Laboratorium für. Aufgabe: Versuch Nr. 4. Fachhochschule Offenburg. Digitale Signalverarbeitung. Multiratenverarbeitung.

Größe: px
Ab Seite anzeigen:

Download "Laboratorium für. Aufgabe: Versuch Nr. 4. Fachhochschule Offenburg. Digitale Signalverarbeitung. Multiratenverarbeitung."

Transkript

1 Fachhochschule Offenburg Laboratorium für Digitale Signalverarbeitung Versuch Nr. 4 SS WS SS 00 Versuchstag 15. Mai 2000 Semester EN 7 Gruppe 3 1 Johannes Petri Letzter Abgabetermin Abgabetermin verlängert bis Unterschr. Aufgabe: 29. Mai Juni 2000 Testat 2 Moritz Meyer 3 Multiratenverarbeitung 4 5 Versuchsleiter Moritz Meyer Korrektur siehe Ausarbeitung der Versuchsleiters Zusammenfassung Multiratenverarbeitung ist, wie der Name verrät, die Verarbeitung verschiedener Abtastraten. Multiratenverarbeitung wird dort eingesetzt, wo Abtastraten aufeinander abgestimmt und angepaßt werden müssen. Die Unterbegriffe der Multratenverarbeitung sind Interpolation (Up- Sampling) und Dezimation (Down-Sampling). Neben der Grundsätzlichen Anwendung der Multiratenverarbeitung wird diese auch zur besseren Auslegung von Filtern gebraucht (Kapitel 4) oder sogar zur Verringerung des Quantisierungsrauschens des D/A-Wandlers (Kapitel 5).

2 1 Inhalt 1 Inhalt 2 2 Multiratenverarbeitung 3 3 Einleitung in die Begriffe der Multiratenverarbeitung Signal to Noise and Destortion SINAD Dezimation Interpolation 5 4 Versuchsdurchführung Betrachtung im Zeitbereich Betrachtung im Frequenzbereich 6 5 Anwendung: CD Aufnahme und Wiedergabe Wiedergabe Aufnahme 7 6 Rauschfärbung (Noise Shaping) 9 Seite 2

3 2 Multiratenverarbeitung Multiratenverarbeitung ist, wie der Name verrät, die Verarbeitung verschiedener Abtastraten. Multiratenverarbeitung wird dort eingesetzt, wo Abtastraten aufeinander abgestimmt und angepaßt werden müssen. Die Unterbegriffe der Multratenverarbeitung sind Interpolation (Up- Sampling) und Dezimation (Down-Sampling). Neben der Grundsätzlichen Anwendung der Multiratenverarbeitung wird diese auch zur besseren Auslegung von Filtern gebraucht (Kapitel 4) oder sogar zur Verringerung des Quantisierungsrauschens des D/A-Wandlers (Kapitel 5). 3 Einleitung in die Begriffe der Multiratenverarbeitung 3.1 Signal to Noise and Destortion SINAD Die klassischen Beschreibungen der Störsignale (Klirrfaktor, Signal-to-Noise-Ratio SNR) werden durch den heutig oft angegebenen Faktor Signal-to-Noise-and-Destortion SINAD ersetzt. Die durch einen nichtlinearen Verstärker erzeugten Oberschwingungen werden durch die immer besser werdende Technik kleiner. In modernen Audiosystemen versinken die Oberwellen im Rauschen, so daß die Angabe des Klirrfaktor überflüssig wird. Der Faktor SINAD unterscheidet nicht mehr zwischen Rauschen und Oberschwingungen, sondern vergleicht allgemein die Leistung des Nutzsignals mit der Leistung des Störsignals. Seite 3

4 3.2 Dezimation Die Dezimation dienen zur Reduktion (Unterabtastung) der Datenmenge digitaler Signale. Hierbei werden die Abtastwerte um den Dezimatinsfaktor M (M N) verringert. Dies geschieht durch verwerfen aller Abtastwerte die zwischen den M-ten Abtastwerten liegen. Wie bei der Analog-Digital-Abtastung muß auch bei der Digital-Digital-Abtastung (Dezimation) Filter zu positionieren, da ansonsten die über der halben Abtastfrequenz F/2 liegenden Frequenzanteile in das Nutzsignal gespiegelt werden. In einer Demonstration unter MathLab wurde das Verhalten des Dezimationsfilter im Zeit Und Frequenzbereich dargestellt (Beiblatt I). Es wurde dabei von folgendem Versuchsaufbau ausgegangen: auf die Aliasfrequenzen aufgepaßt werden. Es ist notwendig vor der Dezimation ein Anti-Alias- x 1 (n 1 ) x Dezimations- 1f (n 1 ) x 2 (n 2 ) Filter M Unterabtastung Auf das Eingangssignal x1(n1) wurde weises Rauschen addiert. Dies entspricht in der späteren Betrachtung dem Quantisierungsrauschen des A/D-Wandlers. Zur Vermeidung der Aliasfrequenzen wird das Eingangssignal einem Dezimations-Filter unterworfen. Das folgende Signal x1f(n1) hat die höherfrequenten Frequenzanteile verloren, wodurch die Rauschleistung zurückgeht und der SINAD besser wird. Nun kann und wird das Signal um Faktor M=4 unterabgetastet. Das resultierende Signal x2(n2) hat eine Abtastfrequenz von F1/4, der SINAD entspricht dem des gefilterten Signals x1f(n1). Seite 4

5 3.3 Interpolation Die Interpolation dient zur Überabtastung digitaler Signale. Hierbei werden den Abtastwerten L (L N) zusätzliche Abtastwerte zwischengeschoben. Da den zugeschobenen Abtastwerten kein beliebiger Wert zugeordnet werden kann, sondern der Wert dem zu rekonstruierenden Signal entsprechen muß, muß eine Interpolation des Wertes durchgeführt werden. Die logisch einfachste Methode währe, den Wert der Mittelwertbildung der benachbarten Abtastwerte, dem neuen Abtastwert zuzuordnen. Dieses Verfahren nennt sich lineare Interpolation. Ein logisches komplizierteres Verfahren, aber aus der Sicht der Signalverarbeitung optimales Verfahren ist den hinzugefügten Abtastwerten den Wert 0 zuzuschreiben. Das nun neu entstandene Signal wird einem TP-Filter, den sogenannten Interpolationsfilter, zugeführt, der durch seine Funktionsweise den zugefügten Abtastwerten einen entsprechenden Wert zuführt. Wie im vorherigen Kapitel wurde die Interpolation unter MathLab demonstriert (Beiblatt II). Auf folgendem Versuchsaufbau baut die Simulation der Interplation auf. x 1 (n 1 ) x 2 (n2) Interpolationsx 2f (n 2 ) L Übertastung Dem Original-Signal x1(n1) werden Faktor L=2 Abtastwerte mit dem Wert Null zwischen gesetzt. Durch das Einfügen der zusätzlichen Abtastwerte erhöht sich die Abtastfrequenz um den Faktor L, also F2=L*F1. Im Frequenzspektrum von x2(n2) spiegelt sich das, aus dem Spektrum von x1(n1) bekannte Spektrum an F2/2, bzw. F1. Durch die Spiegelung des Sinussignals entsteht ein Störsignal mit dem gleichen Pegel der dazu führt, daß der SINAD schlechter 0dB wird. Die Filterung durch den Interpolations-Filters sorgt für die Wertezuweisung der zwischen eingefügten Abtastwerte. Gleichzeitig filtert der Filter alle über F2/2 liegenden Frequenzanteile weg. Würde der Filter ideal sein, so würde der SINAD des Up-gesampelten Signals x2f(n2) den des Orginal-Signals x1(n1) entsprechen. Filter Seite 5

