Übungsblatt 10 Musterlösung

Größe: px
Ab Seite anzeigen:

Download "Übungsblatt 10 Musterlösung"

Transkript

1 Übungsblatt 0 Musterlösung Numerik gewöhnlicher Differentialgleichungen MA SS6 Aufgabe 45 Fehlerkonstante von MSV Betrachten Sie ein allgemeines lineares q Schrittverfahren α q j y i+ j = h β q j f t i+ j y i+ j. a Hat das Verfahren die Konsistenzordnung p so gilt für den Konsistenzfehler et i h y i... y i q+ = C p+ h p+ y p+ t i+ q +O p+2 sofern für die exakte Lösung yt C p+2 [t 0 T] gilt. Bestimmen Sie die Konstante C p+ in Abhängigkeit der Koeffizienten α j und β j. b Berechnen Sie für das folgende Verfahren die Ordnung p und die Konstante C p+. y i+ = y i +h 3 f i f i + 3 f i+. Lösung 45 Fehlerkonstante von MSV a Für den lokalen Fehler gilt mit der exakten Lösung yt und lokalen AWP mit y t l = ft l yt l für l i+ yt l = y l für l i e t i hy i...y i q+ = yti+ y i+ = yt i+ β q j ft i+ j yt i+ j α q = yt i+ α q β q j y t i+ j = yt i+ q +qh α q = yt i+ q +qh α q α q j y i+ j α q j yt i+ j β q j y t i+ q +q jh α q j yt i+ q +q jh β k y t i+ q +kh α k yt i+ q +kh. Für die Taylorentwicklung von yt+kh gilt: yt+kh = y t+kh = p+ p y l t kh l +O p+2 l= y l+ p+ t kh l +O p+ = l yl t kh l +O p+.

2 Einsetzen dieser Entwicklungen in die Formel für e liefert mit c l := yl t i+ q : p+ e = c l qh l α q p+ p+ β k lc l kh l α k c l kh +O l p+2 = p+ p+ α k c l kh h l β k lc l kh +O l p+2 α q p+ = α k k l lβ k k l h l y l t i+ q +O p+2. α q }{{} =:C l Da das Verfahren nach Aufgabenstellung Ordnung p hat fallen alle Terme mit h l l p weg d.h. C l = 0 für alle l p. Übrig bleibt dann e = α k k p+ p+β k k p h p+ y p+ t i+ q +O p+2. α q p+! }{{} =C p+ b Für das Verfahren ist die Schrittzahl q = 2. Die Koeffizienten lauten Nun haben wir α 2 = α = 0 α 0 = β 2 = 3 β = 4 3 β 0 = 3. C 0 = 0! α0 +α +α 2 0 = = 0 C =! α +2α 2 β 0 +β +β 2 = 2 2 = 0 C 2 = 2! α +4α 2 2β +2β 2 = = 0 C 3 = 3! α +8α 2 3β +4β 2 = = 0 C 4 = 4! α +6α 2 4β +8β 2 = = 0 C 5 = 5! α +32α 2 5β +6β 2 = = = 4 3. Somit besitzt das Verfahren die Ordnung p = 4 mit der Fehlerkonstanten C 5 = 4 3. Aufgabe 46 Konsistenzordnung Beweisen Sie dass die Definition der Konsistenzordnung für lineare Mehrschrittverfahren mit q = mit der Definition der Konsistenzordnung für die Einschrittverfahren übereinstimmt. Lösung 46 Konsistenzordnung Aufgabe zum Selbststudium. 2

3 Aufgabe 47 Existenz von Mehrschrittverfahren Betrachten Sie die Determinante der Bedingungsgleichungen: α j j l = l β j j l für l = 0...p die zur Bestimmung der Konsistenzordnung eines linearen q-schrittverfahren herangezogen werden können. Beweisen Sie damit folgende Aussagen: a Es existiert kein q-schrittverfahren der Ordnung 2q +. b Es existiert genau ein q-schrittverfahren der Ordnung 2q mit α q =. c Es existiert genau ein explizites q-schrittverfahren der Ordnung 2q mit α q =. Lösung 47 Existenz von Mehrschrittverfahren Wir betrachten die Bedingungsgleichung für ein Verfahren der Ordnung p. Als Matrix geschrieben lautet {}} { =:A p R { p+ 2q+2 α 0 }} { α q α q q. 0 8 q q 2 α q = q q 3 β 0 β β 0 2 p q p 0 p p2 p pq p 2. β q Wir treffen nun Aussagen über Matrizen dieser Art zu treffen. Betrachtet man die folgende Interpolationsaufgabe: Finde π P 2q+ so dass =:x πx i = c i und π x i = ĉ i für i = 0...q für gegebene c i ĉ i und paarweise verschiedene x i. So stellt man fest dass genau ein Polynom π = 2q+ γ jx j mit der gegebenen Eigenschaft existiert. Wir beweisen zunächst die Eindeutigkeit. Seien also π und π 2 gegeben. Für die Differenz π := π π 2 gilt dann πx i = 0 und π x i = 0 für i = 0...q. 3

