Dynamische Optimierung

Größe: px
Ab Seite anzeigen:

Download "Dynamische Optimierung"

Transkript

1 Dynamische Optimierung Mike Hüftle 28. Juli 2006 Inhaltsverzeichnis 1 Einleitung Dynamisches Optimierungmodell Grundmodell der dynamischen Optimierung Modelltypen Diskrete dynamische Optimierung Dynamisches Programmieren Allgemeines Anwendungsbereiche Beispiel zur dynamischen Programmierung Die Bellmansche Rekursionsformel Optimalitätsprinzip Rekursionsformel Literatur Literatur zur dynamischen Programmierung

2 1 Einleitung 1.1 Dynamische Optimierung Die dynamische Optimierung betrachtet dynamische Optimierungsprobleme, d.h. Probleme mit einem über mehrere Perioden oder Stufen ablaufenden Entscheidungsprozess. In jeder Periode können jeweils andere Ziele und Nebenbedingungen gelten. Lösung von dynamischen Optimierungsproblemen Dynamische Optimierungsprobleme sind in der Regel nicht so einfach modellierund handhabbar wie z.b. lineare Optimierungsprobleme. Dies liegt insbesondere daran, dass die Modellierung eines solchen Problems recht schwierig ist und einiges an Erfahrung voraussetzt. Auch gibt es nicht das dynamische Optimierungsmodell, für welches ein allgemeingültiger Lösungsalgorithmus zur Verfügung steht. 2

3 2 Dynamisches Optimierungmodell 2.1 Grundmodell der dynamischen Optimierung Zielfunktion Die Grundform des dynamischesn Optimierungsmodells ist die folgende: n F (x 1, x 2,..., x n ) = f k (z k 1, x k ) (1) k=1 Nebenbedingungenu. d. NB: z k = t k (z k 1, x k ) für k = 1,..., n z 0 = α, z n = ω z k Z k für k = 1,..., n 1 x k X k (z k 1 ) für k = 1,..., n Bezeichnungen mit den Bezeichnungen: n: Anzahl der P erioden z k : Zustand in P eriode k Z k : Menge der möglichen Zustände in P eriode k z 0 = α : vorgegebener Anfangszustand z n = ω : vorgegebener Endzustand x k : Entscheidungsvariable X k (z k 1 ) : Entscheidungsmenge für den Zustand z k 1 t k (z k 1, x k ) : Zustandsübergang von z k 1 nach z k f k (z k 1, x k ) : stufenbezogene Zielfunktion, beschreibt Kosten bzw. Gewinn abhängig von P eriode k, Zustand z k und En 3

4 2.2 Modelltypen Diskrete und kontinuierliche Optimierung Ein wichtiges Unterscheidungsmerkmal dynamischer Optimierungsmodelle ist die Art, auf welche die Zeit modelliert wird: Bei diskreten Modellen werden zu diskreten Zeitpunkten Entscheidungen getroffen und das Modell geht in einen anderen Zustand über. Bei kontinuierlichen Modellen findet ein permanentes Steuern statt. Mit kontinuierlichen Modellen befassen sich insbesondere die Kontrolltheorie und die Regelungstechnik. Deterministische und stochastische Optimierung Je nachdem ob die Zustände nur einen bestimmten Wert annehmen können oder auch Wahrscheinlichkeiten berücksichtigt werden, wird von deterministischen oder stochastischen Modellen gesprochen. Stochastische dynamische Modelle sind sehr komplex und werden meist mit Methoden der Simulation gelöst. 4

5 2.3 Diskrete dynamische Optimierung Diskretisierung des Problems Die diskrete dynamische Optimierung ist eine häufig genutzte Möglichkeit, um ein dynamisches Optimierungsproblem zu modellieren. Das Problem wird hierfür diskretisiert, d.h. der abzubildende (zeitliche) Ablauf wird in verschiedene Stufen (Perioden) unterteilt. Hieraus folgt, dass es für jeden Zustand im Modell nur endlich viele Zustandsübergänge zur nächsten Stufe geben kann. Gibt es nur eine relativ kleine Anzahl von möglichen Zuständen, so vereinfacht sich das dynamische Optimierungmodell erheblich. Mit steigender Anzahl an Zuständen wächst die Komplexität des Problems jedoch stark an. Reale Problemstellungen Deshalb sind für reale Problemstellungen Lösungsmethoden erforderlich, welche das Problem erheblich vereinfachen. Eine Ansatz, den viele Methoden zur Lösung diskreter dynamischer Optimierungsprobleme einsetzten ist die Bellmansche Rekursionsformel. 5

6 3 Dynamisches Programmieren 3.1 Allgemeines Prinzip der dynamischen Programmierung Bei der dynamischen Programmierung sind die zu lösenden Teilprobleme vom gleichen Problemtyp wie das Gesamtproblem (z.b. lineare Optimierungsprobleme) und werden somit auch mit derselben Optimierungsmethode gelöst (z.b. Simplexverfahren). Die dynamische Programmierung ist also keine eigenständige Methodenklasse, die bestimmte Optimierungsprobleme löst, sondern ein Optimierungsprinzip. Nach diesem Prinzip wird ein Optimierungsproblem in eine Folge gleichartiger Teilprobleme zerlegt und aus den Lösungen der einzelnen Teilprobleme kann die Lösung des Gesamtproblems zusammengesetzt werden. Dynamisch modellierbare Optimierungsprobleme Die dynamische Programmierung ist somit ein Prinzip zur Lösung von Problemen: 1. Die rekursiv beschrieben werden können. 2. Die dem Bellmanschen Optimalitätsprinzip genügen. 3. Bei deren Berechnung wiederholt identische Teillösungen berechnet werden müssen. 6

