Lösungen zur Übungsserie 1

Größe: px
Ab Seite anzeigen:

Download "Lösungen zur Übungsserie 1"

Transkript

1 Analysis 1 Herbstsemester 2018 Prof. Peter Jossen Montag, 24. September Lösungen zur Übungsserie 1 Aufgaben 1, 3, 4, 5, 6, 8 Aufgabe 1. Sei X eine endliche Menge mit n Elementen, und sei Y eine endliche Menge mit m Elementen. (1) Wie viele Funktionen von X nach Y gibt es? (2) Wie viele injektive Funktionen von X nach Y gibt es? (3) Wie viele bijektive Funktionen von X nach Y gibt es? Lösung. (1) Wir behandeln zuerst den Fall in dem weder X noch Y leer ist, und schreiben die gegebenen Mengen als X = {x 1, x 2,..., x n } und Y = {y 1, y 2,..., y m }. Eine Funktion f : X Y kann ein Element x X auf jedes mögliche Element von Y abbilden. Dies bedeutet, es gilt f(x) = y 1 oder f(x) = y 2... oder f(x) = y m. Eine Funktion f : X Y beschreiben wir vollständig, in dem wir für jedes Element x 1, x 2,... von X den Wert f(x 1 ), f(x 2 ),... angeben, und für jedes x X haben wir genau m Möglichkeiten zur Auswahl. Insgesamt haben wir daher Auswahlen für x 1 Auswahlen für x 2 Auswahlen für x n {}}{{}}{{}}{} m m {{ m } n mal Möglichkeiten zur Auswahl. Daraus schliessen wir, dass es m n Funktionen von X nach Y gibt. Falls X oder Y beide leer sind, so ist das immer noch richtig mit der üblichen Konvention 0 0 = 1. (2) Wir behalten die Notation aus Teil (1) bei, und beschreiben Funktionen f : X Y wiederum, in dem wir die Werte f(x 1 ), f(x 2 ),... aus Y angeben. Ebenfalls wir in (1) können wir x 1 X auf ein beliebiges der m Elemente von Y abbilden. Damit dass f : X Y eine injektive Funktion von X nach Y ist muss insbesondere f(x 1 ) f(x 2 ) gelten. Wir dürfen also x 2 nicht auch auf f(x 1 ) abbilden. Eine injektive Funktion das Element x 2 auf jedes beliebige von Y \ {f(x 1 )} abbilden, damit bleiben für die Wahl von f(x 2 ) Y genau m 1 Möglichkeiten. Analog können wir x 3 X auf eines der m 2 zur Auswahl verbleibenden Elemente von Y \ {f(x 1 ), f(x 2 )} abbilden und so fort. Falls n > m gilt, so ist Y \ {{f(x 1 ), f(x 2 ),..., f(x m )} leer, und es bleibt keine Möglichkeit übrig f(x m+1 ) zu wählen. Es gibt in dem Fall keine injektiven Funktionen 1

2 von X nach Y. Falls n m erhalten wir insgesamt Auswahlen für x 2 Auswahlen für x n Auswahlen für x {}}{ 1 {}}{{}}{} m m {{ 1... m n + 1 } n mal m! injektive Funktionen. Wir folgern, dass es in letzterem Fall injektive Funktionen von X nach Y gibt. (m n)! (3) Eine Funktion f : X Y ist bijektiv, wenn m = n gilt und f injektiv ist. Es gibt also keine bijektiven Funktionen f : X Y falls m n gilt. Falls n = m gilt, m! so gibt es genau = m! = m! injektive Funktionen wir wir bereits in Teil (2) (m n)! 0! gezeigt haben. Aufgabe 3. Sei X eine Menge. Wir betrachten die Abbildung Φ : P(X) {0, 1} X, A 1 A, die einer Teilmenge A X deren charakteristische Funktion 1 A zuordnet. Zeigen Sie auf die folgenden beiden Arten, dass Φ bijektiv ist: (1) indem Sie direkt verifizieren, dass Φ injektiv und surjektiv ist. (2) indem Sie explizit eine Umkehrabbildung angeben. Angenommen die Menge X sei endlich, mit n Elementen. Wie viele Elemente hat die Potenzmenge X? Wie viele Elemente hat die Menge {0, 1} X? Erinnerung: Mit Y X bezeichnen wir die Menge aller Abbildungen X Y. Hier ist also speziell {0, 1} X die Menge aller Abbildungen X {0, 1}. Lösung. (1) Injektivität von Φ: Seien A, B P(X) so, dass Φ(A) = Φ(B) gilt. Dies heisst 1 A = 1 B. Sei a A, dann gilt 1 = 1 A (a) = 1 B (a). Somit haben wir a B und schliessen daraus, dass A B gilt. Auf die gleiche Weise können wir B A zeigen. Daraus schliessen wir, dass A = B gilt, und also f injektiv ist. Surjektivität von Φ: Sei f {0, 1} X. Wir definieren A = {x X f(x) = 1}. Dann gilt für alle x X entweder x A und damit f(x) = 1 und 1 A (x) = 1, oder x / A und damit f(x) = 0 und 1 A (x) = 0. Zusammenfassend zeigt das Φ(A) = 1 A = f. Da Φ eine injektive und surjektive Funktion ist, ist Φ bijektiv. (2) Wir definieren eine Abbildung Ψ : {0, 1} X P(X) durch Ψ(f) = {x X f(x) = 1}. und behaupten, dass Ψ die zu Φ inverse Funktion ist. Um diese Behauptung zu beweisen müssen wir zeigen dass Φ Ψ(f) = f