4 Somit kann man π darstellen als πx = Qx Grad 2q+2 {}}{ q x x i 2 wobei Qx ebenfalls ein Polynom ist. Da aber π höchstens Grad 2q + haben kann folgt sofortdass Qx = 0 und damint auch π = 0. Existenz Wir betrachten den Operator L : R 2q+2 R 2q+2 der durch γ := γ 0 γ γ 2q+ c 0 c...c q ĉ 0 ĉ...ĉ q =: c gegeben ist. Offensichtlich ist L linear und wie wir gerade gesehen haben auch injektiv. Da die Dimensionen endlich sind und übereinstimmen folgt sofort auch die Surjektivität. Das heißt zu jedem Vektor c existiert mindestens ein Vektor γ somit ist auch die Existenz von π bewiesen. Bemerkung: Man nennt dieses eindeutig bestimmte Polynom π Hermitesches Interpolationspolynom zu den Punkten x i. Wählt man x i = i für i = 0...q so ist c i = 2q+ γ j i j = Lγ i und ĉ i = 2q+ γ j ji j = Lγ q++i für i = 0...q. Die Matrixdarstellung von L ist: q q q L = q 3 q 4 q 2q q q +2 2q q 3q 2 4q 3 2q +q 2q Da L bijektiv ist hat diese Matrix vollen Rang außerdem ist L = A 2q+ damit hat auch die Matrix A 2q+ vollen Rang. zu a Wir suchen x = α 0 α α 2...α q β 0 β β 2... β q so dass A 2q+ x = 0. Da A 2q+ vollen Rang hat existiert nur die triviale Lösung α 0 = α = α 2 =... = α q = β 0 = β = β 2 =... = β q = 0. Dies ergibt jedoch kein s-schrittverfahren. 4

5 zu b Wir suchen x so dass A 2q x = 0. Da A 2q+ R 2q+2 2q+2 den Rang 2q +2 hat hat die Matrix A 2q R 2q+ 2q+2 den Rang 2q +. Alle Lösungen liegen also in einem -dimensionalen Unterraum von R 2q+2. Wir müssen noch zeigen dass für eine nichttriviale Lösung x mit α q 0 existiert. Dann gibt es nämlich genau eine Lösung mit α q =. Sei also α 0...α q β 0...β q eine nichttriviale Lösung von mit α q = 0. Somit gilt α i i l = l β i i l für l = 0...2q. Insbesondere gilt damit für alle Polynome p P 2q dass α i pi = β i p i. Wählt man speziell P 2q 2 {}}{ px := x i 2 so gilt pi = 0 = p i für i = 0...q. Insgesamt folgt 0 = β q p s und da p s 0 gilt β q = 0. Man erkennt also dass die Bedingungsgleichung für ein Verfahren der Stufe q mit Ordnung 2q erfüllt ist. Nach Aufgabenteil a kann die so bestimmte Lösung nur trivial sein im Widerspruch zur Annahme. zu c Hier wird x gesucht mit A 2 x = 0. Man bemerkt dass A 2 R 2q 2q+2 den Rang 2q hat und somit alle Lösungen x in einem 2-dimensionalen Unterraum von R 2q+2 liegen. Zu zeigen ist dass es eine nichttriviale Lösung gibt mit α q 0 β q. Dann kann man α q und β q als Parametrisierung des Lösungsraumes verwenden und es existiert genau eine Lösung mit α q = β q = 0. Offenbar ist die Lösung aus Aufgabenteil b auch hier Lösung und mit der gleichen Rechnung erhält man dass dabei auch β q 0. Daraus folgt die Existenz einer Lösung von A 2 x = 0 mit α q 0 β q. 5