7 3.2 Anwendungsbereiche Die dynamische Programmierung hat vielfältige Anwendungsbereiche: Kürzeste Wege-Probleme (z.b. Floyd-Warshall-Algorithmus) kombinatorische Optimierungsprobleme Markov-Entscheidungsprozesse Optimale Steuerung Optimale binäre Suchbäume Berechnung rekursiver Funktionen oder Matrixpultiplikationen 7

8 3.3 Beispiel zur dynamischen Programmierung Die Funktionsweise der dynamischen Programmierung wird am Beispiel der Berechnung der Fibbonacci-Zahlen gezeigt. Dieses Problem lässt sich rekursiv wie folgt definieren: f(0)=1 f(1)=1 f(n)=f(n-1)+f(n-2), n 3 Die Komplexität dieses Algorithmus ist jedoch O(2 n ). Das Problem kann jedoch auch mit geringerem Aufwand gelöst werden, indem Teilprobleme gespeichert werden, und zur Berechnung des Gesamtproblems auf Teilprobleme zurückgegriffen wird. Hierzu wird eine Reihenfolge der Teilprobleme festgelegt, wobei für die Lösung eines größeren Problems r nur auf die r-1 kleineren Probleme zurückgegriffen wird. Es werden also sukkzessive die Lösungen berechnet, die dann wieder als Teilprobleme in die nächste Berechnung eingehen. Die Teilprobleme werden so lange gespeichert, wie sie benötigt werden: Iteration i f(i) f(1)+f(2)=2 4 f(2)+f(3)=3 5 f(3)+f(4)= Die Komplexität dieses Algorithmus ist nur noch O(n). 8

9 4 Die Bellmansche Rekursionsformel 4.1 Optimalitätsprinzip Die Bellmansche Rekursionsformel basiert auf dem Bellmanschen Optimalitätsprinzip. Dies formuliert, wie ein optimaler Weg von einem vorgegebenen Anfangszustand z 0 über verschiedene Stufen zu einem vorgegebenen Endzustand z n verlaufen muss. Bellmansches Optimalitätsprinzip Es gebe eine optimale Folge von Zuständen z 0, z 1, z 2,..., z k 1, z k,..., z n von z 0 = α nach z n = ω. Dann ist jeder Zustandsübergang t k (z k 1, x k ) von z k 1 nach z k und somit jede Entscheidung x k dieser Folge optimal in Bezug auf den Zustandsübergang von z 0 = α nach z n = ω. Man spricht hier auch davon, dass jede Teilpolitik einer optimalen Politik selbst optimal ist. 9

10 4.2 Rekursionsformel Bellmansche Rekursionsformel Aus dem Optimalitätsprinzip kann unmittelbar die Bellmansche Rekursionsformel abgeleitet werden. Mit dieser kann das mehrstufige Optimierungsproblem in n einstufige Optimierungsprobleme zerlegt werden, die relativ einfach zu lösen sind. Der Zielfunktionswertim Zustand z k 1 wird berechnet als Summe aus dem Zielfunktionswert im optimalen Zustand z k und dem Minimum aus allen möglichen Zustandsübergängen z k 1 nach z k : F k 1 (z k 1 ) = min {f k (z k 1, x k ) + F k (t k (z k 1, x k )) x k X k (z k 1 )} (2) Vorgehen der Rekursion Das Vorgehen der Rekursion ist folgendes: Man betrachtet alle möglichen Zustände z k 1 zum Zeitpunkt k-1. Derjenige Zustand z k 1 ist optimal in Hinblick auf das Erreichen des Endzustandes z n, der den kleinsten Zielfunktionswert F k 1 aller Zustände z k 1 hat. Dies ist derjenige Zustand, dessen Zustandsübergang in z n die geringsten Kosten verursacht. In derr nächsten Iteration werden nur die Zustände z k 2 betrachtet, welche in den Zustand z k 1 übergehen können. Widerum wird der kleinste Zielfunktionswert F k 2 bestimmt. Die Rekursion wird so lange weitergeführt, bis der Zustand z o zum Zeitpunkt 0 erreicht wurde. Dann kann die optimale Politik, um von z o nach z 1 zu gelangen, durch eine Vorwärtsrechnung ermittelt werden. 10

11 5 Literatur 5.1 Literatur zur dynamischen Programmierung Literaturverzeichnis [] Bellmann, R.E.: Dynamic Programming. Princeton University Press, Princeton [] Dano, S.: Nonlinear and Dynamic Programming. Springer, Wien New York [] Ohse, D.: Quantitative Methoden der Betriebswirtschaftslehre. Franz Vahlen, München [] Nemhauser, G.L.: Introduction to Dynamic Programming, Wiley, New York London Sydney [] Zimmermann, H.-J.: Operations Research. Vieweg, Wiesbaden

4. Dynamische Optimierung

4. Dynamische Optimierung 4. Dynamische Optimierung Allgemeine Form dynamischer Optimierungsprobleme 4. Dynamische Optimierung Die dynamische Optimierung (DO) betrachtet Entscheidungsprobleme als eine Folge voneinander abhängiger

Mehr

Markovsche Entscheidungsprobleme. Kompetitive Analyse vs. MDP

Markovsche Entscheidungsprobleme. Kompetitive Analyse vs. MDP Kompetitive Analyse versus Markovsche Entscheidungsprobleme Inhalt Einleitung: Optimierungsprobleme und Lösungsmethoden Kompetitive Analyse Markov Decision Problems Historische Entwicklung Der Anfang der

