Geschichte, Sherlock Holmes Spiel (Definition) Einteilung und Eigenschaften von Spielen Modellierungsformen Strategietypen (dominant, rein, gemischt)

Größe: px
Ab Seite anzeigen:

Download "Geschichte, Sherlock Holmes Spiel (Definition) Einteilung und Eigenschaften von Spielen Modellierungsformen Strategietypen (dominant, rein, gemischt)"

Transkript

1 Peter Garscha

2 Geschchte, Sherlock Holmes Spel (Defnton) Entelung und Egenschaften von Spelen Modellerungsformen Strategetypen (domnant, ren, gemscht) Nash-Glechgewcht (Defnton, Exstenz) Gefangenendlemma Identfzerung von Nash-Glechgewchten Braess-Paradoxon

3 John von Neumann, Oskar Morgenstern: 1944: The Theory of Games and Economc Behavor John Forbes Nash Jr.: 1950: Non-Cooperatve Games

4 Sherlock Holmes fährt mt dem Zug von London nach Dover Sherlock wrd von Prof. Morarty verfolgt Zwschenstopp n Canterbury Was soll Sherlock tun?

5 Wenn Sherlock n Dover ausstegt, wrd Morarty hn töten also doch n Canterbury ausstegen Das weß aber auch Morarty, der dann n Canterbury lauert also sollte Sherlock doch n Canterbury ausstegen Morarty weß, dass Sherlock weß, usw

6 Morarty Dover Canterbury Dover 0 1 Holmes Canterbury ½ 0

7 x Wahrschenlchket, dass Holmes n Dover ausstegt Überlebenschancen: Morarty stegt n DO aus: Morarty stegt n CB aus: y Wahrschenlchket, dass Morarty n Dover ausstegt Holmes Überlebenschance: ) (1 0 x x x = + x x x = + 0 ) (1 1 y x y x x y x y + = ) (1 ) 2 1 (

8 Überlebenschance: U : x y 2 x = U 3 x y 2 = y = U = 1 3

9 Wenn Sherlock abwecht und Morarty hn durchschaut, könnte sene Überlebenschance snken. Wenn Morarty abwecht, könnte Sherlock das ausnützen und sene Überlebenschance erhöhen. Es hat also kener enen Grund von sener Stratege abzuwechen.

10 Wrtschaftlche Entschedungen: Olgopole, Kartelle, Externaltäten (externe Effekte we Umweltverschmutzung, etc.) Poltsche Entschedungen: strategsche Entschedungen nnerhalb und zwschen Staaten Sozale Interaktonen: Vertelung öffentlcher Güter

11 Anzahl der Mtspeler Zu jedem Spelstand st bekannt: wer am Zug st, welche Zugmöglchketen bestehen, auf Bass welcher Informatonen der Speler sene Entschedungen zu treffen hat Für Endpostonen, wer we vel gewonnen hat Be Zufallszügen, we wahrschenlch de möglchen Ergebnsse snd.

12 Enersets: Spele m herkömmlchen Snn Anderersets: Modellerung von wrtschaftlchen Entschedungsstuatonen als Spel

13 Kooperatve Spele: De Speler handeln bndende Verträge aus, auf deren Bass se gemensame Strategen entwckeln können. Bespel: Käufer und Verkäufer handeln den Pres enes Gutes oder ener Denstlestung oder en Jont Venture beder Unternehmen aus Bndende Verträge snd möglch

14 Ncht kooperatve Spele: Aushandeln und Durchsetzen enes bndenden Vertrages snd ncht möglch Bespel: Zwe konkurrerende Unternehmen berückschtgen das wahrschenlche Verhalten der jewels anderen Parte, wenn se den Pres und de Werbestratege zur Eroberung enes Marktantels festsetzen Bndende Verträge snd ncht möglch

15 Nullsummen-Egenschaft: (Summe der Auszahlungen glech Null, Gewnn des ersten Spelers st der Verlust des zweten Spelers) Perfekte Informaton: (alle vorangegangenen Entschedungen und Stuatonen snd bekannt)

16 EXTENSIVFORM NORMALFORM

17 In enem Normalform-Spel entscheden de Agenten (Speler) smultan. En Normalform-Spel besteht aus: Ener Spelermenge Ener Strategemenge für jeden Speler Ene Funkton, de jeder Strategekombnaton enen Auszahlungsvektor zuordnet

18 Spele n Extensvform können zu Spelen n Normalform übergeführt werden. Möglch: Tc Tac Toe, Ver Gewnnt, etc. Ncht möglch: Schach, Go, etc.

19 Spelverläufe ( ) Endeutg: Spelverläufe ( ) Erster Speler kann ncht bem ersten Zug verleren Setzt erster Speler n de Mtte, muss zweter Spele n ene Ecke setzen um en Unentscheden zu erzwngen.