6 4 Versuchsdurchführung In dem Versuch Multiraten wurde ein Sinussignal mit Sigam-Delta-Modulatoren abgetastet. Das entstandene digitale Signal wird dezimiert und daraufhin interpoliert. Das Sinussignal besitzt eine Frequenz von 190Hz und wird 20dB unter der Vollaussteuerung des Sigma-Delta-Modulators betrieben. Der Sigma-Delta-Modulator tastet das Signal mit einer Abtastfrequenz von F1= 6,25MHz ab. Der Dezimationsfilter reduziert die Abtastwerte um den Faktor M=128, so daß die neue Abtastfrequenz F2=48,828kHz beträgt. Die dezimierte Abtastfolge wird um Faktor 2 interpoliert, so daß letztendlich die Abtastfrequenz F3=97,656kHz beträgt. 4.1 Betrachtung im Zeitbereich Der Sigma-Delta-Modulator wandelt das kontinuierliche Eingangssignal in einen seriellen Bitstrom (Beiblatt III). Durch die Addition der Bits kann auf den ungefähren Signalverlauf geschlossen werden (Beiblatt IV). Tatsächlich wird jedoch der quantisierte Bitstrom TP-gefiltert, um den Faktor M=128 dezimiert und in ein paralleles Datenformat mit höherer Auflösung umgeformt (kontinuierlich: Beiblatt V; zeitdiskret: Beiblatt IV). Durch einfügen vom Faktor L=2 Abtastwerten mit dem Wert Null und durch folgende TP-Filterung wird das down-gesampelte Signal nun up-gesampelt (diskret: Beiblatt VII; kontinuierlich: VIII). 4.2 Betrachtung im Frequenzbereich Das Spektrum nach der Quantisierung des Sinussignal ist überdeckt vom Quantisierungsrauschen (Beiblatt IX). Im Bereich des Sinussignals geht das Quantisierungsrauschen zurück. Durch Down-Sampling des Signals werden die hochfrequenten Anteile (im Beiblatt gelb) durch einen Tiefpaß abgeschnitten, um Aliasing zu vermeiden. Übrig bleiben die dem Sinussignal naheliegenden aber kleineren Rauschanteile des Quantisierung (Beiblatt X). Dies führt zu einem besseren SINAD. Durch die folgende Interpolation wird die Abtastfrequenz erhöht. Das Spektrum des down-gesampelten Signal bleibt wie der SINAD bestehen. Seite 6

7 5 Anwendung: CD Aufnahme und Wiedergabe 5.1 Wiedergabe Wendet man bei der CD-Wiedergabe die konventionelle D/A-Wandlung an, so wird man bei der Tiefpaßfilterung des Rekonstruktionsfilters auf Probleme stoßen. Eine CD besitzt eine Abtasfrequenz von F=44,1kHz, wobei die Nutzdaten im Bereich bis 20kHz liegen. Die Auslegung des Rekonstruktionsfilters im Bereich von 20kHz bis F/2=22,01kHz bedarf einer steilen Flanke. Die Realisierung einer solchen Flanke ist aufwendig und führt zu Phasenverzerrungen. Durch Oversampling um den Faktor L=2 vor der D/A-Wandlung wird die Abtstfrequenz auf Fo=88,2kHz gehoben. Das Nutzsignal liegt trotz Oversampling im Bereich von 20kHz. Ein Rekonstruktionsfilter im Bereich von 20kHz bis Fo/2=44,1kHz bedarf keinen großen Aufwand mehr und führt nur zu geringen Phasenverzerrungen. 5.2 Aufnahme Bei der A/D-Wandlung tritt die selbe Problematik wie bei der D/A-Wandlung auf. Der Antialiasfilter zwischen dem Nutzsignal (bis 20kHz) und der halben Abtastfrequenz (22,01kHz) ist zu aufwendig und führt zu Phasenverzerrungen. Die Überabtastung des Nutzsignals mit einem Faktor M größeren Abtastfrequenz sorgt für einer leichteren und besseren Realisierung des Filters. Nach der Filterung muß das Signal um den Faktor M down-gesampelt werden um die standardisierte Abtastfrequenz von 44,1kHz einzuhalten. Ein weitere Vorteil des Downsampeln ist die Verbesserung des Quantisierungsrauschen. Der Zusammenhang des Rauschens zur effektiven Bitauflösung läßt sich mit folgender Formel beschreiben: SINAD( db) 6 b + = eff 1,8 b eff = SINAD( db) 6 1,8 Das bedeutet, daß durch Down-Sampling ein besserer SINAD erreicht wird, oder umgekehrt bei beibehalten des SINAD kann die Bitauflösung zurück genommen werden. Seite 7

8 Eine weiterer Zusammenhang zwischen Bitauflösungen, Abtastfrequenzen und Dezimationsfaktor läßt sich aus der Formel ableiten: Hieraus ergibt sich folgende Tabelle b = b 2 log 4 ( ) F1 = M F2 1 M b1 F1 / khz M b2 F2 / khz 16 44, , , , , , , , , , , , , , , , , , , , , , , , , , , , ,1 Es ist ersichtlich, daß ein Ein-Bit-Wandler bei einer Abtastfrequenz von 4,74THz für CD- Qualität mit dem heutigen Stand der Technik nicht realisierbar ist. Seite 8