Mehr

Dynamische Optimierung

Dynamische Optimierung Dynamische Optimierung Michaela Nettekoven Abteilung für Quantitative Betriebswirtschaftslehre und Operations Research Wirtschaftsuniversität Wien 21. Januar 2005 Unter dynamischer Optimierung versteht

Mehr

Stochastische dynamische Optimierung

Stochastische dynamische Optimierung Bisher: Neuer Zustand s 0 auf Stufe n +1istdurchaltenZustands auf Stufe n und Aktion a eindeutig bestimmt. s 0 = z n (s, a) Jetzt: Neuer Zustand s 0 ist zusätzlich vom Zufall abhängig. Genauer: Zufallsvariable,

Mehr

Inhalt. 8.1 Motivation. 8.2 Optimierung ohne Nebenbedingungen. 8.3 Optimierung unter Nebenbedingungen. 8.4 Lineare Programmierung

Inhalt. 8.1 Motivation. 8.2 Optimierung ohne Nebenbedingungen. 8.3 Optimierung unter Nebenbedingungen. 8.4 Lineare Programmierung 8. Optimierung Inhalt 8.1 Motivation 8.2 Optimierung ohne Nebenbedingungen 8.3 Optimierung unter Nebenbedingungen 8.4 Lineare Programmierung 8.5 Kombinatorische Optimierung 2 8.1 Motivation Viele Anwendungen

Mehr

Dynamische Programmierung. Problemlösungsstrategie der Informatik

Dynamische Programmierung. Problemlösungsstrategie der Informatik als Problemlösungsstrategie der Informatik und ihre Anwedung in der Diskreten Mathematik und Graphentheorie Fabian Cordt Enisa Metovic Wissenschaftliche Arbeiten und Präsentationen, WS 2010/2011 Gliederung

Mehr

Operations Research II (Nichtlineare und dynamische Optimierung)

Operations Research II (Nichtlineare und dynamische Optimierung) Operations Research II (Nichtlineare und dynamische Optimierung) 5. April 007 Frank Köller,, Hans-Jörg von Mettenheim & Michael H. Breitner 8.4.007 # Nichtlineare Optimierung: Überblick Allgemeine Form:

Mehr

Einführung in Operations Research

Einführung in Operations Research Wolfgang Domschke Andreas Drexl Einführung in Operations Research Dritte, verbesserte und erweiterte Auflage Mit 79 Abbildungen und 58 Tabellen Springer Votwort Symbolverzeichnis V XIII Kapitel 1: Einführung

Mehr

Einführung in Operations Research

Einführung in Operations Research Wolfgang Domschke Andreas Drexl Einführung in Operations Research Achte Auflage fyj Springer Inhaltsverzeichnis Vorwort Symbolverzeichnis V XIII Kapitel 1: Einführung 1 1.1 Begriff des Operations Research

Mehr

(Lineare) stochastische Optimierung

(Lineare) stochastische Optimierung (Lineare) stochastische Optimierung Bsp: Aus zwei Sorten Rohöl wird Benzin und Heizöl erzeugt. Die Produktivität sowie der Mindestbedarf (pro Woche) und die Kosten sind in folgender Tabelle angegeben:

Mehr

Inhaltsverzeichnis. 1 Einleitung 1 Struktur und Einsatz von Optimierungsmethoden 2 Einsatz der Optimierung in der Steuerungs- und Regelungstechnik 6

Inhaltsverzeichnis. 1 Einleitung 1 Struktur und Einsatz von Optimierungsmethoden 2 Einsatz der Optimierung in der Steuerungs- und Regelungstechnik 6 1 Einleitung 1 Struktur und Einsatz von Optimierungsmethoden 2 Einsatz der Optimierung in der Steuerungs- und Regelungstechnik 6 Teil I Statische Optimierung 2 Allgemeine Problemstellung der statischen

Mehr

Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 1)

Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 1) (Die Thesen zur Vorlesung 1) das Thema der Vorlesung Grundlagen der Methode der linearen Optimierung (Grundlegende Annahmen der linearen Programmierung) Prof. Dr. Michal Fendek Institut für Operations

Mehr

Mathematische Modellierung der Kostenund Wirkungszusammenhänge eines regionalen Energieverbundes

Mathematische Modellierung der Kostenund Wirkungszusammenhänge eines regionalen Energieverbundes Mathematische Modellierung der Kostenund Wirkungszusammenhänge eines regionalen Energieverbundes Bestimmung des ökonomischen Nutzens von Energiespeichern Michael Hassler eines regionalen Energieverbundes

Mehr

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Kapitel 1 Unimodularität Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Inhalt 1 Unimodularität Total unimodulare Matrizen Inzidenzmatrix Optimierungsprobleme auf Graphen Peter

Mehr

Teil II Optimierung. Modellgestützte Analyse und Optimierung Kap. 5 Einführung Optimierung. Peter Buchholz 2006

Teil II Optimierung. Modellgestützte Analyse und Optimierung Kap. 5 Einführung Optimierung. Peter Buchholz 2006 Teil II Optimierung Gliederung 5 Einführung, Klassifizierung und Grundlagen 6 Lineare Optimierung 7 Nichtlineare Optimierung 8 Dynamische Optimierung (dieses Jahr nur recht kurz) (9 Stochastische Optimierungsmethoden

Mehr

Quantitative Methoden in der Betriebswirtschaftslehre

Quantitative Methoden in der Betriebswirtschaftslehre Quantitative Methoden in der Betriebswirtschaftslehre von Dr. Dietrich Ohse Professor für Betriebswirtschaftslehre, insbesondere Quantitative Methoden an der Johann Wolfgang Goethe-Universität Frankfurt