3 für alle f {0, 1} X gilt, und dass Ψ Φ(A) = A für alle A P(X) gilt. Somit ist Φ Ψ surjektiv, und damit Φ auch surjektiv. Da Ψ Φ injektiv ist, ist dann Φ auch injektiv. Wir können schliessen, dass Φ bijektiv ist. Die Potenzmenge von X hat 2 n Elemente, wenn X eine endliche Menge mir n Elementen ist. Weil Φ bijektiv ist, hat die Menge {0, 1} X auch 2 n Elemente. Aufgabe 4. Sei eine Äquivalenzrelation auf der Menge N = {0, 1, 2,...}, derart, dass a (a + 5) und a (a + 8) für alle a N gilt. Gilt 1 2? Wie viele Elemente hat der Quotient N/? Lösung. Ja, 1 2. Wir benutzen a (a + 8), so dass wir erhalten. Ausserdem gilt, mit a (a + 5). Mit Transitivität ergibt sich 1 17 und Durch Anwendung der Symmetrie erhalten wir Wir wenden die Transitivität noch einmal an, und erhalten schlussendlich 1 2. Ähnlich erhalten wir 0 1. Mit der Transitivität ergibt sich 0 2. Ausserdem, erhalten wir mit Induktion, dass 0 n für alle n N gilt: Schritt 1. n = 0 Weil reflexiv ist, dann gilt 0 0. Somit erhalten wir 0 n. Schritt 2. Wir nehmen an, dass 0 n gilt und wir müssen 0 n + 1 beweisen. Ähnlich zu 1 2, haben wir n n + 8 n + 16 und n + 1 n + 6 n + 11 n Somit gilt n n + 1. Weil 0 n und n n + 1, erhalten wir 0 n + 1 mit der Transitivität. Daraus folgt, dass wir 0 n für alle n N erhalten haben. Wir schliessen, dass der Quotient N/ nur ein Element hat. Aufgabe 5. Finden Sie je ein Beispiel für eine Relation auf den natürlichen Zahlen N, die von den Eigenschaften einer Äquivalenzrelation (1) nur die Symmetrie; (2) nur die Transitivität; (3) die Reflexivität und die Transitivität, aber nicht die Symmetrie erfüllt. Lösung. (1) Die Relation erfüllt nur die Symmetrie Eigenschaft. Reflexivität ist nicht erfüllt, weil a a falsch ist. Ähnlich, implizieren a b, b c nicht a c, wenn c = a.

4 (2) Die Relation < erfüllt nur die Transivität Eigenschaft. a < a ist falsch, und a < b impliziert nicht b < a. (3) Die Relation Teilbarkeit erfüllt die Reflexivität und die Transitivität Eigenschaften. Ausserdem erfüllt nicht die Symmetrie Eigenschaft: 4 2 aber 2 4 ist falsch. Aufgabe 6. Sei n 1 eine ganze Zahl. Überprüfen Sie, dass die Relation auf der Menge Z, definiert durch a b a b ist teilbar durch n eine Äquivalenzrelation ist, und erstellen Sie eine Liste aller Äquivalenzklassen. Die Quotientenmenge wird üblicherweise als Z/nZ notiert, gelesen Z modulo n. Zeigen Sie dass auf der Quotientenmenge Z/nZ eine binäre Operation + existiert, die für Äquivalenzklassen [a] und [b] durch [a] + [b] = [a + b] gegeben ist. Ist Z/nZ mit dieser Operation und [0] als neutrales Element ein kommutativer Monoid? Lösung. Schritt 1. ist eine Äquivalenzrelation. Wir müssen zeigen, dass reflexiv, symmetrisch und transitiv ist. a a bedeutet dass a a = 0 durch n teilbar ist. Somit, ist reflexiv. Wenn a b durch n teilbar ist, dann ist b a genau dann auch durch n teilbar. Somit ist symmetrisch, was bedeutet, dass a b gleichwertig mit b a ist. Sei a, b, c Z so dass a b und b c gilt. Wir erhalten, dass a = b + k n und b = c + l n, für k, l Z. Somit gilt a = c + l n + k n. Daher wissen wir, dass a c ist, was bedeutet, dass transitiv ist. Die Äquivalenzklassen sind [0], [1], [2],..., [n 1]. Schritt 2. Ein binärer Operator + existiert auf der Quotientenmenge Z/nZ. Der binäre Operator + ist definiert durch [a] + [b] = [a + b]. Wir müssen zeigen, dass + wohldefiniert ist. Sei a, b, c, d Z so dass [a] = [c] und [b] = [d]. Wir haben a = e 1 + k n, c = e 1 + l n, b = e 2 + s n und d = e 2 + t n wobei 0 e 1, e 2 < n und k, l, s, t Z. Somit gilt [a] = [c] = [e 1 ] und [b] = [d] = [e 2 ]. Ausserdem, a + b = e 1 + e 2 + (s + k) n und c + d = e 1 + e 2 + (t + l) n. Weil [a + b] = [e 1 + e 2 ] und [c + d] = [e 1 + e 2 ], schliessen wir, dass [a] + [b] = [c] + [d] = [a + b] = [c + d]: Der binäre Operator + ist wohldefiniert. Schritt 3. Z/nZ mit + und [0] als neutrales Element ist ein kommutativer Monoid.