20

21 Anzahl möglcher Stellungen: ~2, Nach zwe Zügen: Stellungen Nach ver Zügen: ~ (pseudolegal, 755 Sekunden, nps) 40 Züge: ~ bs Spelverläufe (mt 30 möglchen Halbzügen pro Stellung) Aber: Endspeldatenbanken möglch 2012 Unverstät Moskau: Datenbank mt 7 Fguren fertggestellt (ca. 140 Terabyte) Anzahl Atome m Unversum: ~10 84 bs 10 89

22 De Stratege st en Plan, we sch der Speler n jeder Spelstuaton verhalten wrd. Arten: Domnante und Domnerte Strategen Rene Stratege Gemschte Stratege S möglche Strategen von Speler S - de möglchen Strategen sener Mtspeler

23 enes Spelers st streng domnant: enes Spelers st schwach domnant: und für mndestens en S s * S s * } \{ ),, ( ), ( * * s S s s s s s > } \{ ),, ( ), ( * * s S s s s s s ) ', ( ) ', ( * s s s s > S s '

24 Der Speler legt sch dabe auf ene Stratege fest und wendet dese wederholt an. Problemlos für enfache Spele ohne Wederholung (z.b. Münzwurf) Werden Spele wederholt, kann sch Gegenspeler anpassen um senen Gewnn zu maxmeren Daher: gemschte Stratege

25 Kene drekte Entschedung durch den Speler Wahl ener renen Stratege nach enem Zufallsmechansmus Schere, Sten, Paper jewels mt exakter Wahrschenlchket 1/3 (Erfolg maxmal) Statstsch: Schere mt 29,6 % am seltensten gewählt.

26 Strategepaar (oder N-Tupel), be dem es sch für kenen Speler auszahlt, ensetg (allene) von sener Stratege abzuwechen Ich mach das Beste, was ch kann, unter Berückschtgung dessen, was du tust. Du Machst, unter Berückschtgung dessen, was ch tue, das Beste, was du kannst.

27 ... Menge der Strategen des -ten Spelers =... : 1 n * * * σ = ( σ1,..., σ n ) Strategeprofl st Nash-Glechgewcht, genau dann wenn: σ : u * * * * * ( σ1,..., σ,..., σ ) u ( σ1,..., σ,..., σ n n ), I

28 Zwe Gefangene werden verdächtgt, gemensam ene Straftat begangen zu haben bede werden getrennt verhört und können sch ncht beraten Höchststrafe: 6 Jahre Schwegen bede: jewels 2 Jahre (klenere Delkte) Gestehen bede: jewels 4 Jahre (Kooperaton mt Behörde) Gesteht nur ener: 1 Jahr (symbolsche Bewährungsstrafe), der andere de Höchststrafe

29 B schwegt B gesteht A schwegt (2,2) (6,1) A gesteht (1,6) (4,4)

30 B schwegt B gesteht A schwegt (2,2) (6,1) A gesteht (1,6) (4,4)

31 B schwegt B gesteht A schwegt (2,2) (6,1) A gesteht (1,6) (4,4)

32 B schwegt B gesteht A schwegt (2,2) (6,1) A gesteht (1,6) (4,4)

33 Ergebns jewels abhängg von der Entschedung des Mtspelers Indvduell: für bede vortelhafter zu gestehen Kollektv: für bede besser zu schwegen (jewels nur 2 Jahre Gefängns) Glechgewcht n domnanten Strategen (gestehen besser, unabhängg was der andere macht)

34 sehe: Sherlock Holmes 2 Speler mt jewels 2 Handlungsmöglchketen Glechgewcht mt gemschter Stratege be x=1/3 und y=2/3

35 Voraussetzungen: Auszahlungsfunktonen H ( σ,..., σ ) 1 n snd stetg n σ De Strategemengen 1,..., n snd konvex und kompakt Spel mt gemschten Strategen (mt endlch velen renen Strategen) Bewes: z.b. mt Fxpunktsatz von Kakutan

36 In renen Strategen: Markere maxmale Auszahlungen für Speler für alle Strategekombnatonen der anderen Speler. Führe vorhergen Schrtt für alle Speler durch. Jene Strategekombnatonen, be denen alle Auszahlungen markert snd, snd Nash- Glechgewchte.