Mehr

Algorithmen und Datenstrukturen 1 Kapitel 3

Algorithmen und Datenstrukturen 1 Kapitel 3 Algorithmen und Datenstrukturen 1 Kapitel 3 Technische Fakultät robert@techfak.uni-bielefeld.de Vorlesung, U. Bielefeld, Winter 2005/2006 3.6 Dynamische Programmierung Die rekursive Problemzerlegung kann

Mehr

Optimierung. Statische, dynamische, stochastische Verfahren für die Anwendung. Bearbeitet von Markos Papageorgiou, Marion Leibold, Martin Buss

Optimierung. Statische, dynamische, stochastische Verfahren für die Anwendung. Bearbeitet von Markos Papageorgiou, Marion Leibold, Martin Buss Optimierung Statische, dynamische, stochastische Verfahren für die Anwendung Bearbeitet von Markos Papageorgiou, Marion Leibold, Martin Buss erweitert, überarbeitet 2012. Taschenbuch. XVIII, 519 S. Paperback

Mehr

Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber

Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Sitzplatznr.: Wiederholungsklausur zur Vorlesung Operations Research im Wintersemester

Mehr

Dynamische Programmierung

Dynamische Programmierung Universität Bayreuth 29.06.08 1 2 3 4 5 Bezeichnungen und Formulierung Beispiel Lagerhaltungsproblem Beispiel Rucksackproblem Diskretes Dynamisches Optimierungsproblem Bezeichnungen und Formulierung Beispiel

Mehr

Algorithmen und Komplexität

Algorithmen und Komplexität Algorithmen und Komplexität Dynamische Programmierung Markus Ullrich Norbert Baum Fachbereich Informatik - IIb07 Hochschule Zittau/Görlitz 28. Mai 2009 1 / 29 Wie sieht es mit langen Ketten aus? A 1 A

Mehr

Dynamische Programmierung

Dynamische Programmierung Dynamische Programmierung Claudia Gerhold 9.5.6 Claudia Gerhold Dynamische Programmierung 9.5.6 / 4 Agenda Einführung Dynamische Programmierung Top-Down Ansatz mit Memoization Bottom-Up Ansatz 3 Anwendungsbeispiele

Mehr

3.3 Optimale binäre Suchbäume

3.3 Optimale binäre Suchbäume 3.3 Optimale binäre Suchbäume Problem 3.3.1. Sei S eine Menge von Schlüsseln aus einem endlichen, linear geordneten Universum U, S = {a 1,,...,a n } U und S = n N. Wir wollen S in einem binären Suchbaum

Mehr

Informatik II: Algorithmen und Datenstrukturen SS 2013

Informatik II: Algorithmen und Datenstrukturen SS 2013 Informatik II: Algorithmen und Datenstrukturen SS 2013 Vorlesung 11b, Mittwoch, 3. Juli 2013 (Editierdistanz, dynamische Programmierung) Prof. Dr. Hannah Bast Lehrstuhl für Algorithmen und Datenstrukturen

Mehr

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Kapitel 4 Dynamische Optimierung Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Inhalt Inhalt 4 Dynamische Optimierung Allgemeiner Ansatz und Beispiele Stochastische dynamische

Mehr

Tutorium 23 Grundbegriffe der Informatik (9. Sitzung)

Tutorium 23 Grundbegriffe der Informatik (9. Sitzung) Tutorium 23 Grundbegriffe der Informatik (9. Sitzung) Tutor: Felix Stahlberg SOFTWARE DESIGN AND QUALITY GROUP Source: pixelio.de KIT The cooperation of Forschungszentrum Karlsruhe GmbH and Universität

Mehr

Abbildung 1: Graphische Lösung der ersten Übungsaufgabe

Abbildung 1: Graphische Lösung der ersten Übungsaufgabe Lösungen zu den Übungsaufgaben im Kapitel 1 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier 1. Lösen Sie die folgende lineare Optimierungsaufgabe

Mehr

14. Das Minimumprinzip

14. Das Minimumprinzip H.J. Oberle Variationsrechnung u. Optimale Steuerung SoSe 2008 14. Das Minimumprinzip In diesem Abschnitt behandeln wir die Idee der dynamischen Programmierung, die auf Bellmann 31 (1957) zurückgeht und

Mehr

Rekursive Funktionen (1)

Rekursive Funktionen (1) Rekursive Funktionen (1) Rekursive Algorithmen Wenn Gesamtlösung durch Lösen gleichartiger Teilprobleme erzielbar: Rekursion möglich Beispiel: Fakultät einer ganzen Zahl n: n i n! = i=1 für n > 0 1 für

Mehr

Rekursive Funktionen (1)

Rekursive Funktionen (1) Rekursive Funktionen (1) Rekursive Algorithmen Wenn Gesamtlösung durch Lösen gleichartiger Teilprobleme erzielbar: Rekursion möglich Beispiel: Fakultät einer ganzen Zahl n: nn ii nn! = ii=1 für nn > 0

Mehr

Schnittebenenverfahren von Gomory. Stefan Allescher 30. Juni 2005

Schnittebenenverfahren von Gomory. Stefan Allescher 30. Juni 2005 Schnittebenenverfahren von Gomory Stefan Allescher 30. Juni 2005 Inhaltsverzeichnis 1. Grundprinzip 2. Das Verfahren von Gomory 2.1. Vorgehen 2.2. Beweis der Endlichkeit 2.3. Algorithmische Durchführung

Mehr

Lineare Optimierung. Volker Kaibel Fakultät für Mathematik Institut für Mathematische Optimierung Otto-von-Guericke Universität Magdeburg