5 Wir müssen die folgenden Aussagen zeigen: (1) Z/nZ ist nicht leer (2) [0] Z/nZ als neutrales Element. (3) Der Operator + müss die folgenden Identitäten erfüllen: ([a] + [b]) + [c] = [a] + ([b] + [c]) [a] + [b] = [b] + [c] [a] + [0] = [0] + [a] = [a]. Die ersten zwei Aussagen sind klar, weil {[0], [1],..., [n 1]} = Z/nZ. Wir beweisen, dass die dritte Identität erfüllt ist. Tatsächlich [a] + [b] = [a + b] = [b + a] = [b] + [a] und [a] + [0] = [a + 0] = [a] = [0 + a] = [0] + [a]. Ähnlich gilt, ([a] + [b]) + [c] = [a + b] + [c] = [a + b + c] = [a] + [b + c] = [a] + ([b] + [c]). Aufgabe 8. Sei X eine Menge. Zeigen Sie, dass die Potenzmenge P(X) zusammen mit der symmetrischen Differenz als binäre Operation und der leeren Menge als neutrales Element einen kommutativen Monoiden bildet. Bevor Sie mit dem eigentlichen Beweis beginnen, erstellen Sie eine Liste aller Aussagen die überprüft werden müssen. Lösung. Wir müssen die folgenden Aussagen überprüfen: (1) Neutrales element: P(X) (2) Die symmetrische Differenz müss die folgenden Identitäten erfüllen: A (B C) = (A B) C, für alle A, B, C P(X) A = A = A, für alle A P(X) A B = B A, für alle A, B P(X). Weil P(X) die Potenzmenge ist, ist das neutrales Element ein Element von P(X), das bedeutet P(X). Somit ist die erste Aussage erfüllt. Die symmetrische Differenz A B ist gleich (A \ B) (B \ A). Weil kommutativ ist, gilt (A \ B) (B \ A) = (B \ A) (A \ B) und gibt es A B = B A. Ausserdem gilt, A = A = (A \ ) ( \ A) = A = A. Sei A, B, C P(X). Wir müssen nur A (B C) = (A B) C zeigen. Wir expandieren A (B C): A (B C) = (A \ ((B \ C) (C \ B))) (((B \ C) (C \ B)) \ A). Es ist einfacher B\C = B C c zu schreiben, wobei C c = X \C. Somit ist die obige Gleichung A (B C) = (A ((B C c ) (C B c )) c ) (((B C c ) (C B c )) A c ).

6 Erinnern Sie sich, dass (A B) c = A c B c und (A c ) c = A für alle Menge A und B gilt. Wir setzen unsere Berechnung fort: A (B C) = (A ((B C c ) (C B c )) c ) (((B C c ) (C B c )) A c ) = (A ((B C c ) c (C B c ) c )) (((B C c ) (C B c )) A c ) = (A ((B c C) (C c B))) (((B C c ) (C B c )) A c ) = ((A (B c C)) (C c B)) ((A c (B C c )) (A c (C B c ))) = (((A B c ) (A C)) (C c B)) ((A c B) C c ) ((A c B c ) C) = ((A B c ) C c ) ((A B) C) ((A c B) C c ) ((A c B c ) C) = (((A B c ) (B A c )) C c ) (C ((A B) (A c B c ))) = (A B \ C) (C \ (A B) c ) = (A B) C. Wir schliessen, dass P(X) ein kommutativer Monoid ist.

2 Lösungen zu Kapitel 2

2 Lösungen zu Kapitel 2 2 Lösungen zu Kapitel 2 2. Lösung. Die Funktion f ist nicht injektiv. So gibt es (unendlich) viele Paare (x, y) mit f(x, y) = 0, etwa (0, 0) und (/2, ). Die Funktion f ist surjektiv. Zum Beispiel gilt

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 2

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 2 D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler Lösung 2 Hinweise 1. Eine Möglichkeit ist, auf diese Forderungen massgeschneiderte Relationen explizit anzugeben. Dies ist aber nicht

Mehr

Mathematische Strukturen

Mathematische Strukturen Mathematische Strukturen Lineare Algebra I Kapitel 3 16. April 2013 Kartesisches Produkt Das kartesische Produkt (benannt nach René Descartes) von n Mengen M 1,..., M n ist M 1 M n := {(x 1,..., x n )

Mehr

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4)

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4) FU Berlin: WiSe 13-14 (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5 Aufgabe 18 (siehe Musterlösung Zettel 4) Aufgabe 20 In der Menge R der reellen Zahlen sei die Relation 2 R 2 definiert durch: x 2 y :

Mehr

(1.18) Def.: Eine Abbildung f : M N heißt

(1.18) Def.: Eine Abbildung f : M N heißt Zurück zur Mengenlehre: Abbildungen zwischen Mengen (1.17) Def.: Es seien M, N Mengen. Eine Abbildung f : M N von M nach N ist eine Vorschrift, die jedem x M genau ein Element f(x) N zuordnet. a) M = N

Mehr

Lösungen zur Übungsserie 2

Lösungen zur Übungsserie 2 Analysis 1 Herbstsemester 2018 rof. eter Jossen Montag, 8. Oktober Lösungen zur Übungsserie 2 Aufgaben 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14 Aufgabe 1. Sei X eine Menge. Wie behandeln in dieser Aufgabe

Mehr

3 Werkzeuge der Mathematik

3 Werkzeuge der Mathematik 3.1 Mengen (18.11.2011) Definition 3.1 Die Menge heißt leere Menge. :=»x M x x Definition 3.2 Es seien N und M Mengen. Wir definieren: und analog M N : (x M x N). N M : (x N x M). Wir sagen M ist Teilmenge

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen Aufgaben mit Musterlösung 21. März 2011 Tanja Geib 1 Aufgabe 1 Geben Sie zu B = {0, 2, 4} und

Mehr

2 Mengen, Abbildungen und Relationen

2 Mengen, Abbildungen und Relationen Vorlesung WS 08 09 Analysis 1 Dr. Siegfried Echterhoff 2 Mengen, Abbildungen und Relationen Definition 2.1 (Mengen von Cantor, 1845 1918) Eine Menge M ist eine Zusammenfassung von wohlbestimmten und wohl

Mehr

Skriptum EINFÜHRUNG IN DIE ALGEBRA

Skriptum EINFÜHRUNG IN DIE ALGEBRA Skriptum EINFÜHRUNG IN DIE ALGEBRA 1 Günter Lettl SS 2016 1. Algebraische Grundbegriffe 1.1 Verknüpfungen Definition 1. Es sei M eine nicht leere Menge. a) Eine Verknüpfung (oder (binäre) Operation) auf

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 2014/15 Thomas Timmermann 26. November 2014 Was kommt nach den natürlichen Zahlen? Mehr als die natürlichen Zahlen braucht man nicht, um einige der schwierigsten

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 2018/2019 18.10.2018 Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum

Mehr

Lösungsskizzen zu Übungsblatt 1

Lösungsskizzen zu Übungsblatt 1 Lösungsskizzen zu Übungsblatt 1 26. Oktober 2016 Algebra Wintersemester 2016-17 Prof. Andreas Rosenschon, PhD Anand Sawant, PhD Diese Lösungen erheben nicht den Anspruch darauf vollständig zu sein. Insbesondere

Mehr

Analysis I - Notizen 1. Daniel Lenz Jena - Wintersemester 2016

Analysis I - Notizen 1. Daniel Lenz Jena - Wintersemester 2016 Analysis I - Notizen 1 Daniel Lenz Jena - Wintersemester 2016 1 Es handelt sich nicht um ein Skriptum zur Vorlesung. Besten Dank an alle, die zu Verbesserungen früherer Notizen zur Analysis I beigetragen

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I (Wintersemester 2003/2004) Aufgabenblatt 6

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 015/016 30.10.015 Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 1. Übungsblatt

Mehr

Kapitel 1. Mengen und Abbildungen. 1.1 Mengen

Kapitel 1. Mengen und Abbildungen. 1.1 Mengen Kapitel 1 Mengen und Abbildungen 1.1 Mengen Die Objekte der modernen Mathematik sind die Mengen. Obwohl die Logik einen axiomatischen Zugang zur Mengenlehre bietet, wollen wir uns in dieser Vorlesung auf

Mehr

Konstruktion reeller Zahlen aus rationalen Zahlen

Konstruktion reeller Zahlen aus rationalen Zahlen Konstruktion reeller Zahlen aus rationalen Zahlen Wir nehmen an, daß der Körper der rationalen Zahlen bekannt ist. Genauer wollen wir annehmen: Gegeben ist eine Menge Q zusammen mit zwei Verknüpfungen

Mehr

Vorkurs Mathematik Abbildungen

Vorkurs Mathematik Abbildungen Vorkurs Mathematik Abbildungen Philip Bell 19. September 2016 Diese Arbeit beruht im Wesentlichen auf dem Vortrag Relationen, Partitionen und Abbildungen von Fabian Grünig aus den vorangehenden Jahren.

Mehr

Relationen und Funktionen

Relationen und Funktionen Vorkurs Mathematik Dr. Regula Krapf Sommersemester 018 Relationen und Funktionen Definition. Seien M und N Mengen. Eine Relation auf M N ist eine Teilmenge R M N. Falls (x,y) R, so schreibt man auch x

Mehr

Musterlösung zur Klausur Grundwissen Schulmathematik am

Musterlösung zur Klausur Grundwissen Schulmathematik am Musterlösung zur Klausur Grundwissen Schulmathematik am 24.2.2012 Aufgabe 1 (10 Punkte) Zeigen Sie: Für alle n N ist n 3 3n 2 +2n durch 6 teilbar. svorschläge Beweis durch Induktion nach n n = 1. Es ist

Mehr

Mathematik für Informatiker I Mitschrift zur Vorlesung vom

Mathematik für Informatiker I Mitschrift zur Vorlesung vom Mathematik für Informatiker I Mitschrift zur Vorlesung vom 18.11.2004 Zur Wiederholung: Das Kartesische Produkt dient dem Ordnen von Mengen. A B = {(a, b) : a A, b B)} Spezialfall A = Äquivalenzrelation

Mehr

Übungsblatt 1: Monoide und Gruppen

Übungsblatt 1: Monoide und Gruppen Übungsblatt 1: Monoide und Gruppen Die schriftlichen Übungsaufgaben sind durch ein S gekennzeichnet und sollen in der Übung der nächsten Woche abgegeben werden. Die Votieraufgaben sind mit einem V gekennzeichnet.

Mehr

Übungen zur Vorlesung Einführung in die Mathematik

Übungen zur Vorlesung Einführung in die Mathematik Übungen zur Vorlesung Einführung in die Mathematik von G. Greschonig und L. Summerer, WS 2017/18 Aufgabe 1. Zeige, dass das Quadrat einer ungeraden Zahl, vermindert um 1, stets durch 4 teilbar ist. Folgere

Mehr

Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie

Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie Def. Eine Gruppe besteht aus einer nicht leeren Menge G und einer Abbildung : G G G (wir werden a b oder ab statt (a,b) schreiben; die Abbildung

Mehr

: G G G. eine Abbildung. Gelten die folgenden Eigenschaften, so nennen wir (G,,e) eine Gruppe: (x,y) x y

: G G G. eine Abbildung. Gelten die folgenden Eigenschaften, so nennen wir (G,,e) eine Gruppe: (x,y) x y 5 GRUPPEN 5 Gruppen Hier fehlt eine schöne Einleitung oder ein motivierendes Beispiel. Definition [5.1] Sei G eine nicht-leere Menge, e G ein (ausgezeichnetes) Element in G und : G G G eine Abbildung.

Mehr

Lineare Algebra I. Lösung 3.1:

Lineare Algebra I. Lösung 3.1: Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 3 Prof. Dr. Markus Schweighofer 18.11.2009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 3.1: (a) Sei

Mehr

Übungen zu Geometrie und Lineare Algebra für das Lehramt

Übungen zu Geometrie und Lineare Algebra für das Lehramt Übungen zu Geometrie und Lineare Algebra für das Lehramt zusammengestellt von Stefan Haller Sommersemester 2019 (UE250163) 2. Übungsblatt für die Woche vom 11. bis 15. März 2019 Aufgabe 2.1. Wiederhole

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Grundlagen der Mathematik Übungsaufgaben zu Kapitel 1 Einführung 1.1.1 Für reelle Zahlen a und b gilt (a+b) (a-b) = a 2 -b 2. Was ist die Voraussetzung? Wie lautet die Behauptung? Beweisen Sie die Behauptung.

Mehr

Wie werden die Vorlesungen/Übungen organisiert?

Wie werden die Vorlesungen/Übungen organisiert? Wie werden die Vorlesungen/Übungen organisiert? Mein Name: Prof. Vladimir Matveev Sprechstunden: nach jeder Vorlesung bzw. in der Pause Homepage der Vorlesung: http: //users.minet.uni-jena.de/ matveev/lehre/la10/

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 0/ Thomas Timmermann 8. Januar 0 Kardinalzahlen und die Mächtigkeit von Mengen Gleichmächtigkeit von Menge Zur Erinnerung: Wir wollen unendlich große Mengen hinsichtlich

Mehr

Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie

Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie Def. Eine Gruppe besteht aus einer nicht leeren Menge G und einer Abbildung : G G G (wir werden a b oder ab statt (a,b) schreiben; die Abbildung

Mehr

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 2 Prof. Dr. Markus Schweighofer 11.11.2009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 2.1: Behauptung:

Mehr

Lösungen zu Kapitel 2

Lösungen zu Kapitel 2 Lösungen zu Kapitel 2 Lösung zu Aufgabe 1: Wir zeigen die Behauptung durch vollständige Induktion über n. Die einzige Menge mit n = 0 Elementen ist die leere Menge. Sie besitzt nur sich selbst als Teilmenge,

Mehr

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4 Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark 08.11.2018 Dr. Markus Lange Analysis 1 Aufgabenzettel 4 Abgabe bis 14. November 2018, 19:00 Uhr Erinnerung: Die Anmeldung für den Übungsschein

Mehr

Mathematik I 1. Scheinklausur

Mathematik I 1. Scheinklausur Mathematik I 1. Scheinklausur 2.12.2006 Bitte beachten Sie die folgenden Hinweise: Matrikelnummer: Bearbeitungszeit: 120 Minuten Erlaubte Hilfsmittel: Keine Bei den Aufgaben 1,2,4,5,9,und 10 wird nur die

Mehr

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } }

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } } Mengen Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung aller Elemente: { 1,

Mehr

(das heißt, dass a, b K, a + b K und a b K). (K, +, ) bildet ein Körper wenn die folgenden Axiome gelten:

(das heißt, dass a, b K, a + b K und a b K). (K, +, ) bildet ein Körper wenn die folgenden Axiome gelten: FU Berlin: WiSe 13-14 (Analysis 1 - Lehr.) Übungsaufgaben Zettel 3 Voraussetzungen Körperaxiome Sei K eine Menge, und seien +, zwei Verknüpfungen + :K K K, : K K K (a, b) a + b (a, b) a b (das heißt, dass

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 36 Andreas Gathmann 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will so kann es sinnvoll sein zunächst kleinere einfachere Mengen (bzw. Gruppen) zu betrachten

Mehr

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Teil 1: Wiederholung 1 Mengen 2 Abbildungen 3 Exkurs Beweistechniken 4 Relationen Definition Operationen Eigenschaften Äquivalenzrelationen

Mehr

i=1 j= 5 2. Verifizieren Sie die Gleichung indem Sie die Ausdrücke ohne Summenzeichen schreiben. j=0

i=1 j= 5 2. Verifizieren Sie die Gleichung indem Sie die Ausdrücke ohne Summenzeichen schreiben. j=0 Übungen zur Einführung in die Analysis (Einführung in das mathematische Arbeiten WS 2017 1. Schreiben Sie die folgenden Ausdrücke ohne Verwendung von Summen- bzw. Produktzeichen: 7 2 3 5 k 2k+1, a k, 2

Mehr

Mathematik-Vorkurs für Informatiker (Wintersemester 2012/13) Übungsblatt 8 (Relationen und Funktionen)

Mathematik-Vorkurs für Informatiker (Wintersemester 2012/13) Übungsblatt 8 (Relationen und Funktionen) DEPENDABLE SYSTEMS AND SOFTWARE Fachrichtung 6. Informatik Universität des Saarlandes Christian Eisentraut, M.Sc. Julia Krämer Mathematik-Vorkurs für Informatiker (Wintersemester 0/3) Übungsblatt 8 (Relationen

Mehr

1.4 Äquivalenzrelationen

1.4 Äquivalenzrelationen 8 1.4 Äquivalenzrelationen achdem nun die axiomatische Grundlage gelegt ist, können wir uns bis zur Einführung der Kategorien das Leben dadurch erleichtern, daß wir bis dorthin, also bis auf weiteres,

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

modulo s auf Z, s. Def

modulo s auf Z, s. Def 16. Januar 2007 Arbeitsblatt 5 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen I. Gasser, H. Strade, B. Werner WiSe 06/07 21.11.06 Präsenzaufgaben: 1) Seien

Mehr

Lineare Algebra. Jung Kyu Canci. Mit der Hilfe von: Stefano Iula, Olivia Ebneter, Katharina Laubscher, Viviane Wehrle

Lineare Algebra. Jung Kyu Canci. Mit der Hilfe von: Stefano Iula, Olivia Ebneter, Katharina Laubscher, Viviane Wehrle Lineare Algebra Jung Kyu Canci Mit der Hilfe von: Stefano Iula, Olivia Ebneter, Katharina Laubscher, Viviane Wehrle Herbstsemester 2015 2 Inhaltsverzeichnis 1 Einführung in die Lineare Algebra 5 1.1 Elementare

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws13/14

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Lineare Algebra I 5. Tutorium Die Restklassenringe /n

Lineare Algebra I 5. Tutorium Die Restklassenringe /n Lineare Algebra I 5. Tutorium Die Restklassenringe /n Fachbereich Mathematik WS 2010/2011 Prof. Dr. Kollross 19. November 2010 Dr. Le Roux Dipl.-Math. Susanne Kürsten Aufgaben In diesem Tutrorium soll

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Lösungen zur Übungsserie 9

Lösungen zur Übungsserie 9 Analysis 1 Herbstsemester 2018 Prof. Peter Jossen Montag,? November Lösungen zur Übungsserie 9 Aufgaben 1,2,3,5,6,8,9,11 Aufgabe 1. Sei a R. Berechnen Sie die folgenden Grenzwerte, falls sie existieren.

Mehr

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen Inhaltsverzeichnis Teil II: Gruppen 2 3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen.................. 2 3.1.1 Gruppen.......................................... 2 3.1.2 Untergruppen.......................................

Mehr

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen)

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen) WS 2015/16 Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

7 Äquivalenzrelationen

7 Äquivalenzrelationen 71 7 Äquivalenzrelationen 7.1 Äquivalenzrelationen und Klassen Definition Eine Relation R auf einer Menge oder einem allgemeineren Objektbereich heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch

Mehr

Bemerkungen. Gilt m [l] n, so schreibt man auch m l mod n oder m = l mod n und spricht. m kongruent l modulo n.

Bemerkungen. Gilt m [l] n, so schreibt man auch m l mod n oder m = l mod n und spricht. m kongruent l modulo n. 3.6 Restklassen in Polynomringen 3.6.1 Einführung und Definitionen Der Begriff der Restklasse stammt ursprünglich aus der Teilbarkeitslehre in Z; (Z = Z, +, ist ein kommutativer Ring). Definition 153 Sei

Mehr

4. Funktionen und Relationen

4. Funktionen und Relationen 4. Funktionen und Relationen Nikolaus von Oresmes Richard Dedekind (1831-1916) René Descartes 1596-1650 Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 4: Funktionen und Relationen 4.1 Funktionen:

Mehr

Definition 153 Sei n eine fest gewählte ganze Zahl 0. Für jedes l Z heißt die Menge

Definition 153 Sei n eine fest gewählte ganze Zahl 0. Für jedes l Z heißt die Menge 3.6 Restklassen in Polynomringen 3.6.1 Einführung und Definitionen Der Begriff der Restklasse stammt ursprünglich aus der Teilbarkeitslehre in Z; (Z = Z, +, ist ein kommutativer Ring). Definition 153 Sei

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011.

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011. Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen 21. März 2011 Tanja Geib Inhaltsverzeichnis 1 Aussagen 1 2 Mengenlehre 3 2.1 Grundlegende Definitionen

Mehr

Proseminar Analysis Vollständigkeit der reellen Zahlen

Proseminar Analysis Vollständigkeit der reellen Zahlen Proseminar Analysis Vollständigkeit der reellen Zahlen Axel Wagner 18. Juli 2009 1 Voraussetzungen Zunächst wollen wir festhalten, was wir als bekannt voraussetzen: Es sei (Q, +, ) der Körper der rationalen

Mehr

Eine Relation zwischen M und N ist eine Teilmenge R M N. Im Fall M = N sagen wir: R ist Relation auf M.

Eine Relation zwischen M und N ist eine Teilmenge R M N. Im Fall M = N sagen wir: R ist Relation auf M. 1.5 Relationen Es seien M und N Mengen. Definition Eine Relation zwischen M und N ist eine Teilmenge R M N. Im Fall M = N sagen wir: R ist Relation auf M. Terminologie und Notation Es sei R M N eine Relation

Mehr

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe Kapitel 5 Abbildungen 5.1 Definition: (Abbildung) Eine Abbildung zwischen zwei Mengen M und N ist eine Vorschrift f : M N, die jedem Element x M ein Element f(x) N zuordnet. Schreibweise: x f(x) 5. Beispiel:

Mehr

Übersichtsblatt Hertrampf/Bahrdt. 1 Mathematische Aussagen. Theoretische Informatik I WS2018/19

Übersichtsblatt Hertrampf/Bahrdt. 1 Mathematische Aussagen. Theoretische Informatik I WS2018/19 Theoretische Informatik I WS2018/19 Übersichtsblatt Hertrampf/Bahrdt Institut für Formale Methoden der Informatik Theoretische Informatik Universität Stuttgart 1 Mathematische Aussagen Um mathematische

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Diskrete Mathematik für Informatiker

Diskrete Mathematik für Informatiker Diskrete Mathematik für Informatiker Rebecca Busch Universität Siegen Wintersemester 2016/2017 Busch (Universität Siegen) Diskrete Mathematik Wintersem. 2016/2017 1 / 16 Übersicht über die Themen Mengentheoretische

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr TUM Ferienkurs Lineare Algebra WiSe 8/9 Dipl.-Math. Konrad Waldherr Musterlösung Relationen Aufgabe Auf R sei die Relation σ gegeben durch (a, b)σ(c, d) : a + b c + d. Ist σ reflexiv, symmetrisch, transitiv,

Mehr

Lösung 2: Relationen, Abbildungen, Mächtigkeit, Gruppen

Lösung 2: Relationen, Abbildungen, Mächtigkeit, Gruppen D-MATH Lineare Algebra I HS 2016 Dr. Meike Akveld Lösung 2: Relationen, Abbildungen, Mächtigkeit, Gruppen 1. Gegeben n, m Z schreiben wir m n k Z : n = km Wir sagen m teilt n. Eine Zahl n Z ist gerade,

Mehr

4.2 Quotientenvektorräume

4.2 Quotientenvektorräume 306 LinAlg II Version 1 6. Juni 2006 c Rudolf Scharlau 4.2 Quotientenvektorräume Zum Verständnis der folgenden Konstruktion ist es hilfreich, sich noch einmal den Abschnitt 1.4 über Restklassen vom Beginn

Mehr

Vorkurs Gruppen. Jonas Müller. 11. Oktober 2018

Vorkurs Gruppen. Jonas Müller. 11. Oktober 2018 Vorkurs Gruppen Jonas Müller 11. Oktober 2018 Für den Vorkurs der Fachschaft MathPhysInfo im Wintersemester 2018/19. Basierend auf den Vorträgen der letzten Jahre von Saskia Klaus. Inhaltsverzeichnis 1

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

MGS Abbildungen (Funktionen) Beispiele: Einkommensteuer Regelungs- und Steuerungstechnik

MGS Abbildungen (Funktionen) Beispiele: Einkommensteuer Regelungs- und Steuerungstechnik 4. Abbildungen (Funktionen) MGS 4-1 08.10.02 Beispiele: Einkommensteuer Regelungs- und Steuerungstechnik Rolf Linn Berechnung Ralf Linn Produkt * Kaufpreis MGS 4-5 08.10.02 1950.- 500000.- 495.- 4. Abbildungen

Mehr

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen Steven Klein 04.01.017 1 In dieser Ausarbeitung konstruieren wir die reellen Zahlen aus den rationalen Zahlen. Hierzu denieren wir zunächst

Mehr

$Id: korper.tex,v /05/10 12:25:27 hk Exp $

$Id: korper.tex,v /05/10 12:25:27 hk Exp $ $Id: korper.tex,v 1.17 2012/05/10 12:25:27 hk Exp $ 4 Körper In der letzten Sitzung hatten wir den Körperbegriff eingeführt und einige seiner elementaren Eigenschaften vorgeführt. Insbesondere hatten wir

Mehr

Modulare Arithmetik. 1. Betrachte für k 2 Z die Menge k + nz:

Modulare Arithmetik. 1. Betrachte für k 2 Z die Menge k + nz: Modulare Arithmetik Wir rechnen mit den sogenannten Restklassen: Es sei n 2 N, n 1. Betrachte für k 2 Z die Menge k + nz: k + nz = {...,k 2n, k n, k, k + n, k + 2n, k + 3n,...} Beachte: (k + nz) \ (` +

Mehr

1. Üb. Aufbau d.zahlensystems u.funktionenlehre SS2018

1. Üb. Aufbau d.zahlensystems u.funktionenlehre SS2018 1. Üb. Aufbau d.zahlensystems u.funktionenlehre SS2018 1. Gegeben seien die nichtleeren Mengen X und Y, nichtleere Teilmengen A 1,A 2 von X, nichtleere Teilmengen B 1,B 2 von Y, und eine Funktion f : X

Mehr

= k 0+k 0 ( ). Wir addieren (0 k) zu den Seiten der Gleichung ( ): 0 = k 0.

= k 0+k 0 ( ). Wir addieren (0 k) zu den Seiten der Gleichung ( ): 0 = k 0. Def 4 Eine Menge K mit zwei Abbildungen + : K K K und : K K K (heißen Addition und Multiplikation; wir werden a b bzw a+b statt (a,b), +(a,b) schreiben) ist ein kommutativer Ring, falls: (R1) (K, +) ist

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 5. Äquivalenzrelationen 35 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will, so kann es sinnvoll sein, zunächst kleinere, einfachere Mengen (bzw. Gruppen)

Mehr

Mathematik I. Vorlesung 2. Hintereinanderschaltung und Umkehrabbildung

Mathematik I. Vorlesung 2. Hintereinanderschaltung und Umkehrabbildung Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 2 Hintereinanderschaltung und Umkehrabbildung Lemma 2.1. Es seien L und M Mengen und es sei F :L M eine Abbildung. Dann sind folgende

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 17: Relationen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2013/2014 1/61 Anmerkung Änderung im Wintersemester 2013/2014:

Mehr

Beispiel 85. Satz 86 Eine Unteralgebra (bzgl. ) einer Gruppe ist eine Untergruppe, falls sie unter der Inversenbildung 1 abgeschlossen ist.

Beispiel 85. Satz 86 Eine Unteralgebra (bzgl. ) einer Gruppe ist eine Untergruppe, falls sie unter der Inversenbildung 1 abgeschlossen ist. 5.4 Untergruppen Definition 84 Eine Unteralgebra T,, 1 einer Gruppe G = S,, 1 heißt Untergruppe von G, falls T,, 1 eine Gruppe ist. Bemerkung: Nicht jede Unteralgebra einer Gruppe ist eine Untergruppe!

Mehr

10 Formale Grundlagen

10 Formale Grundlagen 95 10 Formale Grundlagen 10.1 Mengentheorie Die Aussagen hierzu sind aus [?, S.13-21] und [?, S.75-136]. In [?] sind die nötigsten Aussagen zusammengefaßt. In [?] sind insbesondere Links und Rechtsinverse

Mehr

Lineare Algebra. Sebastian Thomas. Manuskript (provisorisch) Sommersemester Carl von Ossietzky Universität Oldenburg Institut für Mathematik

Lineare Algebra. Sebastian Thomas. Manuskript (provisorisch) Sommersemester Carl von Ossietzky Universität Oldenburg Institut für Mathematik Lineare Algebra Sebastian Thomas Manuskript (provisorisch) Sommersemester 2013 Carl von Ossietzky Universität Oldenburg Institut für Mathematik ii Version: 28. Januar 2014. Dieses Vorlesungsmanuskript

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Diskrete Strukturen und Logik WiSe 2006/07 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2006/07 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2006/07 in Trier Henning Fernau Universität Trier fernau@informatik.uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik &

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

1.3 Aussagen. Beispiel: Das Bruttosozialprodukt der Bundesrepublik Deutschland ist höher als das der USA ist eine offenbar falsche Aussage.

1.3 Aussagen. Beispiel: Das Bruttosozialprodukt der Bundesrepublik Deutschland ist höher als das der USA ist eine offenbar falsche Aussage. 1.3 Aussagen In der Mathematik geht es um Aussagen. Eine Aussage ist ein statement, das entweder wahr oder falsch sein kann. Beides geht nicht! Äußerungen, die nicht die Eigenschaft haben, wahr oder falsch

Mehr

Wir betrachten nun das Deformieren einer Abbildung in eine andere.

Wir betrachten nun das Deformieren einer Abbildung in eine andere. Abschnitt 1 Quotienten Homotopie, erste Definitionen Wir betrachten nun das Deformieren einer Abbildung in eine andere. 1.1 Definition. Seien X, Y topologische Räume und f 0, f 1 : X Y stetige Abbildungen.

Mehr

Elemente der Mathematik - Winter 2016/2017

Elemente der Mathematik - Winter 2016/2017 4 Elemente der Mathematik - Winter 2016/2017 Prof. Dr. Peter Koepke, Regula Krapf Lösungen Übungsblatt 7 Aufgabe 29 (8 Punkte). Für eine Menge M ist die Potenzmenge von M definiert als P(M) := {X X M},

Mehr

Grundlagen und Diskrete Strukturen Aufgaben zur Vorbereitung der Klausur

Grundlagen und Diskrete Strukturen Aufgaben zur Vorbereitung der Klausur Technische Universität Ilmenau WS 2008/2009 Institut für Mathematik Informatik, 1.FS Dr. Thomas Böhme Aufgabe 1 : Grundlagen und Diskrete Strukturen Aufgaben zur Vorbereitung der Klausur Gegeben sind die

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 1-14. Sitzung Dennis Felsing dennis.felsing@student.kit.edu http://www.stud.uni-karlsruhe.de/~ubcqr/2010w/tut gbi/ 2011-02-07 Äquivalenzrelationen 1 Äquivalenzrelationen

Mehr

Lösungen zu Kapitel 8

Lösungen zu Kapitel 8 Lösungen zu Kapitel 8 Lösung zu Aufgabe 1: M offenbar Wir setzen A = M\ A. Für A, B P (M) gilt wegen A, B A B = (A\B) (B\A) = A B + A B, wobei + die disjunkte Vereinigung der beteiligten Mengen bedeutet.

Mehr

Grundbegriffe der Mathematik - Blatt 1, bis zum

Grundbegriffe der Mathematik - Blatt 1, bis zum Grundbegriffe der Mathematik - Blatt 1 bis zum 9.3.01 1. I.) Formalisieren Sie die folgenden Aussagen a) bis c) wie im folgenden Beispiel: Sei K ein Teilmenge der reellen Zahlen. Aussage: K ist genau dann

Mehr

Formale Grundlagen. Franz Binder. Institut für Algebra Johannes Kepler Universität Linz

Formale Grundlagen. Franz Binder. Institut für Algebra Johannes Kepler Universität Linz Formale Grundlagen Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2009S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Grundbegriffe Relationenprodukt Äquivalenzrelationen

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2016 Prof. Manfred Einsiedler Philipp Wirth. Lösung 3

D-MATH, D-PHYS, D-CHAB Analysis I HS 2016 Prof. Manfred Einsiedler Philipp Wirth. Lösung 3 D-MATH, D-PHYS, D-CHAB Analsis I HS 016 Prof Manfred Einsiedler Philipp Wirth Lösung 3 Diese Woche werden nur Lösungen zu den Aufgaben 4, 5 und 6 zur Verfügung gestellt 4 a Nach Folgerung (i aus den Axiomen

Mehr

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016 MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/17 MARK HAMILTON LMU MÜNCHEN 1.1. Grundbegriffe zu Mengen. 1. 17. OKTOBER 2016 Definition 1.1 (Mengen und Elemente). Eine Menge ist die Zusammenfassung

Mehr

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 3. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 3. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11 Mathematik für Informatiker I Christoph Eisinger Wintersemester 2010/11 Musterlösungen zum Hausübungsblatt 3 Aufgabe 1 Zu überpüfen sind jeweils folgende Eigenschaften: 1. Reflexivität: x R x x S 2. Symmetrie:

Mehr