Lösungen der Klausur CSB/Mathe/Info. vom

Größe: px
Ab Seite anzeigen:

Download "Lösungen der Klausur CSB/Mathe/Info. vom"

Transkript

1 Lösungen der Klausur CSB/Mathe/Info vom

2 1. Aufgabe: Lichtgeschwindigkeit im Vakuum: c = v = m s a) s = 1, km s c = t = 500 s b) t = 1 a = s t c = s = 9, m c) Ausbreitungsgeschwindigkeit des Lichts im Medium (n = c V ak c Med (n = 1) a) benötigte Zeit wird gröÿer, b) zurückgelegte Strecke wird kleiner > 1) kleiner als im Vakuum 2. Aufgabe: harmonische Schwingung mit x(t = 0) = x max = 10 cm und T = 8 s um x = 0 a) Bahngleichung: x(t) = x max cos(wt) = 10 cm cos( π 4 s 1 t) 1 0 x (t) [c m ] t [s ] -1 0 b) zurückgelegter Weg s(t): x(1 s) = 10 cm cos( π 4 s 1 1 s) = 7, 07 cm s(1 s) = 10 cm 7, 07 cm = 2, 93 cm x(2 s) = 10 cm cos( π 4 s 1 2 s) = 0 cm s(2 s) = 10 cm 0 cm = 10 cm x(3 s) = 7, 07 cm s(3 s) = 17, 07 cm x(4 s) = 10 cm s(3 s) = 20 cm bei t = 60 s hat der Massepunkt 7,5 komplette Schwingungen mit je 40 cm überstrichenem Weg vollführt s(60 s) = 300 cm

3 3. Aufgabe: Patrone: = 10 g, v 0 0 Körper: m K = 1, 3 kg, v = 0 Patrone trit ruhenden Körper mit v 0 im Sinne eines vollständig inelastischen Stoÿes: Geschwindigkeit beider Massen unmittelbar nach Stoÿ v nach, Patrone und Körper rutschen entlang einer Horizontalen um x = 91 cm, wobei der Gleitreibungskoezient µ = 0, 4 beträgt a) es gilt der Impulserhaltungssatz: v 0 = ( + m K )v nach v 0 = + m K v nach (1) inelastischer Stoÿ: kinetische Energien vor und nach Stoÿ sind nicht identisch (keine Energieerhaltung im Sinne der Bewegung)! E kin,vor = 2 v2 0 E kin,nach = + m K 2 v 2 nach mit Gleichung (1) folgt und somit E kin,vor = 2 E kin,nach E kin,vor = ( mp + m K ) 2 v 2 nach + m K = 7, b) kinetische Energie nach Stoÿ wird durch Reibungsarbeit F R verbraucht: E kin,nach = F R x = µ( + m K )g x Beziehung der Reibungsarbeit zu kinetischer Energie vor dem Stoÿ aus a) bekannt: 2 v2 0 = E kin,vor = + m K E kin,nach Es folgt: v 0 = 2 + m K m 2 p E kin,nach = + m K m 2µg x = 350 s

4 c) Impulserhaltung (Impuls Patrone vor dem Stoÿ = Impuls von Patrone + Körper unmittelbar nach dem Stoÿ): p = v 0 = 3, 5 Ns = ( + m K )v nach Geschwindigkeit unmittelbar nach dem Stoÿ entsprechend: v nach = + m K v 0 = 2, 67 m s d) zeitliche Änderung des Impulses ( p = 3, 5 Ns innerhalb von t = 10 ms) entspricht Kraft: F = p t = p t = 350 N 4. Aufgabe: Kalorimeter: m Alu = 200 g, c Alu = 0, 39 kj kg K, m W = 500 g, c W = 4, 19 kj kg K, T K = 20 C Eis: m Eis = 100 g, c Eis = 2, 09 kj kg K, Q S,Eis = 344, 0 kj kg, T Eis = 20 C Die Rechnungen erfolgen in C, Temperaturunterschiede werden in Kelvin angegeben. a) Eis wird im Kalorimeter geschmolzen, Gesamtsystem (Wasser und Kalorimeter) hat danach die Temperatur T GG > 0 C; notwendige zuzuführende Wärmemenge für diesen Erwärmungsprozess (Eis erwärmen, Eis schmelzen, geschmolzenes Eis [nun 100 g Wasser] auf T GG erwärmen): Q zu = m Eis c Eis (0 C T Eis ) + m Eis Q S,Eis + m Eis c W (T GG 0 C) = 20 K m Eis c Eis + m Eis Q S,Eis + m Eis c W T GG > 0 Diese Wärmemenge wird dem Kalorimeter (Alu + Wasser) durch Abkühlung entzogen: Q ab = m W c W (T GG T K ) + m Alu c Alu (T GG T K ) = (m W c W + m Alu c Alu )(T GG 20 C) < 0 Da der Prozess ohne Wärmeaustausch mit der Umgebung stattndet können diese Wärmemen-