37 A B C A (2,0) (4,2) (3,5) B (1,6) (5,2) (0,2) C (2,2) (1,4) (1,1)

38 A B C A (2,0) (4,2) (3,5) B (1,6) (5,2) (0,2) C (2,2) (1,4) (1,1)

39

40 4000 Auto Start-A-End: T/ Start-B-End: 45+T/100 Nash-Glechgewcht be T=2000 (=2000/100+45=65)

41 Annahme: es exstert A-B mt t nahe Null START-A-B-END: T/100+T/ / /100=80 START-A-END: 4000/100+45=85 START-B-END: /100=85

42

Dr. Florian Englmaier 1 Übung Wettbewerbstheorie und -politik. Handout zu Übungsblatt 1: Einführung

Dr. Florian Englmaier 1 Übung Wettbewerbstheorie und -politik. Handout zu Übungsblatt 1: Einführung Dr. Floran Englmaer 1 Handout zu Übungsblatt 1: Enführung De Industreökonomk beschäftgt sch mt dem Marktverhalten und der nternen Organsaton von Unternehmen. (Preswettbewerb, Marktzutrttsverhalten, Produktdff.

Mehr

42020 KE Investitionsanreize - Gefangenendilemma

42020 KE Investitionsanreize - Gefangenendilemma Bespel: Investtonsanrez (Gefangenendlemma: Opportunstsches Verhalten lohnt sch ncht, de beste Lösung für bede Seten st wenn bede Seten sch bewegen) Ausgangspunkt: 1. Zuleferer und Abnehmer snd über enen

Mehr

3.1 Extensive Form, Spielbaum und Teilspiele

3.1 Extensive Form, Spielbaum und Teilspiele 3. Spele n extensver Form 3.1 Extensve Form, Spelbaum und Telspele 3.2 Strategen n extensven Spelen 4. Spele mt vollkommener Informaton 4.1 Telspelperfekte Nash-Glechgewchte 4.2 Das chan-store -Paradox

Mehr

Facility Location Games

Facility Location Games Faclty Locaton Games Semnar über Algorthmen SS 2006 Klaas Joeppen 1 Abstract Wr haben berets sehr häufg von Nash-Glechgewchten und vor allem von deren Exstenz gesprochen. Das Faclty Locaton Game betet

Mehr

Resultate / "states of nature" / mögliche Zustände / möglicheentwicklungen

Resultate / states of nature / mögliche Zustände / möglicheentwicklungen Pay-off-Matrzen und Entschedung unter Rsko Es stehen verschedene Alternatven (Strategen) zur Wahl. Jede Stratege führt zu bestmmten Resultaten (outcomes). Man schätzt dese Resultate für jede Stratege und

Mehr

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel!

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel! Aufgabe : Vorbemerkung: Ene Zufallsvarable st ene endeutge Funkton bzw. ene Abbldungsvorschrft, de angbt, auf welche Art aus enem Elementareregns ene reelle Zahl gewonnen wrd. x 4 (, ) z.b. Münzwurf: Kopf

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2 ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung

Mehr

) ergeben die i i. Es gelten folgende allgemeinen Resultate (in informeller Sprache formuliert).

) ergeben die i i. Es gelten folgende allgemeinen Resultate (in informeller Sprache formuliert). V. Kolluson Im olgopolstschen Wettbewerb treffen mtunter mmer weder de glechen Frmen aufenander. Des eröffnet de Möglchket für stlles Zusammenspel, wel abwechendes Verhalten n späteren Zusammentreffen

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen Näherungsverfahren Wederhole den Algorthmusbegrff. Erläutere de Begrffe: Klasse der P-ProblemeP Probleme Klasse der NP-Probleme Probleme Approxmatve Algorthmen Stochastsche Algorthmen ALGORITHMEN Def.:

Mehr

Musterlösung zur Einsendearbeit zum Kurs Preisbildung auf unvollkommenen Märkten und allgemeines Gleichgewicht, Kurseinheit 1

Musterlösung zur Einsendearbeit zum Kurs Preisbildung auf unvollkommenen Märkten und allgemeines Gleichgewicht, Kurseinheit 1 Musterlösung zum Kurs 40, A zu K, WS 008/09 Sete Musterlösung zur nsendearbet zum Kurs 40 Presbldung auf unvollkommenen Märkten und allgemenes lechgewcht, Kursenhet De folgende Lösungsskzze soll Ihnen

Mehr

Fairnesspräferenzen in sozialen Dilemmata Eine experimentelle Analyse

Fairnesspräferenzen in sozialen Dilemmata Eine experimentelle Analyse Farnesspräferenzen n sozalen Dlemmata Ene expermentelle Analyse Bodo Sturm, Astrd Dannenberg Zentrum für Europäsche Wrtschaftsforschung (ZEW), Mannhem Thomas Rechmann Otto-von-Guercke-Unverstät Magdeburg