6 Aufgabe 48 BDF-Verfahren Aufgaben zum Selbststudium Berechnen Sie die Koeffizienten des BDF-Verfahrens für q = 3. Lösung 48 BDF-Verfahren Die Lagrange Interpolationspolynome L j j = mit lauten L 0 t = L 0 t i+ = L 0 t i = 0 L 0 t i = 0 L 0 t i 2 = 0 L t i+ = 0 L t i = L t i = 0 L t i 2 = 0 L 2 t i+ = 0 L 2 t i = 0 L 2 t i = L 2 t i 2 = 0 L 3 t i+ = 0 L 3 t i = 0 L 3 t i = 0 L 3 t i 2 = t t i t t i t t i 2 t i+ t i t i+ t i t i+ t i 2 = t t it t i t t i 2 6h 3 L t = t t i+t t i t t i 2 = t t i+t t i t t i 2 t i t i+ t i t i t i t i 2 2h 3 t t i+ t t i t t i 2 L 2 t = t i t i+ t i t i t i t i 2 = t t i+t t i t t i 2 2h 3 L 3 t = t t i+ t t i t t i t i 2 t i+ t i 2 t i t i 2 t i = t t i+t t i t t i 6h 3 Die Ableitungen und die Auswertung ergeben L 0t = t t it t i +t t i t t i 2 +t t i t t i 2 6h 3 L 0t i+ = 6h2 +3h 2 +2h 2 6h 3 = 6h L t = t t i+t t i +t t i+ t t i 2 +t t i t t i 2 2h 3 L t i+ = 6h2 2h 3 = 3 h L 2t = t t i+t t i +t t i+ t t i 2 +t t i t t i 2 2h 3 L 2t i+ = 3h2 2h 3 = 3 2h L 3t = t t i+t t i +t t i+ t t i +t t i t t i 6h 3 L 3t i+ = 2h2 6h 3 = 3h. Insgesamt ergibt sich das Verfahren 6 y i+ 3y i y i 3 y i 2 = hf i+ 6

7 oder umgeschrieben y i+ = 8 y i 9 y i + 2 y i 2 +h 6 f i+. Aufgabe 49 BDF-Verfahren mit Newton Betrachten Sie das AWP y = fty yt 0 = y 0 mit y R n und ein q-schritt BDF- Verfahren: y i+ = α q j y i+ j +hβ q f t i+ y i+. Die Näherung y i+ soll nicht mit Hilfe einer Fixpunktiteration sondern mit dem Newton Verfahren berechnet werden. Zeigen Sie dass dann im k-ten Iterationsschritt ein Gleichungssystem mit der Matrix Id hβ q D y f t i+ y k i+ gelöst werden muss wobei Dy f die Jacobi-Matrix der Funktion f bezeichnet. Geben Sie dieses Gleichungssystem an. Lösung 49 BDF Verfahren mit Newton Für das BDF Verfahren mit Schrittzahl q y i+ = α q j y i+ j +hβ q f t i+ y i+ lässt sich der Wert y i+ als Nullstelle der Funktion F i y i+ mit F i y i+ = y i+ + α q j y i+ j hβ q f t i+ y i+ berechnen. Der k-te Schritt des Newton Verfahrens lautet dann y k+ i+ = Fi yk i+ y k y i+ F i y k i+ i+. mit der Jacobi Matrix F i y k f y i+ = Id hβq y k i+ y i+. 7

Übungsblatt 1 Musterlösung

Übungsblatt 1 Musterlösung Numerik gewöhnlicher Differentialgleichungen MA234 - SS6 Übungsblatt Musterlösung Aufgabe (Interpolationspolynom) a) Bestimmen Sie die Hilfspolynome L i, i =,,2, für x =, x = 2 und x 2 = 3 nach der Formel

Mehr

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b.

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b. NumaMB F14 Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Klassische Polynom Interpolation.

Klassische Polynom Interpolation. Klassische Polynom Interpolation. Bestimme ein Polynom (höchstens) n ten Grades p n (x) = a 0 + a 1 x + a 2 x 2 +... + a n x n, das die gegebenen Daten interpoliert, d.h. p n (x i ) = f i, 0 i n. Erster

Mehr

3. Lineare Mehrschrittverfahren 3.1 Begriffe

3. Lineare Mehrschrittverfahren 3.1 Begriffe 3.1 Begriffe Verfahren der Bauart k α j y n+j = h k β j f n+j, wobei f n+j := f (t n+j, y n+j ), (Mehr-S) heißen lineare Mehrschrittverfahren, genauer lineare k-schritt-verfahren. O.B.d.A. α k = 1 und

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

6 Polynominterpolation

6 Polynominterpolation Vorlesungsskript HM-Numerik (SS 2014): Kapitel 6 Version: 1 Juli 2014 6 Polynominterpolation Gegeben: Wertepaare { (x i,f i ) R 2 i = 0,,n } Gesucht: Einfache Funktion g : R R mit g(x i ) = f i i {0,1,,n}

Mehr

8 Interpolation. 8.1 Problemstellung. Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen. x 0 < x 1 <... < x n.

8 Interpolation. 8.1 Problemstellung. Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen. x 0 < x 1 <... < x n. 8 Interpolation 81 Problemstellung Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen x 0 < x 1 < < x n Eingabedaten: (x 0, f 0 ),(x 1, f 1 ),,(x n, f n ) Gegebene Daten (x j, f j ) Analysis

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016 Verständnisfragen-Teil ( Punkte) Jeder der Verständnisfragenblöcke besteht aus Verständnisfragen. Werden alle Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block Punkte.

