaben aus Klausuren). Bestimmen und skizzieren Sie in der Gaußschen Zahlenebene

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:

Mehr

12. Übungsblatt zur Analysis II

12. Übungsblatt zur Analysis II Fachbereich Mathematik Prof. Dr. Steffen Roch Nada Sissouno Benno van den Berg WS 9/1 1.1.1 1. Übungsblatt zur Analysis II Gruppenübung Aufgabe G1 Kreuzen Sie die richtigen Aussagen an. Sei V C 1 (R n,

Mehr

Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form

Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form 155 Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich in R 3 ein Normalbereich, wenn er von der Form = { (x,y,z) a x b,u(x) y o(x),ũ(x,y) z õ(x,y) } ist, wobei die Rollen der Koordinaten

Mehr

7.1 Definitionen und Ableitungen der elementaren Funktionen. f(x + x) f(x)

7.1 Definitionen und Ableitungen der elementaren Funktionen. f(x + x) f(x) Kapitel 7 Differentialrechnung 71 Definitionen un Ableitungen er elementaren Funktionen Die Funktion f) sei efiniert für a

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, 25. Oktober 2016 Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung Aufgabe

Mehr

Solution Hints to Exercise Sheet 11

Solution Hints to Exercise Sheet 11 Avance algebra Homological algebra an representation theory Wintersemester 24/5 Prof. C. Schweigert Algebra an Number Theory Department of Mathematics University Hamburg Aufgabe Solution Hints to Exercise

Mehr

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) = Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...

Mehr

Zahlentheorie. Kapitel 14 Quadratische Zahlkörper. Markus Klenke und Fabian Mogge Universität Paderborn

Zahlentheorie. Kapitel 14 Quadratische Zahlkörper. Markus Klenke und Fabian Mogge Universität Paderborn Zahlentheorie Kaitel 14 Quaratische Zahlkörer Markus Klenke un Fabian Mogge Universität Paerborn 9. Mai 008 Inhaltsverzeichnis 14 Quaratische Zahlkörer 0 Vorwort............................... A Wieerholung...........................

Mehr

Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form. ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können.

Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form. ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können. 142 Analog ist ein Bereich in R 3 ein Normalbereich, wenn er von der Form = { (x,y,z) a x b,u(x) y o(x),ũ(x,y) z õ(x,y) } ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können. efinition

Mehr

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, WS 2017/18 Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung Aufgabe

Mehr

a) b) Abb. 1: Buchstaben

a) b) Abb. 1: Buchstaben Hans Walser, [20171019] Magische Quarate ungeraer Seitenlänge nregung: uler (1782) 1 Worum geht es? Zu einer gegebenen ungeraen Zahl u wir ein magisches Quarat mit er Seitenlänge u konstruiert. 2 as Vorgehen

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

Einführung in die Mechanik Teil 4: Kinematik (4)

Einführung in die Mechanik Teil 4: Kinematik (4) SERVICE NEWSLEER Ausgabe: / 5 Im letzten eil er Serie wure bereits ie Bereitstellung von Verzerrungstensoren angekünigt. Wie as Wort bereits impliziert muss ein Maß gefunen weren, as ie Deformation es

Mehr

PC & Mac Education Ltd EX01GL1DM

PC & Mac Education Ltd  EX01GL1DM 335 Kategorie «Sonerformat» Option B Typ Die Kategorie «Sonerformat» A lässt eingegebene Zahlen speziell formatieren. Wählen Sie im Auswahlfenster «Typ» B as gewünschte Sonerformat. Nebenstehen Beispiele

Mehr

Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 2015/16

Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 2015/16 Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 215/16 Abgabetermin: keine Abgabe, sondern Wertung als Präsenzübung Prof. Dr. Claudius Gros, Institut für Theoretische Physik, Goethe-Universität

Mehr

Moderne Theoretische Physik WS 2013/2014

Moderne Theoretische Physik WS 2013/2014 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik WS 23/24 Prof. Dr. A. Shnirman Blatt 2:Lösungen Dr. B. Narozhny Besprechung 8..23. Gauß scher

Mehr

Explizite und Implizite Darstellung einer Funktion

Explizite und Implizite Darstellung einer Funktion Eplizite un Implizite Darstellung einer Funktion Für ie implizite Differentiation weren ie Begriffe implizite un eplizite Darstellung von Funktionen benötigt. Bisher haben wir eine Funktion (Zusammenhang

Mehr

Felder und Wellen WS 2018/2019 C = U = φ(2) φ(1)

Felder und Wellen WS 2018/2019 C = U = φ(2) φ(1) Feler un Wellen WS 08/09 Musterlösung zum 6. Tutorium. Aufgabe (**) Kapazität kann für jee beliebige Leiteranornung efiniert weren C = εe = f E s s }{{} φ() φ() Sin mehrere Leiter vorhanen, befinen sich

Mehr

Übungen zur Physik II PHY 121, FS 2018

Übungen zur Physik II PHY 121, FS 2018 Übungen zur Physik II PHY 2, FS 208 Serie 0 Abgabe: Dienstag, 5. Mai 2 00 Quellenfrei = source-free Wirbel = curl, ey, vortex Verschiebungsstrom = isplacement current Eisenkern = iron/magnet core quellenfreies

Mehr

MA 440 GEOMETRIE 2 HS 07

MA 440 GEOMETRIE 2 HS 07 MA 440 GEOMETRIE 2 HS 07 Zielsetzung Die Stuierenen lernen, ass geometrische Ieen vielfach verwenet weren. Sie erweitern Ihr Wissen er Eukliischen Geometrie. Sie lernen, ass geometrisches Denken weitere

Mehr