Mehr

Free Riding in Joint Audits A Game-Theoretic Analysis

Free Riding in Joint Audits A Game-Theoretic Analysis . wp Wssenschatsorum, Wen,8. Aprl 04 Free Rdng n Jont Audts A Game-Theoretc Analyss Erch Pummerer (erch.pummerer@ubk.ac.at) Marcel Steller (marcel.steller@ubk.ac.at) Insttut ür Rechnungswesen, Steuerlehre

Mehr

Proseminar Spieltheorie SS 2006 Ausarbeitung zum Vortrag Allgemeine Zwei-Personenspiele am Vortragender: Florian Leiner

Proseminar Spieltheorie SS 2006 Ausarbeitung zum Vortrag Allgemeine Zwei-Personenspiele am Vortragender: Florian Leiner Prosemnar Speltheore SS 2006 Ausarbetung zum Vortrag Allgemene Zwe-Personenspele am 06.07.2006 Vortragender: Floran Lener Der Vortrag basert auf dem entsprechenden Kaptel wo-person general-sum games aus

Mehr

Spieltheoretische Grundlagen

Spieltheoretische Grundlagen Vortrag : Speltheoretsche Grundlagen Gegenstand der Speltheore: Entschedungsstuatonen, n denen das Ergebns von den Entschedungen mehrerer, nteragerender Wrtschaftssubjekten abhängg st. Strategsche Interakton

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt Mathematsches Insttut der Unverstät München Wntersemester 3/4 Danel Rost Lukas-Faban Moser Grundlagen der Mathematk I Lösungsvorschlag zum. Tutorumsblatt Aufgabe. a De Formel besagt, daß de Summe der umrahmten

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statstk und Wahrschenlchketsrechnung Statstk und Wahrschenlchketsrechnung 5. Vorlesung Dr. Jochen Köhler.03.0 Statstk und Wahrschenlchketsrechnung Wchtg!!! Vorlesung Do 4.03.0 HCI G3 Übung 5 D 9.03.0 Fnk

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

Standardnormalverteilung / z-transformation

Standardnormalverteilung / z-transformation Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ

Mehr

Zufallsvariable, Wahrscheinlichkeitsverteilungen und Erwartungswert

Zufallsvariable, Wahrscheinlichkeitsverteilungen und Erwartungswert R. Brnkmann http://brnkmann-du.de Sete..8 Zufallsvarable, Wahrschenlchketsvertelungen und Erwartungswert Enführungsbespel: Zwe Würfel (en blauer und en grüner) werden 4 mal zusammen geworfen. De Häufgketen

Mehr

Definition des linearen Korrelationskoeffizienten

Definition des linearen Korrelationskoeffizienten Defnton des lnearen Korrelatonskoeffzenten r xy x y y r x xy y 1 x x y y x Der Korrelatonskoeffzent st en Indkator dafür, we gut de Punkte (X,Y) zu ener Geraden passen. Sen Wert legt zwschen -1 und +1.

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung Fallstude 4 Qualtätsregelkarten (SPC) und Versuchsplanung Abgabe: Lösen Se de Aufgabe 1 aus Abschntt I und ene der beden Aufgaben aus Abschntt II! Aufgabentext und Lösungen schrftlch bs zum 31.10.2012

Mehr

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)).

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)). 44 n n F F a) b) Abbldung 3.: Besetzungszahlen enes Fermgases m Grundzustand (a)) und für ene angeregte Konfguraton (b)). 3.3 Ferm Drac Statstk In desem Abschntt wollen wr de thermodynamschen Egenschaften

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

Erwartungswert, Varianz, Standardabweichung

Erwartungswert, Varianz, Standardabweichung RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 5. Spezelle Testverfahren Zahlreche parametrsche und nchtparametrsche Testverfahren, de nach Testvertelung (Bnomal, t-test etc.), Analysezel (Anpassungs- und Unabhänggketstest) oder Konstrukton der Prüfgröße

Mehr

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression Beschrebung des Zusammenhangs zweer metrscher Merkmale Streudagramme Korrelatonskoeffzenten Regresson Alter und Gewcht be Kndern bs 36 Monaten Knd Monate Gewcht 9 9 5 8 3 4 7.5 4 3 6 5 3 6 4 3.5 7 35 5

Mehr

Was erwarten wir als Ergebnis von freien Verhandlungen in einer Gruppe mit Koalitionsmöglichkeiten?