9 6 Rauschfärbung (Noise Shaping) Eine Verbesserung des Quantisierungsrauschen und den damit verbundenen SINAD wird wie oben beschrieben durch Oversampling, Dämpfung des Anti-Alias-Filter der höheren Frequenzen und die folgende Dezimation erreicht. Dabei wird die Rauschleistung von dem Anti-Alias-Filter geschluckt. Eine Färbung des Rauschsignals, daß heißt eine Verlagerung des Rauschens in den höherfrequenten Bereich, würde dazu führen, daß der Anti-Alias-Filter mehr Rauschleistung unterdrückt und sich hierdurch der SINAD verbessert. Delta-Sigma-Wandler besitzen ein solches Verhalten das Quantisierungsrauschen zu färben. Der Eingang zum Ausgang weist, durch das Integrierglied ein Tiefpaßverhalten auf. Der Quantisierungsfehler der durch den Komperator entsteht liegt hinter dem Integrierglied. Hinter dem Komperator folgt das D-FlipFlop, dessen Ausgang rückgekoppelt wird. Durch diesen Aufbau unterliegt das Quantisierungsrauschen des Komperators einem Hochpaßverhalten, wodurch das Rauschsignal gefärbt wird. Im obigen Versuch (Kapitel 4) kann man die Färbung des Quantisierungsrauschen deutlich im Frequenzspektum nach der A/D-Wandlung sehen (Beiblatt IX). Durch erhöhen der Ordnung des Integrierers, erhöht sich die Ordnung des Tiefpaßes und des Hochpaßes. Dies führt zu einer weiteren Verbesserung des SINAD. In folgender Tabelle ist der Bitgewinn (Kapitel 4.2) gegen der Ordnung des Integrierers dargestellt: Art Gewinn Reines Oversampling 1 Bit / vierfacher Abtastrate Delta-Sigma-Converter 1. Ordnung Delta-Sigma-Converter 2. Ordnung 0,5 Bit / Verdopplung der Abtastrate 1,5 Bit / Verdopplung der Abtastrate 2,5 Bit / Verdopplung der Abtastrate 15 Bit / 6-malige Verdopplung der Abtastrate Seite 9

Funktion von Delta-Sigma-Wandlern zur Digitaliserung eines analogen Sensorsignals mit einer praktischen Anwendung. Dr.

Funktion von Delta-Sigma-Wandlern zur Digitaliserung eines analogen Sensorsignals mit einer praktischen Anwendung. Dr. Funktion von Delta-Sigma-Wandlern zur Digitaliserung eines analogen Sensorsignals mit einer praktischen Anwendung Dr. Thomas Komarek 1 Übersicht Praktische Anwendung: Super Audio Compact Disc (SACD) Grundlagen

Mehr

Kommunikationstechnik II Wintersemester 07/08

Kommunikationstechnik II Wintersemester 07/08 Kommunikationstechnik II Wintersemester 07/08 Prof. Dr. Stefan Weinzierl Musterlösung: 3. Aufgabenblatt. Aufgabe: Up-/Downsampling Die Abtastfolge x[n] wird mit dem Faktor M unter- und dem Faktor L überabgetastet.

Mehr

Puls-Code-Modulation. Thema: PCM. Ziele

Puls-Code-Modulation. Thema: PCM. Ziele Puls-Code-Modulation Ziele Mit diesen rechnerischen und experimentellen Übungen wird die Vorgehensweise zur Abtastung und linearen Quantisierung eines analogen Signals erarbeitet. Bei der Abtastung werden

Mehr

und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei t=0 mit dem Zeitindex n=0.

und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei t=0 mit dem Zeitindex n=0. Aufgabe 1 Das periodische Signal x t) 0,5 sin(2 f t) 0,5 cos(2 f t) mit f 1000Hz und mit f 2000Hz ( 1 2 1 2 und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei

Mehr

1.3 Digitale Audiosignale

1.3 Digitale Audiosignale Seite 22 von 86 Abb. 1.2.12 - Wirkung der Schallverzögerung Effekte sind: Delay, Echo, Reverb, Flanger und Chorus Hört man ein akustisches Signal im Raum, dann werden die Signale von Wänden und anderen

Mehr

Spektrumanalyse. Inhalt. I. Einleitung 2. II. Hauptteil 2-8

Spektrumanalyse. Inhalt. I. Einleitung 2. II. Hauptteil 2-8 Fachhochschule Aachen Campus Aachen Hochfrequenztechnik Hauptstudium Wintersemester 2007/2008 Dozent: Prof. Dr. Heuermann Spektrumanalyse Erstellt von: Name: Mario Schnetger Inhalt I. Einleitung 2 II.

Mehr

Audio-Bearbeitung. Diese Freq. Anteile «verschwinden» nach dem unterabtasten Filter muß schmal genug sein! Nach Unterabtastung

Audio-Bearbeitung. Diese Freq. Anteile «verschwinden» nach dem unterabtasten Filter muß schmal genug sein! Nach Unterabtastung Audio Signal Audio-Bearbeitung Ampl Vor Unterabtastung Teilband Grenzen Normierte Frequenz (normierte Abtastrate, maximale Frequenz ist pi oder 1) Teilbänder Diese Freq. Anteile «verschwinden» nach dem

Mehr

NANO III. Digital-Analog-Wandler. Analog-Digital-Wandler Abtastung. Datenakquisition:

NANO III. Digital-Analog-Wandler. Analog-Digital-Wandler Abtastung. Datenakquisition: NANO III Digital-Analog-Wandler Datenakquisition: Analog-Digital-Wandler Abtastung Prinzip des DAC (DAC = Digital - Analog - Converter) 2 0 R 1 4Bit DAC 1 12/16 2 1 R 1 / 2 8/16 2 2 R 1 / 4 4/16 2 3 R

Mehr

Abschlussprüfung Digitale Signalverarbeitung. Aufgaben, die mit einem * gekennzeichnet sind, lassen sich unabhängig von anderen Teilaufgaben lösen.

Abschlussprüfung Digitale Signalverarbeitung. Aufgaben, die mit einem * gekennzeichnet sind, lassen sich unabhängig von anderen Teilaufgaben lösen. Name: Abschlussprüfung Digitale Signalverarbeitung Studiengang: Elektrotechnik IK, E/ME Wahlfach SS2015 Prüfungstermin: Prüfer: Hilfsmittel: 3.7.2015 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing.