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4.1 Umkehrbarkeit Man betrachte die durch g(s, t) = (e s cos(t), e s sin(t)) gegebene Funktion g : R 2 R 2. Zeigen Sie,

Mehr

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,

Mehr

Grundlagen der Mathematik 1

Grundlagen der Mathematik 1 Fachbereich Mathematik Sommersemester 2010, Blatt 14 Thomas Markwig Stefan Steidel Grundlagen der Mathematik 1 Die Lösungen müssen nicht eingereicht werden und werden auch nicht korrigiert. Die Aufgaben

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte

Mehr

Lösung zu Serie Zeige, dass das Minimalpolynom jedes Jordanblocks gleich seinem charakteristischen

Lösung zu Serie Zeige, dass das Minimalpolynom jedes Jordanblocks gleich seinem charakteristischen Lineare Algebra D-MATH, HS 4 Prof. Richard Pink Lösung zu Serie. Zeige, dass das Minimalpolynom jedes Jordanblocks gleich seinem charakteristischen Polynom ist. Lösung: Das charakteristische Polynom eines

Mehr

[5], [0] v 4 = + λ 3

[5], [0] v 4 = + λ 3 Aufgabe 9. Basen von Untervektorräumen. Bestimmen Sie Basen von den folgenden Untervektorräumen U K des K :. K = R und U R = span,,,,,.. K = C und U C = span + i, 6, i. i i + 0. K = Z/7Z und U Z/7Z = span

Mehr

Lineare Algebra I Lösungsvorschlag

Lineare Algebra I Lösungsvorschlag Aufgabe Lineare Algebra I Lösungsvorschlag Wir bezeichnen mit a, a 2, a 3 Q 4 die Spalten der Matrix A. Es ist 7 a + 2a 2 = 7 4 = 7a 3, und wir sehen im l A = a, a 2, a 3 = a, a 2. Da die Vektoren a und

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie D-MAVT Lineare Algebra I HS 7 Prof. Dr. N. Hungerbühler Lösungen Serie 4: Ferienserie . Finden Sie ein Erzeugendensystem des Lösungsraums L R 5 des Systems x + x x 3 + 3x 4 x 5 = 3x x + 4x 3 x 4 + 5x 5

Mehr

Mathematik für Anwender I. Klausur

Mathematik für Anwender I. Klausur Fachbereich Mathematik/Informatik 27. März 2012 Prof. Dr. H. Brenner Mathematik für Anwender I Klausur Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben werden darf.

Mehr

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt.

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt. Polynome Definition 1. Ein Polynom f über einem Körper K mit der Unbestimmten x ist eine formale Summe f(x) = i 0 a i x i, (1) wobei nur endlich viele der Koeffizienten a i K von Null verschieden sind.

Mehr

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2. MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw

Mehr

Vorbereitung für die Prüfung Mathematik II für Informatiker

Vorbereitung für die Prüfung Mathematik II für Informatiker Technische Universität Ilmenau SS 2010 Institut für Mathematik Inf Prof. Dr. Michael Stiebitz Vorbereitung für die Prüfung Mathematik II für Informatiker 1 Lineare Algebra Aufgabe 1 Schauen Sie sich die

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Kapitel 11 Eigenwerte und Eigenvektoren

Kapitel 11 Eigenwerte und Eigenvektoren Kapitel Eigenwerte und Eigenvektoren. Problem der Diagonalisierbarkeit Es sei wieder K gleich R oder. Eine n n)-matrix A mit Koeffizienten aus K wird als diagonalisierbar bezeichnet, wenn es eine invertierbare

Mehr

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Winter 6 Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT. Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in das entsprechende

Mehr

( 1) k k 2. k=0. n n(n + 1) ( 1) k k 2 + ( 1) n+1 (n + 1) 2. k=0. + ( 1) n+1 (n + 1) 2 n(n + 1) + (n + 1) 2 )

( 1) k k 2. k=0. n n(n + 1) ( 1) k k 2 + ( 1) n+1 (n + 1) 2. k=0. + ( 1) n+1 (n + 1) 2 n(n + 1) + (n + 1) 2 ) Musterlösung zum 9. Blatt 8. Aufgabe: Sei n eine natürliche Zahl. Vermuten Sie eine Formel für ( ) k k und beweisen Sie diese durch vollständige Induktion. Lösung: Für jede natürliche Zahl n sei a n =

Mehr

5 Randwertprobleme. y = f(t, y, y ) für t J, (5.2a) y(t 0 ) = y 0, y(t) = y T (5.2b) zu gegebener Funktion f und Werten y 0, y T.