Was erwarten wir als Ergebnis von freien Verhandlungen in einer Gruppe mit Koalitionsmöglichkeiten? Prof. Dr. Fredel Bolle 1 Prof. Dr. Fredel Bolle Vorlesung 1 Defnton: Kooperatves Spel En ooperatves Spel Γ st en Tupel (N,V), wobe der N = {1,...,m} mt m > 1 de Menge der Speler bezechnet und Was erwarten

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

4.6 Das Pumping-Lemma für reguläre Sprachen:

4.6 Das Pumping-Lemma für reguläre Sprachen: Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma

Mehr

Teil III Gleichgewicht auf Märkten

Teil III Gleichgewicht auf Märkten Sete Stehlng AVWL 3 (kro SS 08 - Kap. 9: Strategen m Polypol, Olgopol und onopol - Tel III Glechgewcht auf ärkten arktglechgewcht: g Stuaton auf enem arkt, be dem ken arkttelnehmer enen Anlass hat, sen

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Sind die nachfolgenden Aussagen richtig oder falsch? (1 Punkt pro korrekter Beantwortung)

Sind die nachfolgenden Aussagen richtig oder falsch? (1 Punkt pro korrekter Beantwortung) LÖSUNG KLAUSUR STATISTIK I Berufsbegletender Studengang Betrebswrtschaftslehre Sommersemester 016 Aufgabentel I: Theore (10 Punkte) Snd de nachfolgenden Aussagen rchtg oder falsch? (1 Punkt pro korrekter

Mehr

Seminar Online Algorithmen. Natalia Kaspers. Februar 2004

Seminar Online Algorithmen. Natalia Kaspers. Februar 2004 Semnar Onlne Algorthmen Thema : Nash-Glechgewcht Natala Kaspers. Februar 24 Semnar be Prof. Dr. Ro. Klen Berech : A - 2 - Glederung:. Grundbegrffe der Speltheore. Grundlagen.2 Glechgewchtsstuatonen.3 Zwe-Personen-Nullsummenspele.4

Mehr

F E R N U N I V E R S I T Ä T

F E R N U N I V E R S I T Ä T Matrkelnmmer Name: Vorname: F E R N U N I V E R S I T Ä T Fakltät für Wrtschaftswssenschaft Klasr: Modl 7 Markt nd Staat (6 SWS) Termn:.0.0, 9.00.00 Uhr Prüfer: Unv.-Prof. Dr. Thomas Echner Afgabe Smme

Mehr

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ).

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Taylorentwcklung (Approxmaton durch Polynome). Problemstellung Se T( x ) de Tangente an den Graphen der Funkton f(x) m Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Dann kann man de

Mehr

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x, Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket

Mehr

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY)

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY) Bedngte Entrope Kaptel : Bedngte Entrope Das vorherge Theorem kann durch mehrfache Anwendung drekt verallgemenert werden H (... H ( = Ebenso kann de bedngt Entrope defnert werden Defnton: De bedngte Entrope

Mehr

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden.

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden. Kombnator. Problemstellung Ausgangspunt be ombnatorschen Fragestellungen st mmer ene endlche Menge M, aus deren Elementen man endlche Zusammenstellungen von Elementen aus M bldet. Formal gesprochen bedeutet

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Rückblick Regression II: Anpassung an Polynome

Rückblick Regression II: Anpassung an Polynome Rückblck Regresson II: Anpassung an Polynome T. Keßlng: Auswertung von Messungen und Fehlerrechnung - Fehlerrechnung und Korrelaton 0.06.08 Vorlesung 0- Temperaturmessung mt Thermospannung Wr erhalten

Mehr

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen Hefte zur Logstk Prof. Dr. Segfred Jetzke Heft 1 Begrffsdefntonen Jun 2010 Deses Heft st urheberrechtlch geschützt. Wenn Se de Quelle angeben, können Se gerne deses Heft wetergeben, Tele koperen oder aus

Mehr

1.1 Das Prinzip von No Arbitrage

1.1 Das Prinzip von No Arbitrage Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum Abgabe: Aufgabentext und Lösungen schrftlch bs zum 15. 6. 2012 I. Thema: Zehen mt und ohne Zurücklegen Lesen Se sch zunächst folgenden Text durch! Wr haben bsher Stchprobenzehungen aus Grundgesamtheten

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

Statistik Exponentialfunktion

Statistik Exponentialfunktion ! " Statstk " Eponentalfunkton # $ % & ' $ ( )&* +, - +. / $ 00, 1 +, + ) Ensemble von radoaktven Atomkernen Zerfallskonstante λ [1/s] Lebensdauer τ 1/λ [s] Anzahl der pro Zetenhet zerfallenden Kerne:

Mehr

Streuungs-, Schiefe und Wölbungsmaße

Streuungs-, Schiefe und Wölbungsmaße aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen

Mehr

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i Itemanalyse und Itemkennwerte De Methoden der Analyse der Itemegenschaften st ncht m engeren Snne Bestandtel der Klassschen Testtheore Im Rahmen ener auf der KTT baserenden Testkonstrukton und -revson

Mehr

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit Enführung n de bednge Wahrschenlchket Laplace-Wahrschenlchket p 0.56??? Zufallsexperment Randwahrschenlchket Überscht Was st Wahrschenlchket? Rechenregeln Der Multplkatonssatz Axomatsche Herletung Unabhänggket