Lineare Optimierung. Volker Kaibel Fakultät für Mathematik Institut für Mathematische Optimierung Otto-von-Guericke Universität Magdeburg Lineare Optimierung Volker Kaibel Fakultät für Mathematik Institut für Mathematische Optimierung Otto-von-Guericke Universität Magdeburg VL 1: Einführung 10. April 2007 Überblick Optimierung unter Nebenbedingungen

Mehr

Kapitel 9: Lineare Programmierung Gliederung

Kapitel 9: Lineare Programmierung Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Systemanalyse und Modellbildung

Systemanalyse und Modellbildung Systemanalyse und Modellbildung Universität Koblenz-Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) Systemanalyse und Modellbildung

Mehr

Kap. 3: Exakte Lösungsverfahren für NPschwierige. Optimierungsprobleme VO Algorithm Engineering

Kap. 3: Exakte Lösungsverfahren für NPschwierige. Optimierungsprobleme VO Algorithm Engineering Kap. 3: Exakte Lösungsverfahren für NPschwierige kombinatorische Optimierungsprobleme VO Algorithm Engineering 3.1 Einführung Professor Dr. Petra Mutzel 3.2 Komb. vs. Ganzzahlige Opt. Lehrstuhl für Algorithm

Mehr

HMMs und der Viterbi-Algorithmus

HMMs und der Viterbi-Algorithmus July 8, 2015 Das Problem Wir haben gesehen: wir können P( w q)p( q) ohne große Probleme ausrechnen ( w = b 1...b i, q = q 1...q i. P( w q)p( q) = π(q 1 )τ(b 1, q 1 )δ(q 1, q 2 )τ(b 2, q 2 )...δ(q i 1,

Mehr

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering Das Linear Ordering Problem Exakte Lösungsverfahren VO Algorithm Engineering für NP-schwierige Professor Dr. Petra Mutzel kombinatorische Lehrstuhl für Algorithm Engineering, LS11 Optimierungsprobleme

Mehr

Klausur zur Vorlesung Operations Research im Wintersemester 2009/10

Klausur zur Vorlesung Operations Research im Wintersemester 2009/10 Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Sitzplatznr.: Klausur zur Vorlesung Operations Research im Wintersemester 2009/10

Mehr

Einführung in die Objektorientierte Programmierung Vorlesung 17: Dynamische Programmierung. Sebastian Küpper

Einführung in die Objektorientierte Programmierung Vorlesung 17: Dynamische Programmierung. Sebastian Küpper Einführung in die Objektorientierte Programmierung Vorlesung 17: Dynamische Programmierung Sebastian Küpper Redundanz Rekursiver Lösungen Rekursion kann elegante Bescheibungen zur Problemlösung ergeben

Mehr

Algorithmen I - Tutorium 28 Nr. 12

Algorithmen I - Tutorium 28 Nr. 12 Algorithmen I - Tutorium 28 Nr. 12 20.07.2017: Spaß mit Dynamischer und Linearer Programmierung Marc Leinweber marc.leinweber@student.kit.edu INSTITUT FÜR THEORETISCHE INFORMATIK (ITI), PROF. DR. JÖRN

Mehr

Wasserwirtschaftliche Planungsmethoden

Wasserwirtschaftliche Planungsmethoden Wasserwirtschaftliche Planungsmethoden 6. Optimierungsverfahren o.univ.prof. Dipl.Ing. Dr. H.P. Nachtnebel Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau 6 Optimierungsverfahren

Mehr

Kapitel III Selektieren und Sortieren

Kapitel III Selektieren und Sortieren Kapitel III Selektieren und Sortieren 1. Einleitung Gegeben: Menge S von n Elementen aus einem total geordneten Universum U, i N, 1 i n. Gesucht: i-kleinstes Element in S. Die Fälle i = 1 bzw. i = n entsprechen

Mehr

Formulierung mittels Dynamischer Programmierung

Formulierung mittels Dynamischer Programmierung Formulierung mittels Dynamischer Programmierung Beobachtung: die Anzahl der Teilprobleme A i j n mit i j n ist nur Folgerung: der naïve rekursive Algo berechnet viele Teilprobleme mehrfach! Idee: Bottom-up-Berechnung

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen Lerneinheit : Dynamisches Programmieren Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester.. Einleitung Diese Lerneinheit widmet sich einer

Mehr

Algorithmen und Datenstrukturen SoSe 2008 in Trier. Henning Fernau Universität Trier

Algorithmen und Datenstrukturen SoSe 2008 in Trier. Henning Fernau Universität Trier Algorithmen und Datenstrukturen SoSe 2008 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Algorithmen und Datenstrukturen Gesamtübersicht Organisatorisches / Einführung Grundlagen: RAM,

Mehr

Prozedurales Programmieren und Problemlösungsstrategien

Prozedurales Programmieren und Problemlösungsstrategien Prozedurales Programmieren und Problemlösungsstrategien Bachelorstudiengänge Umwelttechnik und Maschinenbau Prof. Dr. Thomas Hoch Problemlösungsstrategien Prozedurales Programmieren und Problemlösungsstrategien

Mehr

Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 7

Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 7 Technische Universität München WS 2012 Institut für Informatik Prof. Dr. H.-J. Bungartz Prof. Dr. T. Huckle Prof. Dr. M. Bader Kristof Unterweger Perlen der Informatik I Wintersemester 2012 Aufgabenblatt

Mehr

1 Einleitung Optimierung in Technik-, Natur- und Wirtschaftswissenschaften Optimierung mit dem Computer

1 Einleitung Optimierung in Technik-, Natur- und Wirtschaftswissenschaften Optimierung mit dem Computer 1 Einleitung...1 1.1 Optimierung in Technik-, Natur- und Wirtschaftswissenschaften... 4 1.2 Optimierung mit dem Computer... 5 1.2.1 Anwendung von Computeralgebrasystemen... 6 1.2.2 Anwendung von EXCEL...