5 Randwertprobleme. y = f(t, y, y ) für t J, (5.2a) y(t 0 ) = y 0, y(t) = y T (5.2b) zu gegebener Funktion f und Werten y 0, y T. 5 Randwertprobleme Bei den bisher betrachteten Problemen handelte es sich um Anfangswertprobleme. In der Praxis treten, insbesondere bei Differentialgleichungen höherer Ordnung, auch Randwertprobleme auf.

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eine Fragestellung, die uns im weiteren beschäftigen wird, ist das Finden eines möglichst einfachen Repräsentanten aus jeder Äquivalenzklasse

Mehr

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 25 1. Wie lautet die charakteristische Gleichung der Differentialgleichung y + 2y + y = 0? (a) λ 3 + 2λ + 1 = 0 (b) λ 3 + 2λ = 0 (c)

Mehr

TU Ilmenau Institut für Mathematik Übungsaufgaben zum Lehrgebiet Numerische Mathematik III Numerik gewöhnlicher Differentialgleichungen

TU Ilmenau Institut für Mathematik Übungsaufgaben zum Lehrgebiet Numerische Mathematik III Numerik gewöhnlicher Differentialgleichungen TU Ilmenau Institut für Mathematik Übungsaufgaben zum Lehrgebiet Numerische Mathematik III Numerik gewöhnlicher Differentialgleichungen Datei: NM34.TEX Serie 6 Mehrschrittverfahren (MSV) 1. Die allgemeine

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi Funktionentheorie, Woche 7 Eigenschaften holomorpher Funktionen 7.1 Ganze Funktionen Definition 7.1 Eine Funktion f : C C, die holomorph ist auf C, nennt man eine ganze Funktion. Bemerkung 7.1.1 Als Folge

Mehr

Lineare Abbildungen und Orthonormalsysteme

Lineare Abbildungen und Orthonormalsysteme KAPITEL Lineare Abbildungen und Orthonormalsysteme. Lineare Abbildungen und Koordinatendarstellungen.. Lineare Abbildungen und ihre Basisdarstellung. Seien V, W Vektorraume uber R. Mit einer Abbildung

Mehr

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt.

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. () In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. a) Es seien A und B beliebige n n-matrizen mit Einträgen in einem Körper K.

Mehr

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten!

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten! Fakultät für Mathematik Institut für Algebra und Geometrie Prof. Dr. Martin Henk, Dr. Michael Höding Modulprüfung Mathematik III Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik,

Mehr

Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden.

Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden. Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am 20.6.2015 um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden. Prof. Dr. Wolfgang Arendt Manuel Bernhard Sommersemester 2015 Achten

Mehr

10 Untermannigfaltigkeiten

10 Untermannigfaltigkeiten 10. Untermannigfaltigkeiten 1 10 Untermannigfaltigkeiten Definition. Eine Menge M R n heißt k-dimensionale Untermannigfaltigkeit des R n, 1 k n, falls es zu jedem a M eine offene Umgebung U R n von a und

Mehr

8 Eigenwerttheorie I 8. EIGENWERTTHEORIE I 139. Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet:

8 Eigenwerttheorie I 8. EIGENWERTTHEORIE I 139. Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet: 8. EIGENWERTTHEORIE I 139 8 Eigenwerttheorie I Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet: K[x] = Abb[N, K] = {P ; P = a n x n + a n 1 x n 1 + + a 0 ; a

Mehr

Lineare Algebra I für Mathematiker Lösungen

Lineare Algebra I für Mathematiker Lösungen Lineare Algebra I für Mathematiker Lösungen Anonymous 24. April 2016 Aufgabe 1 Beantworten Sie bitte die folgenden Fragen. Jeder Vektorraum hat mindestens ein Element. Q ist ein R-Vektorraum (mit der Multiplikation

Mehr

= 11 ± 5, also k 1 = 3 und k 2 = 8.