Mehr

Übung zu Erwartungswert und Standardabweichung

Übung zu Erwartungswert und Standardabweichung Aufgabe Übung zu Erwartungswert und Standardabwechung In ener Lottere gewnnen 5 % der Lose 5, 0 % der Lose 0 und 5 % der Lose. En Los kostet 2,50. a)berechnen Se den Erwartungswert für den Gewnn! b)der

Mehr

1 Finanzmathematik. 1.1 Das Modell. Sei Xt

1 Finanzmathematik. 1.1 Das Modell. Sei Xt 1.1 Das Modell Se Xt der Pres enes Assets zur Zet t und X = X ) 1 d der Rd +-dmensonale Presprozess. Das Geld kann auch zu dem rskolosen Znssatz r be ener Bank angelegt werden. Der Wert deser Anlage wrd

Mehr

Das zum dualen Problem (10.2) gehörige Barriere-Problem lautet analog

Das zum dualen Problem (10.2) gehörige Barriere-Problem lautet analog 60 Kaptel 2. Lneare Optmerung 10 Innere-Punkte-Verfahren Lteratur: Geger, Kanzow, 2002, Kaptel 4.1 Innere-Punkte-Verfahren (IP-Verfahren) oder nteror pont methods bewegen sch m Gegensatz zum Smplex-Verfahren

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition Informatk II Raner Schrader und Implkanten Zentrum für Angewandte Informatk Köln 27. Oktober 2005 1 / 28 2 / 28 Was bsher geschah: jede Boolesche Funkton kann durch enfache Grundfunktonen dargestellt werden

Mehr

Die Jordansche Normalform

Die Jordansche Normalform De Jordansche Normalform Danel Hug 29. Aprl 211 KIT Unverstät des Landes Baden-Württemberg und natonales Forschungszentrum n der Helmholtz-Gemenschaft www.kt.edu 1 Zerlegung n Haupträume 2 Fazt und nächstes

Mehr

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung Standortplanung Postonerung von enem Notfallhubschrauber n Südtrol Postonerung von enem Feuerwehrhaus Zentrallagerpostonerung 1 2 Postonerung von enem Notfallhubschrauber n Südtrol Zu bekannten Ensatzorten

Mehr

Kapitel 7: Ensemble Methoden. Maschinelles Lernen und Neural Computation

Kapitel 7: Ensemble Methoden. Maschinelles Lernen und Neural Computation Kaptel 7: Ensemble Methoden 133 Komtees Mehrere Netze haben bessere Performanz als enzelne Enfachstes Bespel: Komtee von Netzen aus der n-fachen Kreuzvalderung (verrngert Varanz) De Computatonal Learnng

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

14 Schätzmethoden. Eigenschaften von Schätzungen ˆθ. Sei ˆθ n eine Schätzung eines Parameters θ, die auf n Beobachtungen beruht.

14 Schätzmethoden. Eigenschaften von Schätzungen ˆθ. Sei ˆθ n eine Schätzung eines Parameters θ, die auf n Beobachtungen beruht. 14 Schätzmethoden Egenschaften von Schätzungen ˆθ Se ˆθ n ene Schätzung enes Parameters θ, de auf n Beobachtungen beruht. ˆθn n θ Konsstenz (Mnmalforderung) Eˆθ n = θ Erwartungstreue Eˆθ n n θ Asymptotsche

Mehr

Entscheidungstheorie Teil 3. Thomas Kämpke

Entscheidungstheorie Teil 3. Thomas Kämpke Entschedngstheore Tel 3 Thomas Kämpke Sete Entschedngstheore Tel 3 Inhalt St. Petersbrg Paradoon (Bernoll 73) Präferenzfnktonen ttelpnktsmethode zr Bestmmng von Wertfnktonen über Intervallen (endmensonal)

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

1 - Prüfungsvorbereitungsseminar

1 - Prüfungsvorbereitungsseminar 1 - Prüfungsvorberetungssemnar Kaptel 1 Grundlagen der Buchführung Inventur Inventar Blanz Inventur st de Tätgket des mengenmäßgen Erfassens und Bewertens aller Vermögenstele und Schulden zu enem bestmmten

Mehr

2 Zufallsvariable und Verteilungen

2 Zufallsvariable und Verteilungen Zufallsvarable und Vertelungen 7 Zufallsvarable und Vertelungen Wr wollen uns jetzt mt Zufallsexpermenten beschäftgen, deren Ausgänge durch (reelle) Zahlen beschreben werden können, oder be denen man jedem