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2010/2011 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Filterentwurf

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2008/2009 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer

Mehr

Multimediale Werkzeuge 1, Audio-Berabeitung. normierte Frequenz (normiert auf die halbe Abtastrate, maximale Frequenz ist pi oder 1

Multimediale Werkzeuge 1, Audio-Berabeitung. normierte Frequenz (normiert auf die halbe Abtastrate, maximale Frequenz ist pi oder 1 Multimediale Werkzeuge 1, Audio-Berabeitung normierte Frequenz (normiert auf die halbe Abtastrate, maximale Frequenz ist pi oder 1 Beachte: Teilbänder werden nach den Unter-Abtasten "aufgeblasen" (siehe

Mehr

Dipl.-Ing. (TU) Jürgen Wemheuer

Dipl.-Ing. (TU) Jürgen Wemheuer Dipl.-Ing. (TU) Jürgen Wemheuer wemheuer@ewla.de http://ewla.de 1 Statt kontinuierlicher (Amplituden-)Werte einer stetigen Funktion sind nur diskontinuierliche, diskrete Werte möglich (begrenzter Wertevorrat):

Mehr

Bild-Erfassung Digitalisierung Abtastung/Quantisierung

Bild-Erfassung Digitalisierung Abtastung/Quantisierung Multimediatechnik / Video Bild-Erfassung Digitalisierung Abtastung/Quantisierung Oliver Lietz Bild-Erfassung Abtastung / Digitalisierung Scanner: Zeilenweise Abtastung mit CCD Digitale Kamera: Flächenweise

Mehr

B Anhang B: Enhanced Resolution

B Anhang B: Enhanced Resolution B Anhang B: Enhanced Resolution Digitales Filtern (Enhanced Resolution) Vorteile Realisierung Die verfügbare Abtastrate der LeCroy-Oszilloskope ist oft höher, als für die Bandbreite des zu analysierenden

Mehr

Digitale Signalverarbeitung für Einsteiger

Digitale Signalverarbeitung für Einsteiger Digitale Signalverarbeitung für Einsteiger Dipl.-Ing. Erich H. Franke, DK6II erich.franke@afusoft.com 54. Weinheimer UKW-Tagung 2009 Errata: Nobody is perfect Im Skriptum haben sich kleine aber ärgerliche

Mehr

Labor SMV Versuch 1. Erläuterungen zum Aliasing. Prof. Dr.-Ing. Gernot Freitag. FB: EuI, FH Darmstadt. Darmstadt, den

Labor SMV Versuch 1. Erläuterungen zum Aliasing. Prof. Dr.-Ing. Gernot Freitag. FB: EuI, FH Darmstadt. Darmstadt, den Labor SMV Versuch Erläuterungen zum Aliasing FB: EuI, Darmstadt, den 26.5 Elektrotechnik und Informationstechnik Rev., 9.5 Auf den folgenden Seiten sind einige typische Abtastsituationen zusammengestellt,

Mehr

Prof. Dr. Stefan Weinzierl SNR V = P signal P noise

Prof. Dr. Stefan Weinzierl SNR V = P signal P noise Audiotechnik II Digitale Audiotechnik: 5. Tutorium Prof. Dr. Stefan Weinzierl 0.11.01 Musterlösung: 1. November 01, 15:50 1 Dither a) Leiten sie den SNR eines idealen, linearen -bit Wandlers her. Nehmen

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2007/2008 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer

Mehr

Digitalisierung von Tönen. Von Paul

Digitalisierung von Tönen. Von Paul Digitalisierung von Tönen Von Paul Was passiert beim hören Tonquelle erzeugt Schallwellen Alle vibrierende Objekte erzeugen Schallwellen. Durch die Vibration wird das Medium stoßweise verdichtet. Schallwellen

Mehr

9. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

9. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 9. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: Abtastung und Rekonstruktion Abtastung: Wandelt bandbegrenzte kontinuierliche

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Zeitdiskrete Signale Wintersemester 6/7 Kontinuierliche und diskrete Signale wertkontinuierlich wertdiskret Signal Signal Signal Signal zeitdiskret zeitkontinuierlich

Mehr

Medien- Technik. Digital Audio

Medien- Technik. Digital Audio Digital Audio Medientyp digital audio representation Abtastfrequenz /sampling frequency Quantisierung (Bittiefe) Anzahl der Kanäle/Spuren Interleaving bei Mehrkanal Positiv/negativ Codierung operations

Mehr

Digitalisierung. Digitale Übertragung analoger Signale. störsicher (0/1-Codierung, Fehlerkorrektur) präzise (fixe unveränderliche Codeworte)

Digitalisierung. Digitale Übertragung analoger Signale. störsicher (0/1-Codierung, Fehlerkorrektur) präzise (fixe unveränderliche Codeworte) Digitale Übertragung analoger Signale Vorteile digitaler Übertragung störsicher (0/1-Codierung, Fehlerkorrektur) präzise (fixe unveränderliche Codeworte) Nachteiler digitaler Übertragung natürliche Signale

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie eil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt Musterlösungen - Signalabtastung und Rekonstruktion...

Mehr

Aufgabe 1 (20 Punkte)

Aufgabe 1 (20 Punkte) Augabe 1 (20 Punkte) Es wird ein Sprachsignal x(t) betrachtet, das über eine ISDN-Teleonleitung übertragen wird. Das Betragsspektrum X() des analogen Signals kann dem nachstehenden Diagramm entnommen werden.

Mehr

Praxiswerkstatt Algorithmen der Signalcodierung

Praxiswerkstatt Algorithmen der Signalcodierung Praxiswerkstatt Algorithmen der Signalcodierung 2. Termin Themen heute: Abtastung Lineare Zeitinvariante Systeme Seite 1 Abtastung letztes Mal haben wir gesehen: 3,9 khz kaum noch hörbar bei 8 khz Abtastrate.

Mehr

Abtastung. Normalisierte Kreisfrequenz = DSP_9-Abtasttheorem 2

Abtastung. Normalisierte Kreisfrequenz = DSP_9-Abtasttheorem 2 Abtasttheorem Abtastung xn [ ] = xnt ( ) = Acos( ωnt+ ϕ) = Acos( ωˆ n+ ϕ) s s Normalisierte Kreisfrequenz ωˆ = ωt s DSP_9-Abtasttheorem 2 Normalisierte Kreisfrequenz ω hat die Einheit rad/sec, ω ˆ = ωt

Mehr

Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008

Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008 Beispiel-Klausuraufgaben Digitale Signalverarbeitung Herbst 8 Zeitdauer: Hilfsmittel: Stunden Formelsammlung Taschenrechner (nicht programmiert) eine DIN A4-Seite mit beliebigem Text oder Formeln (beidseitig)

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien

Mehr

Laborprotokoll SSY Abtastung

Laborprotokoll SSY Abtastung Laborprotokoll SSY Abtastung Daniel Schrenk, Andreas Unterweger SSYLB WS 05/06 Abtastung Seite 1 von 12 Einleitung Ziel der Übung In dieser Laborübung sollte ein Signal abgetastet werden und anschließend