5 gen gleichgesetzt werden (Vorzeichen beachten: Q zu > 0, Q ab < 0): Q zu = Q ab 20 K m Eis c Eis +m Eis Q S,Eis +m Eis c W T GG = 20 K (m W c W +m Alu c Alu ) (m W c W +m Alu c Alu )T GG Umstellen nach T GG liefert: T GG = 20 K (m W c W + m Alu c Alu m Eis c Eis ) m Eis Q S,Eis (m W c W + m Alu c Alu + m Eis c W ) = 2, 27 C b) In das Kalorimeter (Temperatur nun T GG = 2, 27 C, Wassermasse nun m W,neu = 600 g) werden jetzt weitere m Eis = 100 g Eis hinzugegeben, die nicht komplett schmelzen: das Gesamtsystem nimmt somit die Temperatur T end = 0 C an und es verbleibt die (ungeschmolzene) Eismasse m Rest im Kalorimeter. zugeführte Wärmemenge für die Erwärmung des Eises: Q zu = m Eis c Eis (0 C T Eis ) + (m Eis m Rest )Q S,Eis > 0 entsprechende Wärmemenge, die dem Kalorimeter entzogen wird: Q ab = m W,neu c W (0 T GG ) + m Alu c Alu (0 T GG ) < 0 Analog zu Aufgabe a) ergibt sich: Q zu = Q ab 20 K m Eis c Eis + (m Eis m Rest )Q S,Eis = (m W,neu c W + m Alu c Alu )T GG Und somit für die noch im Kalorimeter vorhandene Eismenge: m Rest = 20 K m Eisc Eis (m W,neu c W + m Alu c Alu )T GG Q S,Eis + m Eis = 94, 9 g Es schmelzen also nur 5, 1 g Eis.

6 5. Aufgabe: Geschwindigkeitslter: B 1 = 2, 2 mt, E = 2500 V m Massenspektrometer: B 2 = 1 G = 10 4 T a) Elektronen passieren den Geschwindigkeitslter, wenn ihre Bahn geradlinig verläuft. Dazu müssen sich Coulombkraft (Ladungen) und Lorentzkraft (bewegte Ladungen) kompensieren, d.h. ihre Beträge müssen gleich und ihre Richtungen entgegengesetzt sein. Im Falle von Elektronen (q = e) zeigt die Coulombkraft bei gegebenem Geschwindigkeitslter nach links, die Lorentzkraft nach rechts, sodass nur noch F C = q E = qv B = q vb = F L erfüllt werden muss: v = E B = 1, m s (2) Diese Beziehung ist unabhängig von der Teilchenmasse und dem Betrag der Ladung. Wechselt das Vorzeichen der Ladung so zeigen Coulomb- und Lorentzkraft erneut in entgegengesetzte Richtungen (beide ändern ihre Richtung). Somit durchlaufen alle geladenen Teilchen, also auch Protonen, den Filter in der gegebenen Konguration, falls ihre Geschwindigkeiten der Beziehung (2) genügen. b) Im Massenspektrometer wirkt auf die Elektronen die Lorentzkraft, die die Teilchen ablenkt und auf eine Kreisbahn zwingt. Die Lorentzkraft wirkt somit als Zentripedalkraft für die Kreisbewegung und kompensiert die auf die Teilchen wirkende Zentrifugalkraft: F Z = mv2 r = q vb = F L Der Radius der Kreisbahn ergibt sich demnach zu: r = mv q B = 6, 46 cm (3) c) Damit Protonen im Massenspektrometer die selbe Bahn durchlaufen wie zuvor Elektornen muss das magnetische Feld umgekehrt werden, sodass trotz Vorzeichenwechsel der Ladung (q = e q = +e) die Lorentzkraft in die selbe Richtung zeigt. Da die Protonen zudem eine

7 höhere Masse aufweisen muss entsprechend Gleichung (3) ebenfalls der Betrag der magnetischen Flussdichte erhöht werden: m e B vor = B nach B nach = m e B vor = 1836 G = 183, 6 mt 6. Aufgabe (nur Physik I): homogener Vollzylinder: m = 100 kg, r = 30 cm Rotation: M = const., ω(t = 0) = 0, ω(t = 30 s) = 600 Umdrehungen min a) Drehimpuls: Trägheitsmoment des Zylinders J = m 2 r2 : = 20π s 1 L(30 s) = J ω(30 s) = m 2 r2 ω(30 s) = 282, 7 kg m2 s zeitliche Änderung des Drehimpulses ( ω = 20π s 1 in t = 30 s): const. = M = L t = J ω t = J ω t = 9, 43 Nm b) siehe a) M = 9, 43 Nm c) Kraft auf Zylindermantel: M = r F = r F F = M r = 31, 4 N

8 7. Aufgabe (nur Physik I): 2 Ladungen zu je q = +4 µc auf x-achse bei x 1 = 0 und x 2 = 8 m a) elektrisches Feld einer Ladung: E = q 4πɛ 0 ( ) 2 1 r Überlagertes Feld zweier Ladungen an verschiedenen Punkten der x-achse: ( E(x = 2 m) = q 1 ) 2 ( 4πɛ 0 2 m q 1 ) 2 4πɛ 0 10 m = 9347 V m E(x = +2 m) = + q 4πɛ 0 ( 1 2 m ) 2 q 4πɛ 0 ( 1 6 m E(x = +6 m) = E(x = +2 m) = 7989 V m ) 2 = V m E(x = +10 m) = E(x = 2 m) = V m b) E(x = +4 m) = 0, x = 4 m c) E (x ) x [m ]

9 8. Aufgabe (nur Physik II): Körper: m = 4 g, v = 100 m s Der Körper soll an der Önung einer Blende Beugungseekte zeigen: Teilchen muss Welleneigenschaften haben (Welle-Teilchen-Dualismus) und Wellenlänge muss in Gröÿenordnung des beugenden Objekts liegen. dem Körper zuzuordnende Wellenlänge (de Broglie): λ = h p = h mv = 1, m In dieser Gröÿenordnung muss die Apertur der Blende liegen. Kein normaler Körper passt jedoch durch solch eine kleine Önung, da selbst der Atomdurchmesser ( m) um 18 Gröÿenordnungen gröÿer ist! (Oder anders ausgedrückt: ein 4 g schwerer kugelförmiger Körper mit dem Durchmesser λ müsste eine Dichte von ρ = 1, besitzen!) g cm 3 9. Aufgabe (nur Physik II): Körper: m = 10 kg, M = 63, 55 g mol, E F = 7.04 ev a) jedes Atom steuert 8 Energieniveaus für das Leitungsband bei: N = 8 N Atome = 8N A m M = 7, b) mittlere Energiedierenz zweier aufeinander folgender Zustände: E = E F N = 9, ev Vergleich mit thermischer Energie bei T = 300 K: E th k B T 25 mev E th E = 2, Die thermischer Energie ist weitaus gröÿer als die Energiedierenz der Niveaus, sodass man bei Raumtemperatur von einem quasikontinuierlichen Band sprechen muss.

v(t) = r(t) v(t) = a(t) = Die Kraft welche das Teilchen auf der Bahn hält muss entgegen dessen Trägheit wirken F = m a(t) E kin = m 2 v(t) 2

v(t) = r(t) v(t) = a(t) = Die Kraft welche das Teilchen auf der Bahn hält muss entgegen dessen Trägheit wirken F = m a(t) E kin = m 2 v(t) 2 Aufgabe 1 Mit: und ( x r(t) = = y) ( ) A sin(ωt) B cos(ωt) v(t) = r(t) t a(t) = 2 r(t) t 2 folgt nach komponentenweisen Ableiten ( ) Aω cos(ωt) v(t) = Bω sin(ωt) a(t) = ( ) Aω2 sin(ωt) Bω 2 cos(ωt) Die

Mehr

Teilchenbahnen im Magnetfeld

Teilchenbahnen im Magnetfeld Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im B Feld Kopetschke 2011 1 Teilchenbahnen im Magnetfeld 1) Protonen im Kreisverkehr: Protonen bewegen sich von unten kommend in einem Magnetfeld, das in

Mehr

Klausur Physik I für Chemiker

Klausur Physik I für Chemiker Universität Siegen Wintersemester 2017/18 Naturwissenschaftlich-Technische Fakultät Prof. Dr. M. Agio Department Physik Klausur Physik I für Chemiker Lösung zu Aufgabe 1: Kurzfragen Lösung zu Aufgabe 2:

Mehr

Physik Klausur

Physik Klausur Physik Klausur 12.1 2 15. Januar 2003 Aufgaben Aufgabe 1 Ein Elektron wird mit der Geschwindigkeit v = 10 7 m s 1 von A aus unter 45 in ein begrenztes Magnetfeld geschossen. Der Geschwindigkeitsvektor

Mehr

Nachklausur 2003 Physik I (Mechanik)

Nachklausur 2003 Physik I (Mechanik) Institut für Experimentelle Kernphysik WS2003, 8-10-03, 10 00 13 00 Nachklausur 2003 Physik I (Mechanik) Priv. Dozent Dr. M. Erdmann, Dr. G. Barker Name/Vorname : Matrikelnummer : Fachsemester : Übungsgruppe

Mehr

Energie eines bewegten Körpers (kinetische Energie) Energie eines rotierenden Körpers. Energie im elektrischen Feld eines Kondensators

Energie eines bewegten Körpers (kinetische Energie) Energie eines rotierenden Körpers. Energie im elektrischen Feld eines Kondensators Formeln und Naturkonstanten 1. Allgemeines Energieströme P = v F P = ω M P = U I P = T I S Energiestromstärke bei mechanischem Energietransport (Translation) Energiestromstärke bei mechanischem Energietransport

Mehr

Tutorium Physik 2. Elektrizität

Tutorium Physik 2. Elektrizität 1 Tutorium Physik 2. Elektrizität SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 10. ELEKTRIZITÄT 4 10.1 Coulombkraft:

Mehr

Klassische Experimentalphysik I (Mechanik) (WS 16/17)

Klassische Experimentalphysik I (Mechanik) (WS 16/17) Klassische Experimentalphysik I Mechanik) WS 16/17) http://ekpwww.physik.uni-karlsruhe.de/~rwolf/teaching/ws16-17-mechanik.html Übungsblatt 7 Lösungen Name des Übungsgruppenleiters und Gruppenbuchstabe:

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 16/17 Lösung 1 Ronja Berg (ronja.berg@tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Aufgabe 1: Superposition

Mehr

Leistungskurs Physik A40/Q1. Dienstag, den , 3. Block

Leistungskurs Physik A40/Q1. Dienstag, den , 3. Block Stundenprotokoll Fach: Fachlehrer: Zeit: Protokollant: Thema der Stunde: Leistungskurs Physik A40/Q1 Herr Winkowski Dienstag, den 13.09.11, 3. Block Christian Täge Vertiefung der Kreisbewegung Gliederung

Mehr

Basiskenntnistest - Physik

Basiskenntnistest - Physik Basiskenntnistest - Physik 1.) Welche der folgenden Einheiten ist keine Basiseinheit des Internationalen Einheitensystems? a. ) Kilogramm b. ) Sekunde c. ) Kelvin d. ) Volt e. ) Candela 2.) Die Schallgeschwindigkeit

Mehr

Grundlagen der Physik 1 Lösung zu Übungsblatt 6

Grundlagen der Physik 1 Lösung zu Übungsblatt 6 Grundlagen der Physik 1 Lösung zu Übungsblatt 6 Daniel Weiss 20. November 2009 Inhaltsverzeichnis Aufgabe 1 - Massen auf schiefer Ebene 1 Aufgabe 2 - Gleiten und Rollen 2 a) Gleitender Block..................................

Mehr

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV.

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV. Physik LK 2, 2. Kursarbeit Magnetismus Lösung 07.2.202 Konstante Wert Konstante Wert Elementarladung e=,602 0 9 C. Masse Elektron m e =9,093 0 3 kg Molmasse Kupfer M Cu =63,55 g mol Dichte Kupfer ρ Cu

Mehr

Klausur. zur Vorlesung Experimentalphysik für Studierende der Biologie, Gartenbauwissenschaften, Pflanzenbiotechnologie und Life Science

Klausur. zur Vorlesung Experimentalphysik für Studierende der Biologie, Gartenbauwissenschaften, Pflanzenbiotechnologie und Life Science Klausur zur Vorlesung Experimentalphysik für Studierende der Biologie, Gartenbauwissenschaften, Pflanzenbiotechnologie und Life Science Leibniz Universität Hannover 03.02.2010 Barthold Name, Vorname: Matrikelnummer:

Mehr

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Feld Unterschiede: Beschreibung Ursache Kräfte auf elektrisches Feld Das elektrische Feld ist der besondere Zustand des

Mehr

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2 Formelsammlung Physik für Biologen und Geowissenschaftler 15. Juni 2005 Inhaltsverzeichnis 1 Grundlagen 2 SI - Einheiten............................................... 2 Fehlerberechnung.............................................

Mehr

Klausur. Physik für Pharmazeuten (PPh) SS Juli 2006

Klausur. Physik für Pharmazeuten (PPh) SS Juli 2006 Klausur Physik für Pharmazeuten (PPh) SS06 31. Juli 2006 Name: Matrikel-Nr.: Fachrichtung: Semester: Bearbeitungszeit: 90 min. Bitte nicht mit Bleistift schreiben! Nur Ergebnisse auf den Aufgabenblättern

Mehr

12. Spezielle Relativitätstheorie

12. Spezielle Relativitätstheorie Inhalt 12. Spezielle Relativitätstheorie 12.1 Lorentz-Transformation 12.2 Transformation von Geschwindigkeiten 12.3 Zeitdilatation 12.4 Längenkontraktion kti 12.5 Relativistischer Impuls 12.6 Relativistische

Mehr

Übungsblatt 9. a) Wie groß ist der Impuls des Autos vor und nach der Kollision und wie groß ist die durchschnittliche Kraft, die auf das Auto wirkt?

Übungsblatt 9. a) Wie groß ist der Impuls des Autos vor und nach der Kollision und wie groß ist die durchschnittliche Kraft, die auf das Auto wirkt? Aufgabe 32: Impuls Bei einem Crash-Test kollidiert ein Auto der Masse 2000Kg mit einer Wand. Die Anfangsund Endgeschwindigkeit des Autos sind jeweils v 0 = (-20m/s) e x und v f = (6m/s) e x. Die Kollision

Mehr

Physik III Übung 1 - Lösungshinweise

Physik III Übung 1 - Lösungshinweise Physik III Übung 1 - Lösungshinweise Stefan Reutter WiSe 212 Moritz Kütt Stand: 16.11.212 Franz Fujara Aufgabe 1 [P] ermanentmagnete (Diskussion) Benötigt man, um ein Magnetfeld zu erhalten, immer einen

Mehr

Sonne. Sonne. Δ t A 1. Δ t. Heliozentrisches Weltbild. Die Keplerschen Gesetze

Sonne. Sonne. Δ t A 1. Δ t. Heliozentrisches Weltbild. Die Keplerschen Gesetze Seite 1 von 6 Astronomische Weltbilder und Keplersche Gesetze Heliozentrisches Weltbild Die Sonne steht im Mittelpunkt unseres Sonnensystems, die Planeten umkreisen sie. Viele Planeten werden von Monden

Mehr

5. Arbeit und Energie

5. Arbeit und Energie Inhalt 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5.5 Beispiele 5.1 Arbeit 5.1 Arbeit Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit einer

Mehr

Vordiplomsklausur in Physik Montag, 14. Februar 2005, :00 Uhr für den Studiengang: Mb Intensiv

Vordiplomsklausur in Physik Montag, 14. Februar 2005, :00 Uhr für den Studiengang: Mb Intensiv Institut für Physik und Physikalische Technologien 14.02.2005 der TU Clausthal Prof. Dr. W. Daum Vordiplomsklausur in Physik Montag, 14. Februar 2005, 09.00-11:00 Uhr für den Studiengang: Mb Intensiv (bitte

Mehr

Lösung zur Klausur

Lösung zur Klausur ösung zur Klausur 1..01 Aufgabe 1.) a) Hundsche Regeln: maximaler Spin, dann maximales Bahnmoment. Die beiden Elektronen im 4s kann man vernachlässigen, da sie weder Spin- noch Bahmoment beitragen. Damit

Mehr

Mechanik. Entwicklung der Mechanik

Mechanik. Entwicklung der Mechanik Mechanik Entwicklung der Mechanik ältester Zweig der Physik Kinematik Bewegung Dynamik Kraft Statik Gleichgewicht Antike: Mechanik = Kunst die Natur zu überlisten mit Newton Beginn Entwicklung Mechanik

Mehr

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler.

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler. Geozentrisches und heliozentrisches Weltbild Geozentrisches Weltbild: Vertreter Aristoteles, Ptolemäus, Kirche (im Mittelalter) Heliozentrisches Weltbild: Vertreter Aristarch von Samos, Kopernikus, Galilei

Mehr

SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Gymnasium Jahrgangstufe 11 (Physik)

SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Gymnasium Jahrgangstufe 11 (Physik) SMART Sammlung mathematischer Aufgaben als Hypertext mit TEX Gymnasium Jahrgangstufe 11 (Physik) herausgegeben vom Zentrum zur Förderung des mathematisch-naturwissenschaftlichen Unterrichts der Universität

Mehr

4.9 Der starre Körper

4.9 Der starre Körper 4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte

Mehr

Lösungen I km/h. 2. (a) Energieerhaltung (b) Impulserhaltung

Lösungen I km/h. 2. (a) Energieerhaltung (b) Impulserhaltung Lösungen I.1 1. 33 km/h. (a) Energieerhaltung (b) Impulserhaltung Lösungen II.1 1.1 T ~ a 3 T nimmt mit a streng monoton zu; wenn a zwischen den Werten für Mars und Jupiter liegt, dann muss also auch T

Mehr

1.Klausur LK Physik 12/2 - Sporenberg Datum:

1.Klausur LK Physik 12/2 - Sporenberg Datum: 1.Klausur LK Physik 12/2 - Sporenberg Datum: 28.03.2011 1.Aufgabe: I. Eine flache Spule (n 500, b 5 cm, l 7 cm, R 280 Ω) wird mit v 4 mm in der Abbildung aus der Lage I durch das scharf begrenzte Magnetfeld

Mehr

Theoretische Physik 4 - Blatt 1

Theoretische Physik 4 - Blatt 1 Theoretische Physik 4 - Blatt 1 Christopher Bronner, Frank Essenberger FU Berlin 21.Oktober.2006 Inhaltsverzeichnis 1 Compton-Effekt 1 2 Bohrsches Atommodell 2 2.1 Effektives Potential..........................

Mehr

Wiederholung Physik I - Mechanik

Wiederholung Physik I - Mechanik Universität Siegen Wintersemester 2011/12 Naturwissenschaftlich-Technische Fakultät Prof. Dr. M. Risse, M. Niechciol Department Physik 9. Übungsblatt zur Vorlesung Physik II für Elektrotechnik-Ingenieure

Mehr

1. Klausur in K2 am

1. Klausur in K2 am Name: Punkte: Note: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Klausur in K am. 3. 0 Achte auf die Darstellung und vergiss nicht: Geg., Ges., Ansatz, Formeln, Einheiten, Rundung...! Angaben:

Mehr

Lösung VIII Veröentlicht:

Lösung VIII Veröentlicht: 1 Impulse and Momentum Bei einem Crash-Test kollidiert ein Auto der Masse 2kg mit einer Wand. Die Anfangs- und Endgeschwindigkeit des Autos sind jeweils v = (- 2 m/ s) e x und v f = (6 m/ s) e x. Die Kollision

Mehr

Physik GK ph1, 2. Kursarbeit Elektromagnetismus Lösung =10V ein Strom von =2mA. Berechne R 0.

Physik GK ph1, 2. Kursarbeit Elektromagnetismus Lösung =10V ein Strom von =2mA. Berechne R 0. Physik GK ph,. Kursarbeit Elektromagnetismus Lösung.04.05 Aufgabe : Stromkreise / Ohmsches Gesetz. Durch einen Widerstand R 0 fließt bei einer Spannung von U 0 =0V ein Strom von I 0 =ma. Berechne R 0.

Mehr

Schriftliche Vordiplomprüfung Physik

Schriftliche Vordiplomprüfung Physik Schriftliche Vordiplomprüfung Physik Prof. T. Esslinger / Prof. R. Monnier Dated: Mittwoch, 17. September 2003, 9:00 12:00 Uhr) Aufgaben I. ELEKTRON IM MAGNETFELD Ein Elektron Ladung e, Masse m) bewegt

Mehr

Vordiplomsklausur in Physik Dienstag, 27. September 2005, :00 Uhr für die Studiengänge: EST, Vt, Wiing, GBEÖ, KST, GKB, Met, Wewi, UST

Vordiplomsklausur in Physik Dienstag, 27. September 2005, :00 Uhr für die Studiengänge: EST, Vt, Wiing, GBEÖ, KST, GKB, Met, Wewi, UST Institut für Physik und Physikalische Technologien 27.09.2005 der TU Clausthal Prof. Dr. W. Daum Vordiplomsklausur in Physik Dienstag, 27. September 2005, 09.00-12:00 Uhr für die Studiengänge: EST, Vt,

Mehr

Klausur zur Experimentalphysik I für Geowissenschaftler und Geoökologen (Prof. Philipp Richter)

Klausur zur Experimentalphysik I für Geowissenschaftler und Geoökologen (Prof. Philipp Richter) Übungsgruppenleiter: Universität Potsdam Institut für Physik und Astronomie 14.02.2012 Klausur zur Experimentalphysik I für Geowissenschaftler und Geoökologen (Prof. Philipp Richter) Gesamtpunktzahl: 52

Mehr

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t.

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t. Formelsammlung Physik Mechanik. Kinematik und Kräfte Kinematik Erstes Newtonsches Axiom (Axio/Reaxio) F axio = F reaxio Zweites Newtonsches Axiom Translationsbewegungen Konstante Beschleunigung F = m a

Mehr

Das Magnetfeld. Das elektrische Feld

Das Magnetfeld. Das elektrische Feld Seite 1 von 5 Magnetisches und elektrisches Feld Das Magnetfeld beschreibt Eigenschaften der Umgebung eines Magneten. Auch bewegte Ladungen rufen Magnetfelder hervor. Mithilfe von Feldlinienbilder können

Mehr

Physik 1 für Chemiker und Biologen 7. Vorlesung

Physik 1 für Chemiker und Biologen 7. Vorlesung Physik 1 für Chemiker und Biologen 7. Vorlesung 10.12.2018 https://xkcd.com/1438/ Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de Heute: - Wiederholung: Impuls, Stöße - Raketengleichung - Drehbewegungen Wiederholungs-/Einstiegsfrage:

Mehr

Schriftliche Vordiplomprüfung Physik Wiederholungsprüfung

Schriftliche Vordiplomprüfung Physik Wiederholungsprüfung Schriftliche Vordiplomprüfung Physik Wiederholungsprüfung Prof. T. Esslinger (Dated: Mittwoch, 5. Februar 4, 9: Uhr) Aufgaben I. IONEN IN EINER FALLE Eine Falle für elektrisch geladene Ionen wird durch

Mehr

Übungsblatt 06. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 06. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 06 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de) 24. 1. 2005 31. 1. 2005 1 Aufgaben 1. Berechnen Sie für das Vektorpotential

Mehr

9. Spezielle Relativitätstheorie

9. Spezielle Relativitätstheorie 7. Relativistischer Impuls 9. Spezielle Relativitätstheorie (SRT) Inhalt 9. Spezielle Relativitätstheorie 9.1 Galilei-Transformation 9.2 Lorentz-Transformation 9.3 Transformation von Geschwindigkeiten

Mehr

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen!

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen! Physik 1 / Klausur Anfang SS 0 Heift / Kurtz Name: Vorname: Matrikel-Nr.: Unterschrift: Formeln siehe letzte Rückseite! Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen!

Mehr

Experimentalphysik 1. Aufgabenblatt 2

Experimentalphysik 1. Aufgabenblatt 2 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 2017/18 Aufgabenblatt 2 Annika Altwein Maximilian Ries Inhaltsverzeichnis 1 Aufgabe 1(zentraler Stoß elastisch, unelastisch)

Mehr

Klausur zur Vorlesung Physik I für Chemiker (WS 2017/18)

Klausur zur Vorlesung Physik I für Chemiker (WS 2017/18) Universität Siegen Wintersemester 2017/18 Naturwissenschaftlich-Technische Fakultät Department Physik Klausur zur Vorlesung Physik I für Chemiker (WS 2017/18) Datum: Dienstag, 13.02.2017, 10:00-12:00 Prof.

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

Grundkurs Physik (2ph2) Klausur

Grundkurs Physik (2ph2) Klausur 1. Ernest O. Lawrence entwickelte in den Jahren 1929-1931 den ersten ringförmigen Teilchenbeschleuniger, das Zyklotron. Dieses Zyklotron konnte Protonen auf eine kinetische Energie von 80 kev beschleunigen.

Mehr

Aufgabenübersicht für tägliche Übungen mit zugehörigen Klassenstufen:

Aufgabenübersicht für tägliche Übungen mit zugehörigen Klassenstufen: Aufgabenübersicht für tägliche Übungen mit zugehörigen Klassenstufen: Größen mit Formelzeichen, Einheiten und Umrechnungen: Bsp.: 520 mm : 10 = 52 cm Bsp.: 120 h : 24 = 5 d 6 Weg FZ: s Einheiten: mm; cm;

Mehr

Übungsblatt 01 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt)

Übungsblatt 01 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Übungsblatt 0 PHYS300 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de) 0. 0. 003 oder 7. 0. 003 Aufgaben. Nehmen Sie an, dass eine Ladung vom Betrage

Mehr

Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides?

Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Experimentelle Überprüfung der Energieniveaus im Bohr schen Atommodell Absorbierte und emittierte Photonen hν = E m E n Stationäre Elektronenbahnen

Mehr

Spezialfall m 1 = m 2 und v 2 = 0

Spezialfall m 1 = m 2 und v 2 = 0 Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m ( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +

Mehr

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen!

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen! Physik / Klausur Anfang WS /3 Heift / Kurtz Name: Vorname: Matrikel-Nr: Unterschrift: Formeln siehe letzte Rückseite! Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen!

Mehr

Doppeljahrgangstufe 9/10 Gestaltung Klasse 10 ab Schuljahr 2018/19

Doppeljahrgangstufe 9/10 Gestaltung Klasse 10 ab Schuljahr 2018/19 Doppeljahrgangstufe 9/10 Gestaltung Klasse 10 ab Schuljahr 2018/19 17C202401 30.11.2017 LDS (OS Wildau) 17C202601 07.12.2017 CB (Niedersorb. Gym.) Rahmenlehrplan alt: P6 Gleichförmige Bewegungen P1 Kräfte

Mehr

Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 60

Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 60 D-MATH/D-PHYS Prof. W. Fetscher Studienjahr HS07 - FS08 ETH Zürich Testklausur, Frühjahr 2008, Physik I+II Füllen Sie als erstes den untenstehenden Kopf mit Name und Legi-Nummer aus. Beachten Sie: Nicht

Mehr

ǫ 0 = µ 0 = 4π 10 7 kg m c = m s h = m 2 kg e = C Aufgabenbereich Professor Dr. O. Dopfer Tobias F.

ǫ 0 = µ 0 = 4π 10 7 kg m c = m s h = m 2 kg e = C Aufgabenbereich Professor Dr. O. Dopfer Tobias F. Professor Dr. O. Dopfer Tobias F. Bartsch, MA Technische Universität Berlin Name Vorname ET (Dipl.) ET (Bach.) TI Studiengang WI (Dipl.) WI (Bach.) Platznummer Tutor Aufgabenbereich A Erhaltungssätze und

Mehr

Übungsblatt 12 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik

Übungsblatt 12 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik Übungsblatt 2 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik.7.28 Aufgaben. Ein Transformator mit Primärwindungen und 3 Sekundärwindungen wird mit einem Wechselstrom

Mehr

Vorlesung Theoretische Chemie I

Vorlesung Theoretische Chemie I Institut für Physikalische and Theoretische Chemie, Goethe-Universität, Frankfurt am Main 20. Dezember 2013 Teil I Energieeinheiten Joule E kin = 1 2 mv 2 E pot = mgh [E] = kg m2 s 2 = J Verwendung: Energie/Arbeit

Mehr

Prüfungsklausur - Lösung

Prüfungsklausur - Lösung Prof. G. Dissertori Physik I ETH Zürich, D-PHYS Durchführung: 08. Februar 2012 Bearbeitungszeit: 180min Prüfungsklausur - Lösung Aufgabe 1: Triff den Apfel! (8 Punkte) Wir wählen den Ursprung des Koordinatensystems

Mehr

Kraft, Hall-Effekt, Materie im magnetischen Feld, Flussdichte, Energie

Kraft, Hall-Effekt, Materie im magnetischen Feld, Flussdichte, Energie Aufgaben 12 Magnetisches Feld Kraft, Hall-Effekt, Materie im magnetischen Feld, Flussdichte, Energie Lernziele - aus einem Experiment neue Erkenntnisse gewinnen können. - sich aus dem Studium eines schriftlichen

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2015-1 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Gesamtpunktzahl: Ergebnis: Bemerkungen: Elektromagnetische

Mehr

15.Magnetostatik, 16. Induktionsgesetz

15.Magnetostatik, 16. Induktionsgesetz Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v

Mehr

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an.

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an. 1. Geschwindigkeiten (8 Punkte) Ein Schwimmer, der sich mit konstanter Geschwindigkeit v s = 1.25 m/s im Wasser vorwärts bewegen kann, möchte einen mit Geschwindigkeit v f = 0.75 m/s fließenden Fluß der

Mehr

Grundlagen der Physik 1 Lösung zu Übungsblatt 4

Grundlagen der Physik 1 Lösung zu Übungsblatt 4 Grundlagen der Physik Lösung zu Übungsblatt 4 Daniel Weiss 3. November 9 Inhaltsverzeichnis Aufgabe - Elektron auf Kreisbahn a) Geschwindigkeit des Elektrons.......................... b) Energie des Elektrons...............................

Mehr

Das magnetische Feld

Das magnetische Feld Das Magnetfeld wird durch Objekte erzeugt und wirkt gleichzeitig auf Objekte repräsentiert die Kraftwirkung aufgrund des physikalischen Phänomens Magnetismus ist gerichtet und wirkt vom Nordpol zum Südpol

Mehr

Physik 4, Übung 12, Prof. Förster

Physik 4, Übung 12, Prof. Förster Physik 4, Übung 12, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Federkraft: F 1 = -bx (b = 50 N/m) Gravitationskraft: F 2 = mg (g = 9,8 m/s 2 )

Federkraft: F 1 = -bx (b = 50 N/m) Gravitationskraft: F 2 = mg (g = 9,8 m/s 2 ) Aufgabe: Schwingung An eine Stahlfeder wird eine Kugel mit der Masse 500g gehängt. Federkraft: F 1 -b (b 50 N/m) Gravitationskraft: F mg (g 9,8 m/s ) m 500g F ma W 1 F( ) d W kin 1 mv b ( t + ϕ ) Acos(

Mehr

Aufgabenblatt zum Seminar 02 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 02 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 0 PHYS7057 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, (othmarmarti@uni-ulmde) 9 04 009 Aufgaben Berechnen Sie

Mehr

Vordiplomsklausur in Physik Mittwoch, 23. Februar 2005, :00 Uhr für den Studiengang: Mb, Inft, Geol, Ciw

Vordiplomsklausur in Physik Mittwoch, 23. Februar 2005, :00 Uhr für den Studiengang: Mb, Inft, Geol, Ciw Institut für Physik und Physikalische Technologien 23.02.2005 der TU Clausthal Prof. Dr. W. Daum Vordiplomsklausur in Physik Mittwoch, 23. Februar 2005, 09.00-11:00 Uhr für den Studiengang: Mb, Inft, Geol,

Mehr

Hochschule Düsseldorf University of Applied Sciences. 01. Dezember 2016 HSD. Physik. Impuls

Hochschule Düsseldorf University of Applied Sciences. 01. Dezember 2016 HSD. Physik. Impuls Physik Impuls Impuls Träge Masse in Bewegung Nach dem 1. Newton schen Gesetz fliegt ein kräftefreier Körper immer weiter gradeaus. Je größer die träge Masse desto größer setzt sie einer Beschleunigung

Mehr

Lösung III Veröentlicht:

Lösung III Veröentlicht: 1 Projektil Bewegung Lösung Ein Ball wird von dem Dach eines Gebäudes von 80 m mit einem Winkel von 80 zur Horizontalen und mit einer Anfangsgeschwindigkeit von 40 m/ s getreten. Sei diese Anfangsposition

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Elektronen im elektrischen Querfeld. Die nebenstehende Skizze

Mehr

Abschlussprüfung an Fachoberschulen im Schuljahr 2002/2003

Abschlussprüfung an Fachoberschulen im Schuljahr 2002/2003 Abschlussprüfung an Fachoberschulen im Schuljahr 00/00 Haupttermin: Nach- bzw. Wiederholtermin: 0.06.00 Fachrichtung: Technik Fach: Physik Prüfungsdauer: 10 Minuten Hilfsmittel: - Formelsammlung/Tafelwerk

Mehr

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

Planungsblatt Physik für die 6B

Planungsblatt Physik für die 6B Planungsblatt Physik für die 6B Woche 21 (von 21.01 bis 25.01) Hausaufgaben 1 Bis Donnerstag 24.01: Lerne die Mitschrift von Montag und voriger Woche! Bis Freitag 25.01: Lerne die Mitschrift von Dienstag

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

1 Drehimpuls und Drehmoment

1 Drehimpuls und Drehmoment 1 Drehimpuls und Drehmoment Die Rotationsbewegung spielt in der Natur von der Ebene der Elementarteilchen bis zu den Strukturen des Universums eine eine bedeutende Rolle. Einige Beispiele sind 1. Spin

Mehr

Ferienkurs der Experimentalphysik II Musterlösung Übung 3

Ferienkurs der Experimentalphysik II Musterlösung Übung 3 Ferienkurs der Experimentalphysik II Musterlösung Übung 3 Michael Mittermair 29. August 213 1 Aufgabe 1 Wie groß ist die Leistung, die von einem geladenen Teilchen mit der Ladung q abgestrahlt wird, das

Mehr

Vordiplomsklausur Physik

Vordiplomsklausur Physik Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 22.Februar 2006, 9:00-12:00 Uhr für die Studiengänge EST, Vt, Wiing, GBEÖ, KST, GKB, Met,

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

Physik 1 für Chemiker und Biologen 7. Vorlesung

Physik 1 für Chemiker und Biologen 7. Vorlesung Physik 1 für Chemiker und Biologen 7. Vorlesung 05.12.2016 http://xkcd.com/1248/ Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de Heute: - Wiederholung: Impuls, Stöße - Raketengleichung - Drehbewegungen 05.12.16

Mehr

Physikunterricht 11. Jahrgang P. HEINECKE.

Physikunterricht 11. Jahrgang P. HEINECKE. Physikunterricht 11. Jahrgang P. HEINECKE Hannover, Juli 2008 Inhaltsverzeichnis 1 Kinematik 3 1.1 Gleichförmige Bewegung.................................. 3 1.2 Gleichmäßig

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein korrigierter Übungszettel aus dem Modul physik411. Dieser Übungszettel wurde von einem Tutor korrigiert. Dies bedeutet jedoch nicht, dass es sich um eine Musterlösung handelt.

Mehr

Arbeit = Kraft Weg ; W = F s ; 1 Joule = 1 Newton Meter ; 1 J = 1 N m

Arbeit = Kraft Weg ; W = F s ; 1 Joule = 1 Newton Meter ; 1 J = 1 N m GRATIS-Übungsdokument Gymnasium Klasse 8 Physik Thema: Mechanik, Wärmelehre, Elektrizitätslehre CATLUX de Energie Arbeit = Kraft Weg ; W = F s ; 1 Joule = 1 Newton Meter ; 1 J = 1 N m Energie ist gespeicherte

Mehr

Hilfsmittel: Formeln und Tafeln (handschriftlich ergänzt, keine Zusatzblätter) Taschenrechner Geodreieck Nuklidkarte im A4-Format

Hilfsmittel: Formeln und Tafeln (handschriftlich ergänzt, keine Zusatzblätter) Taschenrechner Geodreieck Nuklidkarte im A4-Format KANTONSSCHULE WIL Maturaprüfungen 2011 Physik Klasse 4eNP Dr. Matthias Heidrich Schriftliche Prüfung Zeit: 3 Stunden Hilfsmittel: Formeln und Tafeln (handschriftlich ergänzt, keine Zusatzblätter) Taschenrechner

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Ein Kondensator besteht aus zwei horizontal angeordneten, quadratischen

Mehr

1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh

1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh 3 Lösungen 1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh 1 (a) Nach dem Aufprall m u 1 = p = m v 1 m u 1 = m 2gh 1 e 1 = 12664Ns e 1 F = p t (b) p 2 =

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #42 am 11.07.2007 Vladimir Dyakonov Resonanz Damit vom Sender effektiv Energie abgestrahlt werden

Mehr

T2 Quantenmechanik Lösungen 2

T2 Quantenmechanik Lösungen 2 T2 Quantenmechanik Lösungen 2 LMU München, WS 17/18 2.1. Lichtelektrischer Effekt Prof. D. Lüst / Dr. A. Schmidt-May version: 12. 11. Ultraviolettes Licht der Wellenlänge 1 falle auf eine Metalloberfläche,

Mehr

Examensaufgaben RELATIVITÄTSTHEORIE

Examensaufgaben RELATIVITÄTSTHEORIE Examensaufgaben RELATIVITÄTSTHEORIE Aufgabe 1 (Juni 2006) Ein Proton besitzt eine Gesamtenergie von 1800 MeV. a) Wie groß ist seine dynamische Masse? b) Berechne seine Geschwindigkeit in km/s. c) Welcher

Mehr

Lösung für Blatt 7,,Elektrodynamik

Lösung für Blatt 7,,Elektrodynamik Institut für Theoretische Physik, Universität Zürich Lösung für Blatt 7,,Elektrodynamik Prof. Dr. T. Gehrmann Blatt 7 FS 213 Aufgabe 1 Induktion im Magnetfeld Nach dem Faraday schen Induktionsgesetz induziert

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 214/15 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Daniel Moseguí González, Pascal Neibecker, Nitin

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Klausur Physik I für Chemiker

Klausur Physik I für Chemiker Universität Siegen Wintersemester 2017/18 Naturwissenschaftlich-Technische Fakultät Department Physik Klausur Physik I für Chemiker Prof. Dr. M. Agio Lösung zu Aufgabe 1: Schiefe Ebene i) Siehe Zeichnung

Mehr

O. Sternal, V. Hankele. 4. Magnetismus

O. Sternal, V. Hankele. 4. Magnetismus 4. Magnetismus Magnetfelder N S Rotationsachse Eigenschaften von Magneten und Magnetfeldern Ein Magnet hat Nord- und Südpol Ungleichnamige Pole ziehen sich an, gleichnamige Pole stoßen sich ab. Es gibt

Mehr