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Wetere NP-vollständge Probleme Prosemnar Theoretsche Informatk Marten Tlgner December 10, 2014 Wr haben letzte Woche gesehen, dass 3SAT NP-vollständg st. Heute werden wr für enge wetere Probleme n NP zegen,

Mehr

n h i h n i e r e i Welche Wörter findest Du? Schreibe sie hier auf. OS /Symptomtraining

n h i h n i e r e i Welche Wörter findest Du? Schreibe sie hier auf. OS /Symptomtraining OS /Symptomtranng h r m h n h e r h n h e n h n e r Welche Wörter fndest Du? Schrebe se her auf. Arbetsblatt 1 OS/Symptomtranng Kannst Du de Wörter n Klammer mt enem der gefundenen Wörter ersetzen? Schrebe

Mehr

Algorithmen und ihre Programmierung -Teil 3-

Algorithmen und ihre Programmierung -Teil 3- Veranstaltung Pr.-Nr.: Algorthmen und hre Programmerung -Tel - Veronka Waue WS / Veronka Waue: Grundstudum Wrtschaftsnformatk WS/ Übung Ersetzen Se n folgendem Bespel de For schlefe durch ene WhleWend-Schlefe

Mehr

Lineare Optimierung Einführung

Lineare Optimierung Einführung Kaptel Lneare Optmerung Enführung B... (Dre klasssche Anwendungen) Im Folgenden führen wr de ersten dre klassschen (zvlen) Anwendungen der lnearen Optmerung an: BS... (Produktonsplanoptmerung) En Betreb

Mehr

ME II, Prof. Dr. T. Wollmershäuser. Kapitel 2 Das IS-LM-Modell

ME II, Prof. Dr. T. Wollmershäuser. Kapitel 2 Das IS-LM-Modell ME II, Prof. Dr. T. Wollmershäuser Kaptel 2 Das IS-LM-Modell Verson: 26.04.2011 2.1 Der Gütermarkt De gesamte Güternachfrage Z (Verwendung des BIP) lässt sch we folgt darstellen: Z C+ I + G ME II, Prof.

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

Der Satz von COOK (1971)

Der Satz von COOK (1971) Der Satz von COOK (1971) Voraussetzung: Das Konzept der -Band-Turng-Maschne (TM) 1.) Notatonen: Ene momentane Beschrebung (mb) ener Konfguraton ener TM st en -Tupel ( α1, α2,..., α ) mt α = xqy, falls

Mehr

In der beschreibenden Statistik werden Daten erhoben, aufbereitet und analysiert. Beispiel einer Datenerhebung mit Begriffserklärungen (Vokabel)

In der beschreibenden Statistik werden Daten erhoben, aufbereitet und analysiert. Beispiel einer Datenerhebung mit Begriffserklärungen (Vokabel) Rudolf Brnkmann http://brnkmann-du.de Sete.. Datenerhebung, Datenaufberetung und Darstellung. In der beschrebenden Statstk werden Daten erhoben, aufberetet und analysert. Bespel ener Datenerhebung mt Begrffserklärungen

Mehr

Prof. Dr. P. Kischka WS 2012/13 Lehrstuhl für Wirtschafts- und Sozialstatistik. Klausur Statistische Inferenz

Prof. Dr. P. Kischka WS 2012/13 Lehrstuhl für Wirtschafts- und Sozialstatistik. Klausur Statistische Inferenz Prof. Dr. P. Kschka WS 2012/13 Lehrstuhl für Wrtschafts- und Sozalstatstk Klausur Statstsche Inferenz 15.02.2013 Name: Matrkelnummer: Studengang: Aufgabe 1 2 3 4 5 6 7 8 Summe Punkte 6 5 5 5 5 4 4 6 40

Mehr

Bemerkungen zum LCG Rupert Hartung,

Bemerkungen zum LCG Rupert Hartung, mt Bemerkungen zum LCG Rupert Hartung, 24.6.2005 Wr betrachten den Lnear Congruental Generator (LCG) X 0, X 1,..., X,... X +1 = ax + c mod N (1) zur Erzeugung von Pseudozufallszahlen mäÿger Qualtät. De

Mehr

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt Kaptel 3 Zwe Personen Spele 3.1 Matrxspele 3.2 Matrxspele n gemschten Strategen 3.3 B Matrxspele und quadratsche Programme 3.4 B Matrxspele und lneare Komplementartätsprobleme 3.1 Matrxspele Wr betrachten

Mehr

Externe Effekte. Experimentelle Wirtschaftsforschung, 20. Mai 08 1

Externe Effekte. Experimentelle Wirtschaftsforschung, 20. Mai 08 1 Externe Effekte Bespel: En Chemebetreb legt etwas oberhalb enes Fscherebetrebes am glechen Fluss. Der Chemebetreb letet verschmutzte Abwässer n den Fluss, dadurch wrd der Fschbestand und das Fangergebns

Mehr

Übung zur Vorlesung. Informationstheorie und Codierung

Übung zur Vorlesung. Informationstheorie und Codierung Übung zur Vorlesung Informatonstheore und Coderung Prof. Dr. Lla Lajm März 25 Ostfala Hochschule für angewandte Wssenschaften Hochschule Braunschweg/Wolfenbüttel Postanschrft: Salzdahlumer Str. 46/48 3832

Mehr

AVWL I (Mikro) - Prof. Dr. M. Schnitzer - Klausur am Abschlussklausur

AVWL I (Mikro) - Prof. Dr. M. Schnitzer - Klausur am Abschlussklausur VWL I (Mkro) - Prof. Dr. M. Schntzer - Klausur am 16. 02 2004 bschlussklausur Btte bearbeten Se zwe der dre folgenden ufgaben nach freer Wahl. Sollten Se alle dre ufgaben bearbeten, machen Se btte kenntlch,

Mehr

Strategien zur Effizienzsteigerung Robustheitsbasierter Optimierungen

Strategien zur Effizienzsteigerung Robustheitsbasierter Optimierungen Prof. Dr.-Ing. habl. Deter Bestle Engneerng Mechancs and Vehcle Dynamcs Strategen zur Effzenzstegerung Robusthetsbaserter Otmerungen Motvaton Redukton des Suchraumes aufgrund von Otmerungsnebenbedngungen

Mehr

An dem Ergebnis eines Zufallsexperiments interessiert oft nur eine spezielle Größe, meistens ein Messwert.

An dem Ergebnis eines Zufallsexperiments interessiert oft nur eine spezielle Größe, meistens ein Messwert. SS 2013 Prof. Dr. J. Schütze/ J. Puhl FB GW Ds. ZG 1 Zufallsgrößen An dem Ergebns enes Zufallsexperments nteressert oft nur ene spezelle Größe, mestens en Messwert. Bespel 1. Zufällge Auswahl enes Studenten,

Mehr

Bildverarbeitung Herbstsemester 2012. Bildspeicherung

Bildverarbeitung Herbstsemester 2012. Bildspeicherung Bldverarbetung Herbstsemester 2012 Bldspecherung 1 Inhalt Bldformate n der Überscht Coderung m Überblck Huffman-Coderung Datenredukton m Überblck Unterabtastung Skalare Quantserung 2 Lernzele De wchtgsten

Mehr

6. Nicht-kooperative Oligopolmodelle Cournot-Modell Stackelberg-Modell Kollusionsmodell (Kartell) 6.4.

6. Nicht-kooperative Oligopolmodelle Cournot-Modell Stackelberg-Modell Kollusionsmodell (Kartell) 6.4. 6. Ncht-kooperatve Olgopolodelle 6.. Cournot-Modell 6.2. Stackelberg-Modell 6.3. Kollusonsodell (Kartell) 6.4. dynasche Spele 6.5. Bertrand-Modell generelle Modellannahen gegebene Anzahl von Fren (n der

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

4.5 Lemma Das folgende Problem Par{ 1, 0, 1}max p ist NP-vollständig:

4.5 Lemma Das folgende Problem Par{ 1, 0, 1}max p ist NP-vollständig: 4.5 Lemma Das folgende Problem Par, 0, }max st NP-vollständg: Inut: d, m N mt m d, α N und x,...,x m, 0, } d l.u.. Frage: Exsteren κ,...,κ m, }, sodass m κ x α? Bemerkung: Beachte, dass wegen Satz 4.2

Mehr

»Möglichkeiten und Grenzen der Wirkungsmessung«

»Möglichkeiten und Grenzen der Wirkungsmessung« »Möglchketen und Grenzen der Wrkungsmessung«18. Natonale Gesundhetsförderungs-Konferenz 19. Januar 2017, Neuenburg Prof. Dr. Alexandra Caspar caspar@fb4.fra-uas.de Fachberech 4 Sozale Arbet und Gesundhet

Mehr

5 Gemischte Verallgemeinerte Lineare Modelle

5 Gemischte Verallgemeinerte Lineare Modelle 5 Gemschte Verallgemenerte Lneare Modelle Wr betrachten zunächst enge allgemene Aussagen für Gemschte Verallgemenerte Lneare Modelle. Se y der beobachtbare Zufallsvektor und u der Vektor der ncht-beobachtbaren

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stchwörter von der letzten Vorlesung können Se sch noch ernnern? Gasgesetz ür deale Gase pv = nr Gelestete Arbet be sotherme Ausdehnung adabatsche Ausdehnung 2 n Reale Gase p + a 2 ( V nb) =

Mehr