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Quantisiertes Signal Zeitdiskretes Signal Digitales Signal Auflösung der A/D- Umsetzer der MicroAutoBox

Mehr

Schnelle Fouriertransformation (FFT)

Schnelle Fouriertransformation (FFT) Schnelle Fouriertransformation (FFT) Inhaltsverzeichnis 1 Schnelle Fouriertransformation (FFT)... 3 1.1 Das Realtime-Konzept der Goldammer-Messkarten... 3 1.2 Das Abtasttheorem oder Regeln für die Abtastung

Mehr

Digitale Signalverarbeitung auf FPGAs

Digitale Signalverarbeitung auf FPGAs Digitale Signalverarbeitung auf FPGAs INP: Interpolation Upsampling und D/A- Wandlung Teil 1 Upsampling 2016 Dr. Christian Münker INP: Überblick Upsampling D/A-Wandlung Interpolation Oversampling (Sigma-Delta

Mehr

Signalprozessoren. Digital Signal Processors VO [2h] , LU 2 [2h]

Signalprozessoren. Digital Signal Processors VO [2h] , LU 2 [2h] Signalprozessoren Digital Signal Processors VO [2h] 182.082, LU 2 [2h] 182.084 http://ti.tuwien.ac.at/rts/teaching/courses/sigproz Herbert Grünbacher Institut für Technische Informatik (E182) Herbert.Gruenbacher@tuwien.ac.at

Mehr

Wichtigste Voraussetzung für die in dieser Vorlesung beschriebenen Systeme und Verfahren sind digitale Aufnahmen. Doch was ist eigentlich ein

Wichtigste Voraussetzung für die in dieser Vorlesung beschriebenen Systeme und Verfahren sind digitale Aufnahmen. Doch was ist eigentlich ein 1 Wichtigste Voraussetzung für die in dieser Vorlesung beschriebenen Systeme und Verfahren sind digitale Aufnahmen. Doch was ist eigentlich ein digitales Foto oder Video? Das folgende Kapitel soll einen

Mehr

4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter

4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter 4 Signalverarbeitung 4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

- Sei r(x,y) Eingangsbild, dass nur Rauschen (Quantenrauschen) enthält.

- Sei r(x,y) Eingangsbild, dass nur Rauschen (Quantenrauschen) enthält. Eingang System Ausgang - Sei r(x,y) Eingangsbild, dass nur (Quantenrauschen) enthält. - Das Bild enthalte keinerlei Information, d.h. das Spektrum ist weiß und es gibt keine Korrelationen zwischen den

Mehr

7. Digitale Verarbeitung analoger Signale

7. Digitale Verarbeitung analoger Signale University of Applied Science 7. Digitale Verarbeitung analoger Signale Analog-Interface A/D- und D/A-Umsetzung ADU Digital- Rechner DAU Analogsignal x a (t) Analogsignal y a (t) x a (t), y a (t) Digitalsignal

Mehr

Übertragungssysteme WS 2010/2011. Vorlesung 2. Prof. Dr.-Ing. Karlheinz Brandenburg.

Übertragungssysteme WS 2010/2011. Vorlesung 2. Prof. Dr.-Ing. Karlheinz Brandenburg. Übertragungssysteme WS 2010/2011 Vorlesung 2 Prof. Dr.-Ing. Karlheinz Brandenburg Karlheinz.Brandenburg@tu-ilmenau.de Kontakt: Dipl.-Ing.(FH) Sara Kepplinger / Dipl.-Ing. Christoph Fingerhut vorname.nachname@tu-ilmenau.de

Mehr

Digitale Signalverarbeitung sehen, hören und verstehen

Digitale Signalverarbeitung sehen, hören und verstehen Digitale Signalverarbeitung sehen, hören und verstehen Hans-Günter Hirsch Hochschule Niederrhein, Krefeld email: hans-guenter.hirsch@hs-niederrhein.de http://dnt.kr.hs-niederrhein.de Folie 1 Gliederung

Mehr

0 bis. 62,5MHz 1. NQZ 2. NQZ 3. NQZ

0 bis. 62,5MHz 1. NQZ 2. NQZ 3. NQZ Red Pitaya als SHF Nachsetzer oder als m Transceiver Bedingt durch die Abtastfrequenz des RP vonn 5MHz ergeben sich folgende f Nyquistzonen:. NQZ. NQZ. NQZ bis 6,5MHz 6,5 bis 5MHzz 5 bis 87,5MHz Der Frequenzbereich

Mehr

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note:

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note: ZHAW, DSV1, FS2010, Rumc, 1 Test 1 5 + 5 + 5 + 8 + 5 = 28 Punkte Name: Vorname: 1: 2: : 4: 5: Punkte: Note: Aufgabe 1: AD-DA-System. + 1 + 1 = 5 Punkte Das analoge Signal x a (t) = cos(2πf 0 t), f 0 =750

Mehr

2 Signalabtastung und Rekonstruktion

2 Signalabtastung und Rekonstruktion Signalabtastung und Rekonstruktion Signalabtastung und Rekonstruktion In vielen praktischen Anwendungen werden analoge Signale mit digitalen Systemen wie z.b. Computern oder Mikro-Controllern erfasst und

Mehr

Digitales Video. Prof. Dr.- Ing. Klaus Diepold

Digitales Video. Prof. Dr.- Ing. Klaus Diepold Digitales Video Prof. Dr.- Ing. Klaus Diepold Digitale Bildwandlung Bildtransformationen Abtastung Interpolation 2 Bildtransformation Digitales Video 3 Bildtransformation Digitales Video 4 Transformation

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der 1. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Zeitdiskretes Signal Quantisiertes Signal Digitales Signal Kontinuierliches System Abtastsystem

Mehr

Signalverteilung: Rechteck mit Mittelung über 2

Signalverteilung: Rechteck mit Mittelung über 2 Signalverteilung: Rechteck mit Mittelung über 2 Original-Signal Mittelwert aus 2.6.4.2-2 -1.5-1 -.5.5 1 1.5 2 Signalwert 1.8.6.4.2 Parameter: 1. Werte über 1sec Rauschen, rechteckverteilt 1 Intervalle

Mehr

Aufgabe 1 - Pegelrechnung und LTI-Systeme

Aufgabe 1 - Pegelrechnung und LTI-Systeme KLAUSUR Nachrichtentechnik 06.08.0 Prof. Dr.-Ing. Dr. h.c. G. Fettweis Dauer: 0 min. Aufgabe 3 4 Punkte 5 0 4 50 Aufgabe - Pegelrechnung und LTI-Systeme Hinweis: Die Teilaufgaben (a), (b) und (c) können

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Vektor-Signalanalyse

Vektor-Signalanalyse Nachrichtentechnik Labor Vektor-Signalanalyse Gruppe 8:... (Autor) Tong Cha Matr.Nr.:...... - 1 - Das Inhaltsverzeichnis ist leer, da keiner der Absatzstile, die in den Informationen Dokument ausgewählt

Mehr

Tontechnik 2. DA-Wandlung. DA-Wandlung (Übersicht) Hold-Schaltung. Prof. Oliver Curdt Audiovisuelle Medien HdM Stuttgart

Tontechnik 2. DA-Wandlung. DA-Wandlung (Übersicht) Hold-Schaltung. Prof. Oliver Curdt Audiovisuelle Medien HdM Stuttgart Tontechnik 2 DA-Wandlung Audiovisuelle Medien HdM Stuttgart Quelle: Michael Dickreiter, Handbuch der Tonstudiotechnik DA-Wandlung (Übersicht) Hold-Schaltung 1 DA-Wandlung Rückgewinnung analoger Spannungswerte

Mehr

Vorteile digitaler Filter

Vorteile digitaler Filter Digitale Filter Vorteile digitaler Filter DF haben Eigenschaften, die mit analogen Filtern nicht realisiert werden können (z.b. lineare Phase). DF sind unabhängig von der Betriebsumgebung (z.b. Temperatur)

Mehr

Fahrzeugmechatronik Masterstudiengang M 3.2 Sensoren und Aktoren Labor für Automatisierung und Dynamik AuD FB 03MB

Fahrzeugmechatronik Masterstudiengang M 3.2 Sensoren und Aktoren Labor für Automatisierung und Dynamik AuD FB 03MB Abb. 6 Dreidimensionale Darstellung des Frequenzgangs G ATP () s, Achsteilungen s 2 π in Hz Prof. Dr. Höcht 1/29 18.06.2006 11:13 Z_ Abb. 7 Einfluß des Pols bei s imaginären Achse, Achsteilungen in Hz

Mehr

Elektrotechnik II: Kolloquium 4

Elektrotechnik II: Kolloquium 4 Elektrotechnik II: Kolloquium 4 Digitalschaltungen Hubert Abgottspon: abgottspon@eeh.ee.ethz.ch Markus Imhof: imhof@eeh.ee.ethz.ch Inhalt des Kolloquium: Digitale Messkette Sensor 1) Filter S&H- Versträker

Mehr

Durch die Analoge Aufbereitung der I/Q-Signale entstehen Phantomsignale (Spiegelungen/Mehrfachempfang)

Durch die Analoge Aufbereitung der I/Q-Signale entstehen Phantomsignale (Spiegelungen/Mehrfachempfang) PRO: Preiswert und einfach CONTRA: Bei Schaltmischer-SDR (Softtrock, Pappradio usw) ist nur die Demodulation digital Durch die Analoge Aufbereitung der I/Q-Signale entstehen Phantomsignale (Spiegelungen/Mehrfachempfang)

Mehr

Digitales Rauschen. Fachbereich Medieninformatik. Hochschule Harz. Digitales Rauschen. Referat. Joachim Schenk. Abgabe:

Digitales Rauschen. Fachbereich Medieninformatik. Hochschule Harz. Digitales Rauschen. Referat. Joachim Schenk. Abgabe: Fachbereich Medieninformatik Hochschule Harz Digitales Rauschen Referat Joachim Schenk 10707 Abgabe: 15.01.2007 Inhaltsverzeichnis Vorwort...I 1 Einleitung...1 2 Digitalisierung...2 2.1 Digital-Analog-Umsetzer...2

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.006 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Übung 2. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T2 / Fr-T1 SS2017)

Übung 2. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T2 / Fr-T1 SS2017) Übung 2 Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T2 / Fr-T SS27) Dennis Fischer dennis.fischer@tum.de http://home.in.tum.de/fischerd Institut für Informatik Technische Universität

Mehr

Abschlussprüfung Nachrichtentechnik 03. August 2015

Abschlussprüfung Nachrichtentechnik 03. August 2015 Abschlussprüfung Nachrichtentechnik 03. August 2015 Name:... Vorname:... Matrikelnr.:... Studiengang:... Aufgabe 1 2 3 4 Summe Note Punkte Hinweis: Die Teilaufgaben (a), (b) und (c) können unabhängig voneinander

Mehr

Where Analog Meets Digital

Where Analog Meets Digital Where Analog Meets Digital Roland Küng, 2011 1 Applikationsbeispiel No Limits? 2 3 Wandler und ihre linearen Fehler Bisherige Charakterisierung 4 Nichtlineare Wandlerfehler Bisherige Charakterisierung

Mehr

Digitale Signalverarbeitung für Mikrofone (Digital signal processing for microphones)

Digitale Signalverarbeitung für Mikrofone (Digital signal processing for microphones) Digitale Signalverarbeitung für Mikrofone (Digital signal processing for microphones) Matthias Domke *, Hans-Peter Schade ** * Microtech Gefell GmbH, m.domke@microtechgefell.de ** Technische Universität

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1! Grundbegriffe 4.2! Frequenzspektren, Fourier-Transformation 4.3! Abtasttheorem: Eine zweite Sicht 4.4! Filter! Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Digitale Signalverarbeitung auf FPGAs

Digitale Signalverarbeitung auf FPGAs Digitale Signalverarbeitung auf FPGAs INP: Interpolation Upsampling und D/A-Wandlung Teil 1 Upsampling 2016 Dr. Christian Münker INP: Überblick Upsampling D/A-Wandlung Interpolation Oversampling DACs Dr.

Mehr

Rauschen. Signalverarbeitung. Zur Erinnerung. Fourier theorem

Rauschen. Signalverarbeitung. Zur Erinnerung. Fourier theorem verarbeitung 1. Klassifizierung und charakterisierung der e 2. verarbeitungskette Fourier theorem Rauschen f sinus t3 Rauschen: die gemessenen (als informationen dienenden) physikalischen Parameter, die

Mehr

Sukzessive Approximation

Sukzessive Approximation A/D-Wandler-Verfahren Sukzessive Approximation Analoge Messdaten müssen für einen Rechner übersetzt werden, damit er sie verarbeiten kann. A/D-Wandler arbeiten nach unterschiedlichen Verfahren und Auflösung

Mehr

Datenaquisition. Verstärker Filter. Sensor ADC. Objekt. Rechner

Datenaquisition. Verstärker Filter. Sensor ADC. Objekt. Rechner Datenaquisition Sensor Verstärker Filter ADC Objekt Rechner Datenaquisition Verstärker: - linearer Arbeitsbereich - linearer Frequenzgang - Vorkehrungen gegen Übersteuerung (trends, shot noise) - Verstärkerrauschen

Mehr

Die Eigenschaften von Systemen. S gesendet. S gesendet. S gesendet. Ideales System (idealer Wandler): Die Signaleigenschaften werden nicht verändert

Die Eigenschaften von Systemen. S gesendet. S gesendet. S gesendet. Ideales System (idealer Wandler): Die Signaleigenschaften werden nicht verändert Die Eigenschaften von Systemen Ideales System (idealer Wandler): Die Signaleigenschaften werden nicht verändert S gesendet IDEALER WANDLER S gesendet Reales System (realer Wandler): Es entstehen Verzerrungen

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Digitale und analoge Filter Wintersemester 6/7 Wiederholung Übertragung eines sinusförmigen Signals u t = U sin(ω t) y t = Y sin ω t + φ ω G(ω) Amplitude: Y = G ω U Phase:

Mehr

3. Informationsverarbeitung in Objekten

3. Informationsverarbeitung in Objekten 3. Informationsverarbeitung in Objekten 1 3.1. Abtastung von Signalen an der Schnittstelle 2 Falls System an einen Rechner angeschlossen ist wert- und zeit-diskrete Signale x * (t k ) = abstrakte Zahlen

Mehr

Erweiterung einer digitalen Übertragungsstrecke mit Einplatinencomputern zur Signalanalyse

Erweiterung einer digitalen Übertragungsstrecke mit Einplatinencomputern zur Signalanalyse Erweiterung einer digitalen mit Einplatinencomputern Alexander Frömming Mario Becker p.1 Inhalt 1 Ausgangssituation 2 Zielsetzung 3 Theoretische Grundlagen 4 Umsetzung - Hardware 5 Umsetzung - Software

Mehr

Signale und Systeme. Grundlagen und Anwendungen mit MATLAB

Signale und Systeme. Grundlagen und Anwendungen mit MATLAB Signale und Systeme Grundlagen und Anwendungen mit MATLAB Von Professor Dr.-Ing. Dr. h. c. Norbert Fliege und Dr.-Ing. Markus Gaida Universität Mannheim Mit 374 Bildern, 8 Tabellen und 38 MATLAB-Projekten

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien

Mehr

P4.1 Einführung in die Signalverarbeitung

P4.1 Einführung in die Signalverarbeitung P4.1 Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block 4 Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

PDM (Pulse Density Modulation)

PDM (Pulse Density Modulation) Fachbereich Medieninformatik Hochschule Harz PDM (Pulse Density Modulation) Referat Mario Judel 11274 Abgabe: 15.01.2007 Seite: 1 Inhaltsverzeichnis Einleitung...1 1 Grundlegendes zur Analog-Digital-Signalverarbeitung...4

Mehr

ADC und DAC Analyse mit high end Audio Analyzer von Audio Precision

ADC und DAC Analyse mit high end Audio Analyzer von Audio Precision ADC und DAC Analyse mit high end Audio Analyzer von Audio Precision Anforderungen des Standards AES17 an die Messtechnik und Auswertetools Tameq Schweiz GmbH Peter Wilhelm Agenda Analyse von Audio Analog-Digital

Mehr

Signale und Systeme. Martin Werner

Signale und Systeme. Martin Werner Martin Werner Signale und Systeme Lehr- und Arbeitsbuch mit MATLAB -Übungen und Lösungen 3., vollständig überarbeitete und erweiterte Auflage Mit 256 Abbildungen, 48 Tabellen und zahlreichen Beispielen,

Mehr

Systemtheorie abbildender Systeme

Systemtheorie abbildender Systeme Bandbegrenzung Bild in (b) nicht band-begrenzt: scharfe Kanten = Dirac-Funktionen = weißes Spektrum Erfordert Tapering vor Digitalisierung (Multiplikation mit geeigneter Fensterfunktion; auf Null drücken

Mehr

MPEG Audio Layer 1. Fachbereich Medieninformatik. Hochschule Harz. Referat. Kolja Schoon. Thema: MPEG Audio Layer 1

MPEG Audio Layer 1. Fachbereich Medieninformatik. Hochschule Harz. Referat. Kolja Schoon. Thema: MPEG Audio Layer 1 Fachbereich Medieninformatik Hochschule Harz MPEG Audio Layer 1 Referat Kolja Schoon 10952 Abgabe: 15.01.2007 Stand: (Januar 2007) Autor: Kolja Schoon Seite 1 Inhaltsverzeichnis 1. Einleitung / Vorwort...3

Mehr

Was sind Dezibel (db)?

Was sind Dezibel (db)? Was sind Dezibel (db)? Jürgen Stuber 2013-05-01 Jürgen Stuber () Was sind Dezibel (db)? 2013-05-01 1 / 13 Dezibel Logarithmische Skala zur Angabe von Leistung oder Intensität (Leistung pro Fläche) Jürgen

Mehr

David Möstel. Untersuchung der Realisierungsmöglichkeiten eines digitalen Direktempfängers zur Anwendung in der Mobilfunktechnik DIPLOMARBEIT

David Möstel. Untersuchung der Realisierungsmöglichkeiten eines digitalen Direktempfängers zur Anwendung in der Mobilfunktechnik DIPLOMARBEIT David Möstel Untersuchung der Realisierungsmöglichkeiten eines digitalen Direktempfängers zur Anwendung in der Mobilfunktechnik DIPLOMARBEIT HOCHSCHULE MITTWEIDA UNIVERSITY OF APPLIED SCIENCES Fakultät

Mehr

Dipl.-Ing Ulrich M. Menne, INI Gesamtschule Bad Sassendorf

Dipl.-Ing Ulrich M. Menne, INI Gesamtschule Bad Sassendorf 24.10.2015 1 Anwendungsgebiete: Tontechnik Bildtechnik Videotechnik Messtechnik Regelungstechnik Automobiltechnik Produktionstechnik uvm. 24.10.2015 2 analoge Tonübertragung mechanischer oder elektronischer

Mehr

Puls-Weiten-Modulation. Version: Datum: Autor: Werner Dichler

Puls-Weiten-Modulation. Version: Datum: Autor: Werner Dichler Puls-Weiten-Modulation Version: 0.0.2 Datum: 31.12.2015 Autor: Werner Dichler Inhalt Inhalt... 2 Grundlagen... 3 Methoden der Digital-Analog-Umsetzung... 3 Puls-Weiten-Modulation... 4 PWM-Filterung...

Mehr

Digitale Signalverarbeitung für Einsteiger Teil 2

Digitale Signalverarbeitung für Einsteiger Teil 2 Digitale Signalverarbeitung für Einsteiger Teil 2 Dipl.-Ing. Erich H. Franke, DK6II erich.franke@afusoft.com 55. Weinheimer UKW-Tagung 2010 RTTY: Ein kurzes Update Spektrale Breite im Funkkanal: B = 235

Mehr

Digitalisierung und Kodierung

Digitalisierung und Kodierung Digitalisierung und Kodierung Digitale Medien liegen in digitaler Form vor Deshalb werden analoge Medien digitalisiert und geeignet kodiert Ziel der Digitalisierung: effiziente Berechnung wenig Verluste

Mehr

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1.

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1. ZHAW, DSV, FS200, Rumc, DSV Modulprüfung 7 + 4 + 5 + 8 + 6 = 30 Punkte Name: Vorname: : 2: 3: 4: 5: Punkte: Note: Aufgabe : AD-DA-Umsetzung. + + +.5 +.5 + = 7 Punkte Betrachten Sie das folgende digitale

Mehr

Digitalisierung. Abtasttheorem Quantisierung Pulse-Code-Modulation Übungen Literatur und Quellen. Signale und Systeme VL 5

Digitalisierung. Abtasttheorem Quantisierung Pulse-Code-Modulation Übungen Literatur und Quellen. Signale und Systeme VL 5 Digitalisierung Abtasttheorem Quantisierung Pulse-Code-Modulation Übungen Literatur und Quellen 20.05.2015 Professor Dr.-Ing. Martin Werner Folie 1 Digitalisierung analoger Signale 4 Schritte Bandbegrenzung

Mehr

(Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!)

(Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!) Teil 1: Fragen und Kurzaufgaben (Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!) Frage 1 (6 Punkte) Es wird ein analoges

Mehr

Prüfung zur Vorlesung Signalverarbeitung am Name MatrNr. StudKennz.

Prüfung zur Vorlesung Signalverarbeitung am Name MatrNr. StudKennz. 442.0 Signalverarbeitung (2VO) Prüfung 8.3.26 Institut für Signalverarbeitung und Sprachkommunikation Prof. G. Kubin Technische Universität Graz Prüfung zur Vorlesung Signalverarbeitung am 8.3.26 Name

Mehr

Martin Meyer. Signalverarbeitung. Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER

Martin Meyer. Signalverarbeitung. Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER Martin Meyer Signalverarbeitung Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER VII 1 Einführung 1 1.1 Das Konzept der Systemtheorie 1 1.2 Übersicht über die Methoden

Mehr

Digital Signal Processing Audio Measurements Custom Designed Tools. Praktische MLS Messung mit typischen Fehlerbildern

Digital Signal Processing Audio Measurements Custom Designed Tools. Praktische MLS Messung mit typischen Fehlerbildern Praktische MLS Messung mit typischen Fehlerbildern In diesem praktischen Beispiel möchten wir Ihnen zeigen, wie Sie mit MLS den Frequenzgang einer Soundkarte messen können. MLS ist ein sehr leistungsfähiges

Mehr

Digitale Signalverarbeitung. mit MATLAB

Digitale Signalverarbeitung. mit MATLAB Martin Werner Digitale Signalverarbeitung mit MATLAB Grundkurs mit 16 ausführlichen Versuchen 3., vollständig überarbeitete und aktualisierte Auflage Mit 159 Abbildungen und 67 Tabellen Studium Technik

Mehr

Digital meets analog. Analoge Welt Messung physikalischer Größen mittels Sensoren analoge Spannung. Analog-Digital-Wandlung (A/D)

Digital meets analog. Analoge Welt Messung physikalischer Größen mittels Sensoren analoge Spannung. Analog-Digital-Wandlung (A/D) Überblick Grundlagen: Spannung, Strom, Widerstand, IV-Kennlinien Elektronische Messgeräte im Elektronikpraktikum Passive Filter Signaltransport im Kabel Transistor Operationsverstärker PID-egler Sensorik

Mehr

Stromwandler werden digital

Stromwandler werden digital Stromwandler werden digital LEM sorgt für eine Neuheit bei der Strommessung und entwickelt Stromwandler mit digitalem Ausgang und Sigma-Delta Bitstream-Schnittstelle Autor: Pascal Maeder Warum werden Stromwandler

Mehr

Zeitdiskrete Signalverarbeitung

Zeitdiskrete Signalverarbeitung Alan V. Oppenheim, Ronald W. Schafer, John R. Buck Zeitdiskrete Signalverarbeitung 2., überarbeitete Auflage ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario

Mehr

Übung 3. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T2 / Fr-T1 SS2017)

Übung 3. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T2 / Fr-T1 SS2017) Übung 3 Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T2 / Fr-T SS27) Dennis Fischer dennis.fischer@tum.de http://home.in.tum.de/fischerd Institut für Informatik Technische Universität

Mehr

Tontechnik 2. Digitale Filter. Digitale Filter. Zuordnung diskrete digitale Signale neue diskrete digitale Signale

Tontechnik 2. Digitale Filter. Digitale Filter. Zuordnung diskrete digitale Signale neue diskrete digitale Signale Tontechnik 2 Digitale Filter Audiovisuelle Medien HdM Stuttgart Digitale Filter Zuordnung diskrete digitale Signale neue diskrete digitale Signale lineares, zeitinvariantes, diskretes System (LTD-System)

Mehr

5. Beispiele - Filter Seite 15

5. Beispiele - Filter Seite 15 5. Beispiele - Filter Seite 15 5.2 Entwurf digitaler Filter Zur Demonstration eines rekursiv implementierten Tiefpasses (FIR Finite Impulse Response bzw. IIR Infinite Impulse Response) soll dieses Beispiel

Mehr

Kommunikationstechnik II Wintersemester 08/09

Kommunikationstechnik II Wintersemester 08/09 Kommunikationstechnik II Wintersemester 8/9 Prof. Dr. Stefan Weinzierl Musterlösung: 8. Aufgabenblatt Lösung in der Rechenübung am 9.1.9 1. Aufgabe: Fehlererkennung/-korrektur Audio Symbole mit einer Länge

Mehr

d 1 P N G A L S2 d 2

d 1 P N G A L S2 d 2 Abschlussprüfung Nachrichtentechnik 28. Juli 2014 Name:... Vorname:... Matrikelnr.:... Studiengang:... Aufgabe 1 2 3 4 Summe Note Punkte Hinweis: Die Teilaufgaben (a), (b) und (c) können unabhängig voneinander

Mehr