Mehr

Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 2007/2008

Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 2007/2008 Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester

Mehr

Mathematische Behandlung des Risikos in der Portfolio-Optimierung

Mathematische Behandlung des Risikos in der Portfolio-Optimierung Mathematische Behandlung des Risikos in der Portfolio-Optimierung Michael Manger Mathematisches Institut Universität Bayreuth Seminar Stochastische Dynamische Optimierung Bayreuth, 5. März 2008 Michael

Mehr

Autonomes Kreuzungsmanagement für Kraftfahrzeuge

Autonomes Kreuzungsmanagement für Kraftfahrzeuge Autonomes Kreuzungsmanagement für Kraftfahrzeuge Trajektorienplanung mittels Dynamischer Programmierung Torsten Bruns, Ansgar Trächtler AUTOREG 2008 / Baden-Baden / 13.02.2008 Szenario Kreuzungsmanagement

Mehr

Operations Research. Klaus Neumann Martin Morlock HANSER. 2. Auflage. Mit 288 Abbildungen und 111 Tafeln

Operations Research. Klaus Neumann Martin Morlock HANSER. 2. Auflage. Mit 288 Abbildungen und 111 Tafeln Klaus Neumann Martin Morlock Operations Research 2. Auflage Mit 288 Abbildungen und 111 Tafeln Technische Universität Darmstadt Fach bar«! ah 1 e Bibliothek Abttall-Nr. HANSER HIIIIIIIIIIIHH Inhaltsverzeichnis

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg Beispiel: Graphische Darstellung Zulässigkeitsbereich Ungleichung (1) mit

Mehr

ALP I Turing-Maschine

ALP I Turing-Maschine ALP I Turing-Maschine Teil I WS 2012/2013 Äquivalenz vieler Berechnungsmodelle Alonzo Church λ-kalkül Kombinatorische Logik Alan Turing Turing-Maschine Mathematische Präzisierung Effektiv Berechenbare

Mehr

Programmieren 1 C Überblick

Programmieren 1 C Überblick Programmieren 1 C Überblick 1. Einleitung 2. Graphische Darstellung von Algorithmen 3. Syntax und Semantik 4. Einstieg in C: Einfache Sprachkonstrukte und allgemeiner Programmaufbau 5. Skalare Standarddatentypen

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Dynamische Programmierung Einführung Ablaufkoordination von Montagebändern Längste gemeinsame Teilsequenz Optimale

Mehr

Dynamische Optimierung im Dienstleistungsbereich

Dynamische Optimierung im Dienstleistungsbereich Dynamische Optimierung im Dienstleistungsbereich Univ.-Prof. Dr. Jochen Gönsch Universität Duisburg-Essen Mercator School of Management Lehrstuhl für Betriebswirtschaftslehre, insb. Service Operations

Mehr

Das Problem des Handlungsreisenden

Das Problem des Handlungsreisenden Seite 1 Das Problem des Handlungsreisenden Abbildung 1: Alle möglichen Rundreisen für 4 Städte Das TSP-Problem tritt in der Praxis in vielen Anwendungen als Teilproblem auf. Hierzu gehören z.b. Optimierungsprobleme

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Betriebliche Optimierung

Betriebliche Optimierung Betriebliche Optimierung Joachim Schauer Institut für Statistik und OR Uni Graz Joachim Schauer ( Institut für Statistik und OR Uni Graz Betriebliche ) Optimierung 1 / 22 1 Das Travelling Salesperson Problem

Mehr

Allgemeines zur Vorlesung

Allgemeines zur Vorlesung Operations Research Peter Becker Fachbereich Informatik FH Bonn-Rhein-Sieg peter.becker@fh-bonn-rhein-sieg.de Vorlesung Master Computer Science Spezialisierung Wirtschaftsinformatik Wintersemester 2007/08

Mehr

ANWENDUNGEN DER LINEAREN PARAMETRISCHEN OPTIMIERUNG

ANWENDUNGEN DER LINEAREN PARAMETRISCHEN OPTIMIERUNG ANWENDUNGEN DER LINEAREN PARAMETRISCHEN OPTIMIERUNG MATHEMATISCHE REIHE BAND69 LEHRBÜCHER UND MONOGRAPHIEN AUS DEM GEBIETE DER EXAKTEN WISSENSCHAFTEN ANWENDUNGEN DER LINEAREN PARAMETRISCHEN OPTIMIERUNG

Mehr

Dynamische Programmierung

Dynamische Programmierung Dynamische Programmierung Ludwig Höcker 13.06.2012 Ludwig Höcker Dynamische Programmierung 13.06.2012 1 / 61 Gliederung Dynamic Programming Bsp.: FAU-Kabel Naiv Top-Down Bottom-Up Longest Increasing Subsequence

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / Vorlesung 9, Donnerstag 18.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / Vorlesung 9, Donnerstag 18. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 9, Donnerstag 18. Dezember 2014 (Teile und Herrsche, Mastertheorem) Junior-Prof. Dr.

Mehr

Lösung von Optimierungsproblemen mit Monte Carlo Methoden

Lösung von Optimierungsproblemen mit Monte Carlo Methoden Lösung von Optimierungsproblemen mit Monte Carlo Methoden Am Beispiel des Problem des Handlungsreisenden Vortragende: Alexandra Vosseler Inhaltsverzeichnis I. Einleitung II. Optimierung mit MCM II.i Vom

Mehr

Heute. Stoff Abschlussprüfung VO. Testen. Einführung Rekursion IT I - VO 13 1

Heute. Stoff Abschlussprüfung VO. Testen. Einführung Rekursion IT I - VO 13 1 Heute Stoff Abschlussprüfung VO Testen Einführung Rekursion 23.01.2018 IT I - VO 13 1 Organisatorisches Diese Woche letzte UE (ohne Wissensüberprüfung) Nächste Woche Fragestunde in VO Abschlusstest am

Mehr

8. Reinforcement Learning

8. Reinforcement Learning 8. Reinforcement Learning Einführung 8. Reinforcement Learning Wie können Agenten ohne Trainingsbeispiele lernen? Auch kennt der Agent zu Beginn nicht die Auswirkungen seiner Handlungen. Stattdessen erhält

Mehr

Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3)

Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Technische Universität München Motivation: IT gestützte Steuerung, Überwachung, Fertigung, Produktion,. : erfordert effiziente Berechnungsvorschriften

Mehr

Lineare Optimierung: Simplexverfahren Phase Ⅰ

Lineare Optimierung: Simplexverfahren Phase Ⅰ Lineare Optimierung: Simplexverfahren Phase Ⅰ Zur Erinnerung: Die Lineare Optimierungsaufgabe in Standardform lautet z = c T x + c 0 min (.) bei Ax = b, x 0. Revidiertes Simplexverfahren Mit dem Simplexverfahren

Mehr

Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 2005/2006

Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 2005/2006 Universität Hannover Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 005/006

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 25. Vorlesung Dynamisches Programmieren Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Klausurvorbereitung Tipp: Schreiben Sie sich alle Fragen

Mehr

1 Einführung in Lineare Programme und Dualität

1 Einführung in Lineare Programme und Dualität Gliederung Inhaltsverzeichnis 1 Einführung in Lineare Programme und Dualität 1 1.1 Lineare Programme......................... 1 1.2 Dualität............................... 2 2 Grundlegende Sätze und Definitionen

Mehr

Kommunikationsnetzwerkplanung unter Kosten- und Zuverlässigkeitsgesichtspunkten mit Hilfe von evolutionären Algorithmen

Kommunikationsnetzwerkplanung unter Kosten- und Zuverlässigkeitsgesichtspunkten mit Hilfe von evolutionären Algorithmen Kommunikationsnetzwerkplanung unter Kosten- und Zuverlässigkeitsgesichtspunkten mit Hilfe von evolutionären Algorithmen Dissertation zur Erlangung des akademischen Grades doctor rerum politicarum (Dr.

Mehr

Konzepte der Informatik

Konzepte der Informatik Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Konzepte der Informatik Vorkurs Informatik zum WS 213/214 1.9. - 27.9.213 Dr. Werner Struckmann / Hendrik Freytag 1. April 21 Referent

Mehr

Kapitel 3 Ereignisdiskrete Systeme (III)

Kapitel 3 Ereignisdiskrete Systeme (III) Systemmodellierung Teil 1: Ereignisdiskrete Systeme Kapitel 3 Ereignisdiskrete Systeme (III) Modellierung mit E/A-Automaten Modellbildung mit Automaten Verfeinerte Modellbildung Beispiel: Fahrstuhltür

Mehr

Das Rucksackproblem: schwache NP-Härte und Approximation

Das Rucksackproblem: schwache NP-Härte und Approximation Das Rucksackproblem: schwache NP-Härte und Approximation Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1. Februar 2010 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

Betriebswirtschaftliche Optimierung

Betriebswirtschaftliche Optimierung Institut für Statistik und OR Uni Graz 1 Das Travelling Salesperson Problem 2 Das Travelling Salesperson Problem Zentrales Problem der Routenplanung Unzählige wissenschaftliche Artikel theoretischer sowie

Mehr

Anwendungen dynamischer Programmierung in der Biologie

Anwendungen dynamischer Programmierung in der Biologie Anwendungen dynamischer Programmierung in der Biologie Überblick Algorithmus zum Finden der wahrscheinlichsten Sekundärstruktur eines RNS Moleküls Sequence Alignment Verbesserung von Sequence Alignment

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 2016 Prof. Dr. Stefan Etschberger HSA Mögliche Fälle für Z Etschberger - WS2016 1 Z =, d.h., es existiert keine zulässige (x 1, x 2 )-Kombination. 2

Mehr

Mathematische Optimierung mit Computeralgebrasystemen

Mathematische Optimierung mit Computeralgebrasystemen Mathematische Optimierung mit Computeralgebrasystemen Einführung für Ingenieure, Naturwissenschaflter und Wirtschaftswissenschaftler unter Anwendung von MATHEMATICA, MAPLE, MATHCAD, MATLAB und EXCEL Bearbeitet

Mehr

Gliederung. Algorithmen und Datenstrukturen II. Problem: Längste gemeinsame Teilsequenz. Problem: Längste gemeinsame Teilsequenz

Gliederung. Algorithmen und Datenstrukturen II. Problem: Längste gemeinsame Teilsequenz. Problem: Längste gemeinsame Teilsequenz Gliederung Algorithmen und Datenstrukturen II Algorithmen zur Textverarbeitung II D. Rösner Institut für Wissens- und Sprachverarbeitung Fakultät für Informatik Otto-von-Guericke Universität Magdeburg

Mehr

Prozesse dieser Art sind in der Informatik z.b. bei der Untersuchung der Auslastung von Servern wichtig (Warteschlangenmodelle).

Prozesse dieser Art sind in der Informatik z.b. bei der Untersuchung der Auslastung von Servern wichtig (Warteschlangenmodelle). 77 Markowketten 77 Motivation Der Zustand eines Systems zur Zeit n N werde durch eine Zufallsvariable X n beschrieben und soll nur von X n abhängen (nicht jedoch von früheren Zuständen X n, X n 3, ) Wir

Mehr

Planung von Handlungen bei unsicherer Information

Planung von Handlungen bei unsicherer Information Planung von Handlungen bei unsicherer Information Dr.-Ing. Bernd Ludwig Lehrstuhl für Künstliche Intelligenz Friedrich-Alexander-Universität Erlangen-Nürnberg 20.01.2010 Dr.-Ing. Bernd Ludwig (FAU ER)

Mehr

( )= c+t(n-1) n>1. Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3)

( )= c+t(n-1) n>1. Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Motivation: IT gestützte Steuerung, Überwachung, Fertigung, Produktion,. : erfordert effiziente Berechnungsvorschriften Ziel: Methoden kennen

Mehr

Parallelisierung durch Gebietszerlegung

Parallelisierung durch Gebietszerlegung Parallelisierung durch Gebietszerlegung Jahn Müller jahn.mueller@uni-muenster.de Westfälische Wilhelms-Universität Münster 25.01.2008 1 Einleitung 2 Gebietszerlegung nicht überlappende Zerlegung überlappende

Mehr

Konzepte der Informatik

Konzepte der Informatik Konzepte der Informatik Vorkurs Informatik zum WS 2/212 2.9. - 3.9.2 17.1. - 21.1.2 Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 3 aus "Abenteuer Informatik" von Jens Gallenbacher

Mehr

Integrierte Kampagnenplanung. Netzwerken der chemischen Industrie

Integrierte Kampagnenplanung. Netzwerken der chemischen Industrie Markus Meiler Integrierte Kampagnenplanung in logistischen Netzwerken der chemischen Industrie Mit einem Geleitwort von Prof. Dr. Hans-Otto Günther VA Springer Gabler RESEARCH Inhaltsverzeichnis IX Inhaltsverzeichnis

Mehr

Dynamische Optimierung von Dienstleistungen

Dynamische Optimierung von Dienstleistungen Dynamische Optimierung von Dienstleistungen Univ.-Prof. Dr. Jochen Gönsch WiSe 2018/19 Universität Duisburg-Essen Mercator School of Management Lehrstuhl für Betriebswirtschaftslehre, insb. Service Operations

Mehr

Bestandsoptimierung für das Supply Chain Management

Bestandsoptimierung für das Supply Chain Management Lars Fischer Bestandsoptimierung für das Supply Chain Management Zeitdiskrete Modelle und praxisrelevante Ansätze Vorwort Abbildungsverzeichnis Tabellenverzeichnis Symbolverzeichnis Abkürzungsverzeichnis

Mehr

Planung des Krankenhauspflegepersonals unter dem Einfluss der OP-Auslastung

Planung des Krankenhauspflegepersonals unter dem Einfluss der OP-Auslastung Planung des Krankenhauspflegepersonals unter dem Einfluss der OP-Auslastung Tobias Kreisel Universität Bayreuth Mathematisches Institut Seminar zur Ganzzahligen Optimierung Ausgangssituation Beweggründe

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 .. ADS: Algorithmen und Datenstrukturen 2 8. Vorlesung Uwe Quasthoff Abteilung Automatische Sprachverarbeitung Institut für Informatik Universität Leipzig 6. Juni 2012 1 / 25 Editier-Distanz Beobachtungen:

Mehr

NICHTRESTRINGIERTE OPTIMIERUNG

NICHTRESTRINGIERTE OPTIMIERUNG 3 NICHTRESTRINGIERTE OPTIMIERUNG Die Aufgabe, mit der wir uns im Folgen beschäftigen werden, ist die Lösung von Minimierungsproblemen der Form minimiere f(x) in R n, (3.1) wobei f : R n R eine gegebene

Mehr

Automaten und Formale Sprachen

Automaten und Formale Sprachen Automaten und Formale Sprachen Einführung Ralf Möller Hamburg Univ. of Technology Übung Fr. 14:30-15:15 Max Berndt, D1025 Literatur Gottfried Vossen, Kurt-Ulrich Witt: Grundkurs Theoretische Informatik,

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 8 Gerhard Heyer, Florian Holz unter Verwendung der Materialien der letzten Jahre Abteilung Automatische Sprachverarbeitung Institut für Informatik Universität

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 017 Marc Bux, Humboldt-Universität zu Berlin Agenda 1. Vorrechnen von Aufgabenblatt 1. Wohlgeformte Klammerausdrücke 3. Teile und Herrsche Agenda 1.

Mehr

Kapitel 6: Algorithmische Methoden und Techniken

Kapitel 6: Algorithmische Methoden und Techniken LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Algorithmen und Datenstrukturen Kapitel 6: Algorithmische Methoden und Techniken Skript zur Vorlesung Algorithmen und

Mehr

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1 1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme Duales Problem Lemma 1.4. Das zum Transportproblem duale Problem lautet: max unter den Nebenbedingungen m a i u i + i=1

Mehr

Methoden für den Entwurf von Algorithmen

Methoden für den Entwurf von Algorithmen Methoden für den Entwurf von Algorithmen Greedy Algorithmen: - Löse ein einfaches Optimierungsproblem durch eine Folge vernünftiger Entscheidungen. - Eine getroffene Entscheidung wird nie zurückgenommen.

Mehr