= 11 ± 5, also k 1 = 3 und k 2 = 8. Stroppel Musterlösung.8.5, 8min Aufgabe (6 Punkte) Gegeben sei die Funktion f: R R: x x e x. (a) Zeigen Sie durch vollständige Induktion, dass für alle x R und alle k N gilt: f (k) (x) = ( ) k (x kx+(k

Mehr

Aufgabe I.1 (4 Punkte) Gegeben seien die Matrix H := und die Menge L := {A R 4 4 A HA = H} Zeigen Sie:

Aufgabe I.1 (4 Punkte) Gegeben seien die Matrix H := und die Menge L := {A R 4 4 A HA = H} Zeigen Sie: Aufgabe I (4 Punkte Gegeben seien die Matrix und die Menge Zeigen Sie: H := L := {A R 4 4 A HA = H} a L ist bezüglich der Matrizenmultiplikation eine Gruppe b Die Matrizen der Form ( E O, O B wobei E R

Mehr

Für die Matrikelnummer M = Dann sind durch A =

Für die Matrikelnummer M = Dann sind durch A = Musterlösung zum. Blatt 9. Aufgabe: Gegeben seien m 3 + 2 m m 3 m 2 m 4 + m 7 m 3 A := m m 2 m 2 + 2 m 2 m 4 + m 5 und b := m 6 m 4 + a) Finden Sie eine Lösung x R 7 für die Gleichung Ax =. b) Finden Sie

Mehr

6. Polynom-Interpolation

6. Polynom-Interpolation 6. Polynom-Interpolation 1 6.1. Klassische Polynom-Interpolation 2 6.2. Lösung mit Hilfe Lagrange scher Basisfunktionen 3 6.3. Lösung mit Hilfe Newton scher Basisfunktionen 4 6.4. Fehlerabschätzung für

Mehr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr TUM Ferienkurs Lineare Algebra WiSe 8/9 Dipl.-Math. Konrad Waldherr Musterlösung Relationen Aufgabe Auf R sei die Relation σ gegeben durch (a, b)σ(c, d) : a + b c + d. Ist σ reflexiv, symmetrisch, transitiv,

Mehr

4.3 Anwendungen auf Differentialgleichungen

4.3 Anwendungen auf Differentialgleichungen 7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,

Mehr

6. Lineare DGL-Systeme erster Ordnung

6. Lineare DGL-Systeme erster Ordnung HJ Oberle Differentialgleichungen I WiSe 22/3 6 Lineare DGL-Systeme erster Ordnung A Allgemeines Wir betrachten ein lineares DGL System erster Ordnung y (t = A(t y(t + b(t (6 und setzen voraus, dass die

Mehr

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW Lineare Gleichungssysteme Lösen Sie folgende Gleichungssysteme über R: a) x + x + x = 6x + x + x = 4 x x x = x 7x x = 7 x x = b) x + x 4x + x 4 = 9 x + 9x x x

Mehr

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung Kapitel 3 Lineare Abbildungen Lineare Abbildungen sind eine natürliche Klasse von Abbildungen zwischen zwei Vektorräumen, denn sie vertragen sich per definitionem mit der Struktur linearer Räume Viele

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Übungs- und Scheinklausur

Höhere Mathematik II für die Fachrichtung Physik. Übungs- und Scheinklausur Institut für Analysis SS17 PD Dr. Peer Christian Kunstmann 15.7.17 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc., Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie (KIT) WS 212/13 Institut für Analysis 14.1.213 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Aufgabe 1 Höhere Mathematik I für die Fachrichtung Physik 12. Übungsblatt Sei

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 214 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis

Mehr

d) Produkte orthogonaler Matrizen sind wieder orthogonal.

d) Produkte orthogonaler Matrizen sind wieder orthogonal. Die orthogonale Matrizen Definition: Eine Matrix Q R n n heißt orthogonal, falls QQ T = Q T Q = I gilt. Die Eigenschaften orthogonaler Matrizen: a) det(q) = ±1; b) Qx 2 = x 2 für alle x R n, also Q 2 =

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG MATHEMATISCHES INSTITUT SEMINAR: QUADRATISCHE FORMEN ÜBER DEN RATIONALEN ZAHLEN SOMMERSEMESTER 2007 DOZENT: PROF. DR. KAY WINGBERG ASSISTENT: JOHANNES BARTELS KAPITEL

Mehr

Beispiel für eine periodische Spline-Interpolationsfunktion: Wir betrachten f(x) = sin(πx) und geben die folgenden Stützstellen und Stützwerte vor:

Beispiel für eine periodische Spline-Interpolationsfunktion: Wir betrachten f(x) = sin(πx) und geben die folgenden Stützstellen und Stützwerte vor: 5 Splineinterpolation Beispiel für eine periodische Spline-Interpolationsfunktion: Wir betrachten f(x) sin(πx) und geben die folgenden Stützstellen und Stützwerte vor: x i 3 f i Damit ist n 5, h Forderung

Mehr

4.1. Vektorräume und lineare Abbildungen

4.1. Vektorräume und lineare Abbildungen 4.1. Vektorräume und lineare Abbildungen Mengen von Abbildungen Für beliebige Mengen X und Y bezeichnet Y X die Menge aller Abbildungen von X nach Y (Reihenfolge beachten!) Die Bezeichnungsweise erklärt

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben).

Mehr

7.3 Unitäre Operatoren

7.3 Unitäre Operatoren Wir können jeden Operator T wie folgt schreiben: Dabei gilt T = 1 2 (T + T ) + i( 1 2 i (T T )) (T + T ) = T + T sowie ( 1 2 i (T T )) = 1 2 i (T T) = 1 2 i (T T ). Wir können T also in zwei lineare Operatoren

Mehr

β 1 x :=., und b :=. K n β m

β 1 x :=., und b :=. K n β m 44 Lineare Gleichungssysteme, Notations Betrachte das lineare Gleichungssystem ( ) Sei A = (α ij ) i=,,m j=,n α x + α x + + α n x n = β α x + α x + + α n x n = β α m x + α m x + + α mn x n = β m die Koeffizientenmatrix

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG Aufgabe 1 Es sei K ein Körper, V ein K-Vektorraum, und seien v 1,..., v n V (n N). (a) Definieren Sie, wann die endliche Familie v 1,...,

Mehr

8 Polynominterpolation

8 Polynominterpolation 8 Polynominterpolation Interpolations-Aufgabe: Von einer glatten Kurve seien nur lich viele Punktewerte gegeben. Wähle einen lichdimensionalen Funktionenraum. Konstruiere nun eine Kurve in diesem Funktionenraum

Mehr

(x x j ) R m [x] (3) x x j x k x j. R m [x]. (4)

(x x j ) R m [x] (3) x x j x k x j. R m [x]. (4) 33 Interpolation 147 33 Interpolation In vielen praktischen Anwendungen der Mathematik treten Funktionen f auf, deren Werte nur näherungsweise berechnet werden können oder sogar nur auf gewissen endlichen

Mehr

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Lineare Differenzengleichungen

Lineare Differenzengleichungen Lineare Differenzengleichungen Die Fibonacci-Zahlen F n sind definiert durch F 0 = 0 F 1 = 1 F n = F n 1 +F n 2 für n >= 2 Die letzte Zeile ist ein Beispiel für eine homogene lineare Differenzengleichung

Mehr

Klausur zur Einführung in die Algebra, Lösungsvorschlag

Klausur zur Einführung in die Algebra, Lösungsvorschlag Universität Konstanz Christoph Hanselka Fachbereich Mathematik und Statistik Markus Schweighofer 16. März 2015 Wintersemester 2014/2015 Klausur zur Einführung in die Algebra, Lösungsvorschlag Aufgabe 1

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 5/.. Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

3.1 Sukzessive Minima und reduzierte Basen: Resultate

3.1 Sukzessive Minima und reduzierte Basen: Resultate Gitter und Codes c Rudolf Scharlau 4. Juni 2009 202 3.1 Sukzessive Minima und reduzierte Basen: Resultate In diesem Abschnitt behandeln wir die Existenz von kurzen Basen, das sind Basen eines Gitters,

Mehr

2. Numerische Verfahren für AWPe 2.1 Das Euler-Verfahren

2. Numerische Verfahren für AWPe 2.1 Das Euler-Verfahren 2.1 Das Euler-Verfahren Wir betrachten das AWP y = f (t, y), y(t 0 ) = y 0. (AWP) Unter den Voraussetzungen von Satz 1.1 besitzt es eine eindeutige Lösung, sagen wir über dem Intervall I. Wir wollen diese

Mehr

Abbildung 10.1: Das Bild zu Beispiel 10.1

Abbildung 10.1: Das Bild zu Beispiel 10.1 Analysis 3, Woche Mannigfaltigkeiten I. Definition einer Mannigfaltigkeit Die Definition einer Mannigfaltigkeit braucht den Begriff Diffeomorphismus, den wir in Definition 9.5 festgelegt haben. Seien U,

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

Höhere Mathematik I. Variante A

Höhere Mathematik I. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik I WiSe 4/5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Wiederholungsserie II

Wiederholungsserie II Lineare Algebra II D-MATH, FS 205 Prof. Richard Pink Wiederholungsserie II. Zeige durch Kopfrechnen, dass die folgende reelle Matrix invertierbar ist: 205 2344 234 990 A := 224 423 990 3026 230 204 9095

Mehr

Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome

Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome Proseminar Lineare Algebra SS10 Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome Natalja Shesterina Heinrich-Heine-Universität ASymmetrische Polynome Definition 1 Sei n

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

Fallstudien der mathematischen Modellbildung Teil 3: Quanten-Operationen. 0 i = i 0

Fallstudien der mathematischen Modellbildung Teil 3: Quanten-Operationen. 0 i = i 0 Übungsblatt 1 Aufgabe 1: Pauli-Matrizen Die folgenden Matrizen sind die Pauli-Matrizen, gegeben in der Basis 0, 1. [ [ [ 0 1 0 i 1 0 σ 1 = σ 1 0 = σ i 0 3 = 0 1 1. Zeigen Sie, dass die Pauli-Matrizen hermitesch

Mehr

Klausur HM I H 2005 HM I : 1

Klausur HM I H 2005 HM I : 1 Klausur HM I H 5 HM I : 1 Aufgabe 1 4 Punkte): Zeigen Sie mit Hilfe der vollständigen Induktion: n 1 1 + 1 ) k nn k n! für n. Lösung: Beweis mittels Induktion nach n: Induktionsanfang: n : 1 ) 1 + 1 k

Mehr

Berechnung der Determinante

Berechnung der Determinante Berechnung der Determinante Verhalten der Determinante unter elementaren Zeilenoperationen: Das Vertauschen zweier Zeilen/Spalten der Matrix A ändert nur das Vorzeichen der Determinante, d.h: i, j {1,...,

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 4

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 4 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 26/7): Lineare Algebra und analytische Geometrie 4 4. (Frühjahr 27, Thema, Aufgabe ) Zeigen Sie, dass die beiden folgenden Unterräume des R 3 übereinstimmen:

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

Höhere Mathematik I HM I A. WiSe 2014/15. Variante A

Höhere Mathematik I HM I A. WiSe 2014/15. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik I WiSe 4/ Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Lösungsskizzen zur Klausur

Lösungsskizzen zur Klausur sskizzen zur Klausur Mathematik II Sommersemester 4 Aufgabe Es seien die folgenden Vektoren des R 4 gegeben: b = b = b 3 = b 4 = (a) Prüfen Sie ob die Vektoren b b 4 linear unabhängig sind bestimmen Sie

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Kapitel 13. Lineare Gleichungssysteme und Basen

Kapitel 13. Lineare Gleichungssysteme und Basen Kapitel 13. Lineare Gleichungssysteme und Basen Matrixform des Rangsatzes Satz. Sei A eine m n-matrix mit den Spalten v 1, v 2,..., v n. A habe den Rang r. Dann ist die Lösungsmenge L := x 1 x 2. x n x

Mehr

T n (1) = 1 T n (cos π n )= 1. deg T n q n 1.

T n (1) = 1 T n (cos π n )= 1. deg T n q n 1. KAPITEL 3. INTERPOLATION UND APPROXIMATION 47 Beweis: Wir nehmen an qx) für alle x [, ] und führen diese Annahme zu einem Widerspruch. Es gilt nach Folgerung ii) T n ) T n cos π n ). Wir betrachten die

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

D-ITET, D-MATL. Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn

D-ITET, D-MATL. Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn Name: Wichtige Hinweise D-ITET, D-MATL Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn Prüfungsdauer: 90 Minuten. Nur begründete Resultate werden bewertet. Zugelassene Hilfsmittel: 10 A4-Seiten

Mehr

α i e i. v = α i σ(e i )+µ

α i e i. v = α i σ(e i )+µ Beweis: Der Einfachheit halber wollen wir annehmen, dass V ein endlich-dimensionaler Vektorraum mit Dimension n ist. Wir nehmen als Basis B {e 1,e 2,...e n }. Für beliebige Elemente v V gilt dann v α i

Mehr

Klausur,,Algorithmische Mathematik II

Klausur,,Algorithmische Mathematik II Institut für angewandte Mathematik Sommersemester 017 Andreas Eberle, Matthias Erbar / Behrend Heeren Klausur,,Algorithmische Mathematik II Musterlösung 1 (Unabhängige Zufallsvariablen) a) Wir bezeichnen

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr