Computational Intelligence I Künstliche Neuronale Netze

Größe: px
Ab Seite anzeigen:

Download "Computational Intelligence I Künstliche Neuronale Netze"

Transkript

1 Computational Intelligence I Künstliche Neuronale Nete Universität Dortmund, Informatik I Otto-Hahn-Str. 6, Dortmund Inhalt der Vorlesung 0. Organisatorisches & Vorbemerkungen. Historie, biologisches Vorbild, Grundlagen, Formalia, Notation 2. Einelne Neuronen (XOR-Problem, Functional Link Nete) 3. Mehrschichtige, vorwärtsgerichtete künstliche neuronale Nete 4. Rekurrente künstliche neuronale Nete 5. Selbst-organisierende Karten XOR-Problem XOR Problem des Pereptron und des Adalines XOR-Funktion ist nicht linear trennbar einelnes Pereptron kann XOR-Funktion nicht modellieren einelnes Adaline kann XOR-Funktion ebenfalls nicht modellieren x Formal Berücksichtigung der 4 Fälle Bestimmung des Gewichtsvektors w und des Schwellwertes Fall x

2 XOR-Problem II Aktivierungsfunktion ( ) = sgn w x Bestimmung von w und führt u folgendem Gleichungssstem ( w ( ) ) ( w ( ) ) ( w ( ) ) ( w ( ) ). = sgn 0,0 4. = sgn, 2. = sgn 0, 3. = sgn,0 dies führt u folgendem Ungleichungssstem. w 0 + w 0 < 0 < 0 0 < 2 2. w 0 + w w w w + w 0 w w 2 4. w + w < 0 w + w < 0 w + w < lösbar (Ungleichungen -3) für beliebige w und, jedoch immer Widerspruch u Ungleichung 4 XOR-Problem - Lösung mittels weiterer Schicht Aufbau des Netes 2 Eingänge 2 Pereptrons in mittlerer Schicht Pereptron in Ausgabeschicht x

3 XOR-Problem - Lösung mittels weiterer Schicht II Funktionsweise verborgene Schicht bildet Diskriminatoren Ausgangsschicht berechnet NO und AND beider Halbebenen x Pereptron-Nete Einelnes Pereptron trennt bei n-dimensionaler Eingabe den Eingaberaum durch n--dimensionale Hperebene in wei eile kann jedes linear trennbare Problem lösen Wieviele linear trennbare Probleme existieren? Beispiel binäre Funktionen Dimension Anahl binäre Funktionen davon linear trennbar E E

4 Pereptron-Nete Zwei-schichtige Pereptron Nete Neuronen der ersten Schicht arbeiten wie üblich Berechnung der n--dimensionalen Hperebene für nicht linear trennbare Probleme klassifiiert jedes Neuron nur einen eil der rainingsmenge korrekt Neuronen der weiten Schicht können logische Operationen auf den Ergebnissen der Klassifikation der ersten Schicht ausführen AND OR NO Implikation Konvexe Polgone können klassifiiert werden Pereptron Nete Beispiel für ein wei-schichtiges Net x 2 3

5 Pereptron Nete Beispiel für ein wei-schichtiges Net drei Neuronen in der versteckten Schicht klassifiieren ein Neuron bildet logische AND-Funktion Resultat ist markiertes Polgon 3 2 x Pereptron Nete Beispiel für ein drei-schichtiges Net x A B

6 Pereptron Nete Beispiel für ein drei-schichtiges Net. versteckte Schicht wei Gruppen von je drei Neuronen, lineare Klassifikation 2. versteckte Schicht bildet für jede Gruppe logische AND-Funktion Ausgabeschicht berechnet logische Funktion A AND NO B Polgon A Polgon B x x Pereptron Nete Anmerkungen u versteckten Schichten mehr als wei versteckte Schichten erhöhen nicht die Klassifikationsfähigkeit des Pereptron Netes weitere versteckte Schichten können die Gesamtahl der Neuronen reduieren weitere versteckte Schichten können die Struktur des Netes übersichtlich gestalten Anmerkung um Lern-Algorithmus Pereptron-Lern-Algorithmus ist auf mehr-stufige Nete übertragbar andere Lernverfahren (insbesondere Verfahren, die auf Backpropagation basieren) sind jedoch erheblich besser

7 Alternative Lösung des XOR-Problems Alternativlösung Konstruieren einer usätlichen Eingabe usätliche Problemdimension erlaubt lineare rennung Beispiel Fall x x w 0 + w 0 + w < 0 w < 0 w < w 0 + w + w 0 w w w + w 0 + w 0 w w w + w + w 0 < 0 w + w < 0 w + w < Alternative Lösung des XOR-Problems II Pereptron (Wiederholung). w 0 + w 0 < 0 < 0 0 < 2 2. w 0 + w w w w + w 0 w w 2 4. w + w < 0 w + w < 0 w + w < Um usätliche Dimension erweitertes Pereptron. w 0 + w 0 + w < 0 w < 0 w < w 0 + w + w 0 w w w + w 0 + w 0 w w w + w + w 0 < 0 w + w < 0 w + w < Möglicher Gewichtsvektor und Schwellwert ( ) w = 2, 2, 4, = 3

8 Alternative Lösung des XOR-Problems III Beispiel (0,0,) x 3 (0,,0) x (,0,0) (,,0) Functional Link Nete Functional Link Nete Grundidee Erhöhen der Problemdimension durch usätliche Funktions-Eingänge Funktions-Eingänge entstehen funktional aus den Eingängen Netstruktur -schichtiges Net Eingänge sind direkt mit den Ausgangsneuronen verbunden Funktions-Eingänge sind mit Funktionen belegt Funktions-Eingänge sind direkt mit den Ausgangsneuronen verbunden Neuronen Neuronen der Ausgangsschicht sind Adalines Lernen Widrow-Hoff-Algorithmus kann verwendet werden

9 Functional Link Nete II Beispiel für ein Functional Link Net 2 Eingänge 2 Funktions-Eingänge 2 Ausgabeneuronen x 2 x 3 x 4 Funktions-Eingänge Functional Link Nete III Mögliche Realisierungen der Funktionseingänge ensor-modell mit ermen weiter Ordnung Eingänge gemäß Klassifikationsproblem x = ( ),, x x n Funktions-Eingänge x F = ( x x, x x, x x ) ensor-modell mit ermen höherer Ordnung Polnome Winkelfunktionen n

10 Functional Link Nete IV Beispiel XOR-Funktion als Functional Link Net Fall x x Ungleichungen. w 0 + w 0 + w 0 < 0 < 0 0 < w 0 + w + w 0 w 0 w w + w 0 + w 0 w 0 w w + w + w < 0 w + w + w < 0 w + w + w < Mögliche Lösung ( ) w = 2,2, 4, = Functional Link Nete V Beispiel 3-Bit-Parit Funktion Fall x x3 x < 0 2. w 3 3. w 2 4. w + w < w 6. w + w < w + w + w < w + w + w + w 2 3 4

11 Functional Link Nete VI Beispiel 3-Bit-Parit Funktion Fall x x3 x < 0 2. w 3 3. w 2 4. w + w < w 6. w + w < w + w + w < w + w + w + w Ungleichungssstem nicht lösbar! Functional Link Nete VII Beispiel 3-Bit-Parit Funktion Fall x x3 x < 0 2. w 3 3. w 2 4. w + w + w < w 6. w + w < w + w < w + w + w + w 2 3 4

12 Functional Link Nete VIII Beispiel 3-Bit-Parit Funktion Fall x x3 x < 0 2. w 3 3. w 2 4. w + w + w < w 6. w + w < w + w < w + w + w + w Ungleichungssstem nicht lösbar! Functional Link Nete IX Beispiel 3-Bit-Parit Funktion Fall x x3 xx < 0 2. w 3 3. w 2 4. w + w < w 6. w + w + w < w + w < w + w + w + w 2 3 4

13 Functional Link Nete X Beispiel 3-Bit-Parit Funktion Fall x x3 xx < 0 2. w 3 3. w 2 4. w + w < w 6. w + w + w < w + w < w + w + w + w Ungleichungssstem nicht lösbar! Functional Link Nete XI Beispiel 3-Bit-Parit Funktion Fall x x3 x x3 xx3 xxx Mögliche Lösung ur Übung

14 Fait I Pereptrons einfache Struktur einfacher Lernalgorithmus klassifiieren linear trennbare Probleme Adalines einfache Struktur (Erweiterung auf lineare rainings-aktivierungsfunktion) einfacher Lernalgorithmus klassifiieren linear trennbare Probleme Pereptron & Adaline Nete aus einfachen Neuronen aufgebaut regelmäßige Struktur Lernregeln nicht übertragbar auf mehrere Schichten Fait II Dimensionserhöhung der Neuronen Konstruieren einer usätlichen Eingabe usätliche Problemdimension erlaubt lineare rennung kein Sstem um Finden der usätlichen Eingabe Functional Link Nete sstematischer Ansat ur Dimensionserhöhung prinipiell keine Beschränkung auf Funktionenklasse starker Anstieg der Problemdimension Lernregel basierend auf Widrow-Hoff-Algorithmus

Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider

Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Versuch: Training des XOR-Problems mit einem Künstlichen Neuronalen Netz (KNN) in JavaNNS 11.04.2011 2_CI2_Deckblatt_XORbinaer_JNNS_2

Mehr

Was bisher geschah. Lernen: überwachtes Lernen. biologisches Vorbild neuronaler Netze: unüberwachtes Lernen

Was bisher geschah. Lernen: überwachtes Lernen. biologisches Vorbild neuronaler Netze: unüberwachtes Lernen Was bisher geschah Lernen: überwachtes Lernen korrigierendes Lernen bestärkendes Lernen unüberwachtes Lernen biologisches Vorbild neuronaler Netze: Neuron (Zellkörper, Synapsen, Axon) und Funktionsweise

Mehr

Technische Universität. Fakultät für Informatik

Technische Universität. Fakultät für Informatik Technische Universität München Fakultät für Informatik Forschungs- und Lehreinheit Informatik VI Neuronale Netze - Supervised Learning Proseminar Kognitive Robotik (SS12) Hannah Wester Betreuer: Dr. Florian

Mehr

Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und

Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und Ausgaben Aktivierungsfunktionen: Schwellwertfunktion

Mehr

Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik. 8. Aufgabenblatt

Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik. 8. Aufgabenblatt Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Albayrak, Fricke (AOT) Oer, Thiel (KI) Wintersemester 2014 / 2015 8. Aufgabenblatt

Mehr

Kapitel LF: IV. IV. Neuronale Netze

Kapitel LF: IV. IV. Neuronale Netze Kapitel LF: IV IV. Neuronale Netze Perzeptron-Lernalgorithmus Gradientenabstiegmethode Multilayer-Perzeptrons und ackpropagation Self-Organizing Feature Maps Neuronales Gas LF: IV-39 Machine Learning c

Mehr

Neuronale Netze mit mehreren Schichten

Neuronale Netze mit mehreren Schichten Neuronale Netze mit mehreren Schichten Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Neuronale Netze mit mehreren

Mehr

Kapitel LF: IV. Multilayer-Perzeptrons und Backpropagation. Multilayer-Perzeptrons und Backpropagation. LF: IV Machine Learning c STEIN 2005-06

Kapitel LF: IV. Multilayer-Perzeptrons und Backpropagation. Multilayer-Perzeptrons und Backpropagation. LF: IV Machine Learning c STEIN 2005-06 Kapitel LF: IV IV. Neuronale Netze Perzeptron-Lernalgorithmus Gradientenabstiegmethode Multilayer-Perzeptrons und ackpropagation Self-Organizing Feature Maps Neuronales Gas 39 Multilayer-Perzeptrons und

Mehr

Perzeptronen. Katrin Dust, Felix Oppermann Universität Oldenburg, FK II - Department für Informatik Vortrag im Rahmen des Proseminars 2004

Perzeptronen. Katrin Dust, Felix Oppermann Universität Oldenburg, FK II - Department für Informatik Vortrag im Rahmen des Proseminars 2004 Perzeptronen Katrin Dust, Felix Oppermann Universität Oldenburg, FK II - Department für Informatik Vortrag im Rahmen des Proseminars 2004 1/25 Gliederung Vorbilder Neuron McCulloch-Pitts-Netze Perzeptron

Mehr

Neuronale Netze (I) Biologisches Neuronales Netz

Neuronale Netze (I) Biologisches Neuronales Netz Neuronale Netze (I) Biologisches Neuronales Netz Im menschlichen Gehirn ist ein Neuron mit bis zu 20.000 anderen Neuronen verbunden. Milliarden von Neuronen beteiligen sich simultan an der Verarbeitung

Mehr

Gliederung. Biologische Motivation Künstliche neuronale Netzwerke. Anwendungsbeispiele Zusammenfassung. Das Perzeptron

Gliederung. Biologische Motivation Künstliche neuronale Netzwerke. Anwendungsbeispiele Zusammenfassung. Das Perzeptron Neuronale Netzwerke Gliederung Biologische Motivation Künstliche neuronale Netzwerke Das Perzeptron Aufbau Lernen und Verallgemeinern Anwendung Testergebnis Anwendungsbeispiele Zusammenfassung Biologische

Mehr

Einführung in neuronale Netze

Einführung in neuronale Netze Einführung in neuronale Netze Florian Wenzel Neurorobotik Institut für Informatik Humboldt-Universität zu Berlin 1. Mai 2012 1 / 20 Überblick 1 Motivation 2 Das Neuron 3 Aufbau des Netzes 4 Neuronale Netze

Mehr

Selbstorganisierende Karten

Selbstorganisierende Karten Selbstorganisierende Karten Yacin Bessas yb1@informatik.uni-ulm.de Proseminar Neuronale Netze 1 Einleitung 1.1 Kurzüberblick Die Selbstorganisierenden Karten, auch Self-Organizing (Feature) Maps, Kohonen-

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20 Gliederung / Künstliche Neuronale Netze Perzeptron Einschränkungen Netze von Perzeptonen Perzeptron-Lernen Perzeptron Künstliche Neuronale Netze Perzeptron 3 / Der Psychologe und Informatiker Frank Rosenblatt

Mehr

Daten verarbeiten. Binärzahlen

Daten verarbeiten. Binärzahlen Daten verarbeiten Binärzahlen In Digitalrechnern werden (fast) ausschließlich nur Binärzahlen eingesetzt. Das Binärzahlensystem ist das Stellenwertsystem mit der geringsten Anzahl von Ziffern. Es kennt

Mehr

Vorkurs Mathematik Übungen zu Polynomgleichungen

Vorkurs Mathematik Übungen zu Polynomgleichungen Vorkurs Mathematik Übungen zu en 1 Aufgaben Lineare Gleichungen Aufgabe 1.1 Ein Freund von Ihnen möchte einen neuen Mobilfunkvertrag abschließen. Es gibt zwei verschiedene Angebote: Anbieter 1: monatl.

Mehr

Noten ausrechnen mit Excel/Tabellenkalkulation. 1) Individuellen Notenschlüssel/Punkteschlüssel erstellen

Noten ausrechnen mit Excel/Tabellenkalkulation. 1) Individuellen Notenschlüssel/Punkteschlüssel erstellen Noten ausrechnen mit Excel/Tabellenkalkulation online unter: www.lehrerfreund.de/in/schule/1s/notenschluessel-excel Dies ist eine Einführung in die Funktionen von Excel, die Sie brauchen, um Noten und

Mehr

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 7 Lineare Programmierung II 1 Lineare Programme Lineares Programm: Lineare Zielfunktion Lineare Nebenbedingungen (Gleichungen oder Ungleichungen) Spezialfall der konvexen Optimierung

Mehr

0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet).

0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet). Aufgabe 0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet). 1. i) Wie ist die Darstellung von 50 im Zweier =Komplement? ii) Wie ist die Darstellung von 62 im Einer =Komplement?

Mehr

Grundlagen der Informationverarbeitung

Grundlagen der Informationverarbeitung Grundlagen der Informationverarbeitung Information wird im Computer binär repräsentiert. Die binär dargestellten Daten sollen im Computer verarbeitet werden, d.h. es müssen Rechnerschaltungen existieren,

Mehr

Softwaretechnologie -Wintersemester 2013/2014 - Dr. Günter Kniesel

Softwaretechnologie -Wintersemester 2013/2014 - Dr. Günter Kniesel Übungen zur Vorlesung Softwaretechnologie -Wintersemester 2013/2014 - Dr. Günter Kniesel Übungsblatt 3 - Lösungshilfe Aufgabe 1. Klassendiagramme (9 Punkte) Sie haben den Auftrag, eine Online-Videothek

Mehr

Growing neural Gas Strukturen lernen. Torsten Siedel 23.05.2012

Growing neural Gas Strukturen lernen. Torsten Siedel 23.05.2012 Growing neural Gas Strukturen lernen Torsten Siedel 23.05.2012 Inhalt 1. Prozess der Selbstorganisation 2. Lernen - momentan oder statistisch? 3. Vektorbasierte Neuronale Netze 4. Klassifizierung der Lernverfahren

Mehr

Lehrstuhl Informatik VI Grundzüge der Informatik * WS 2008/2009 Prof. Dr. Joachim Biskup

Lehrstuhl Informatik VI Grundzüge der Informatik * WS 2008/2009 Prof. Dr. Joachim Biskup Universität Dortmund Lehrstuhl Informatik VI Grundzüge der Informatik * WS 28/29 Prof. Dr. Joachim Biskup Leitung der Übungen: Arno Pasternak Lösungs-Ideen Übungsblatt 6 A: Grammatiken, Syntaxdiagramme

Mehr

Einführung in. Logische Schaltungen

Einführung in. Logische Schaltungen Einführung in Logische Schaltungen 1/7 Inhaltsverzeichnis 1. Einführung 1. Was sind logische Schaltungen 2. Grundlegende Elemente 3. Weitere Elemente 4. Beispiel einer logischen Schaltung 2. Notation von

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Java Einführung Operatoren Kapitel 2 und 3

Java Einführung Operatoren Kapitel 2 und 3 Java Einführung Operatoren Kapitel 2 und 3 Inhalt dieser Einheit Operatoren (unär, binär, ternär) Rangfolge der Operatoren Zuweisungsoperatoren Vergleichsoperatoren Logische Operatoren 2 Operatoren Abhängig

Mehr

Algorithmische Kryptographie

Algorithmische Kryptographie Algorithmische Kryptographie Walter Unger Lehrstuhl für Informatik I 16. Februar 2007 Quantenkryptographie 1 Einleitung Grundlagen aus der Physik 2 Datenübertragung 1. Idee 2. Idee Nochmal Physik 3 Sichere

Mehr

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

A.3. A.3 Spezielle Schaltnetze. 2002 Prof. Dr. Rainer Manthey Informatik II 1

A.3. A.3 Spezielle Schaltnetze. 2002 Prof. Dr. Rainer Manthey Informatik II 1 Spezielle Schaltnetze Spezielle Schaltnetze 22 Prof. Dr. Rainer Manthey Informatik II Übersicht in diesem Abschnitt: : Vorstellung einiger wichtiger Bausteine vieler elektronischer Schaltungen, die sich

Mehr

Anleitung zur Excel-Anwendung Basisprämienberechnung

Anleitung zur Excel-Anwendung Basisprämienberechnung Anleitung zur Excel-Anwendung Basisprämienberechnung Inhaltsverzeichnis Inhaltsverzeichnis... 1 Abbildungsverzeichnis... 1 1. Einleitung... 2 2. Allgemeine Anwendungshinweise... 2 3. Die Tabellenkalkulation...

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine

Mehr

Zellulare Neuronale Netzwerke

Zellulare Neuronale Netzwerke Fakultät Informatik, Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Zellulare Neuronale Netzwerke Florian Bilstein Dresden, 13.06.2012 Gliederung 1.

Mehr

Jede Zahl muss dabei einzeln umgerechnet werden. Beginnen wir also ganz am Anfang mit der Zahl,192.

Jede Zahl muss dabei einzeln umgerechnet werden. Beginnen wir also ganz am Anfang mit der Zahl,192. Binäres und dezimales Zahlensystem Ziel In diesem ersten Schritt geht es darum, die grundlegende Umrechnung aus dem Dezimalsystem in das Binärsystem zu verstehen. Zusätzlich wird auch die andere Richtung,

Mehr

WinWerk. Prozess 4 Akonto. KMU Ratgeber AG. Inhaltsverzeichnis. Im Ifang 16 8307 Effretikon

WinWerk. Prozess 4 Akonto. KMU Ratgeber AG. Inhaltsverzeichnis. Im Ifang 16 8307 Effretikon Prozess 4 Akonto WinWerk 8307 Effretikon Telefon: 052-740 11 11 Telefax: 052 740 11 71 E-Mail info@kmuratgeber.ch Internet: www.winwerk.ch Inhaltsverzeichnis 1 Akonto... 2 1.1 Allgemein... 2 2 Akontobeträge

Mehr

Organisation. Was kommt zum Test? Buch Informatik Grundlagen bis inkl. Kapitel 7.4 Wissensfragen und Rechenbeispiele

Organisation. Was kommt zum Test? Buch Informatik Grundlagen bis inkl. Kapitel 7.4 Wissensfragen und Rechenbeispiele Organisation Was kommt zum Test? Buch Informatik Grundlagen bis inkl Kapitel 74 Wissensfragen und Rechenbeispiele 3 Vorträge zur Übung Informationstheorie, Huffman-Codierung und trennzeichenfreie Codierung

Mehr

Kapiteltests zum Leitprogramm Binäre Suchbäume

Kapiteltests zum Leitprogramm Binäre Suchbäume Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

4. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04

4. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04 4. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04 JOACHIM VON ZUR GATHEN, OLAF MÜLLER, MICHAEL NÜSKEN Abgabe bis Freitag, 14. November 2003, 11 11 in den jeweils richtigen grünen oder roten Kasten

Mehr

Mathematik I Prüfung für den Übertritt aus der 9. Klasse

Mathematik I Prüfung für den Übertritt aus der 9. Klasse Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

I. II. I. II. III. IV. I. II. III. I. II. III. IV. I. II. III. IV. V. I. II. III. IV. V. VI. I. II. I. II. III. I. II. I. II. I. II. I. II. III. I. II. III. IV. V. VI. VII. VIII.

Mehr

Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet.

Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet. Widerstandsnetzwerke - Grundlagen Diese Aufgaben dienen zur Übung und Wiederholung. Versucht die Aufgaben selbständig zu lösen und verwendet die Lösungen nur zur Überprüfung eurer Ergebnisse oder wenn

Mehr

Künstliches binäres Neuron

Künstliches binäres Neuron Künstliches binäres Neuron G.Döben-Henisch Fachbereich Informatik und Ingenieurwissenschaften FH Frankfurt am Main University of Applied Sciences D-60318 Frankfurt am Main Germany Email: doeben at fb2.fh-frankfurt.de

Mehr

1. LPC - Lehmanns Programmier Contest - Lehmanns Logo

1. LPC - Lehmanns Programmier Contest - Lehmanns Logo Aufgabe ist die Entwicklung einer vereinfachten Variante der beliebten Programmiersprache Logo. Die Aufgabe ist in drei Stufen zu erledigen, von der wir zunächst nur die erste Stufe bekannt geben. Die

Mehr

183.580, WS2012 Übungsgruppen: Mo., 22.10.

183.580, WS2012 Übungsgruppen: Mo., 22.10. VU Grundlagen digitaler Systeme Übung 2: Numerik, Boolesche Algebra 183.580, WS2012 Übungsgruppen: Mo., 22.10. Aufgabe 1: Binäre Gleitpunkt-Arithmetik Addition & Subtraktion Gegeben sind die Zahlen: A

Mehr

- Strukturentwurf elementarer Rechenwerke - Grund-Flipflop (RS-Flipflop) - Register, Schieberegister, Zähler

- Strukturentwurf elementarer Rechenwerke - Grund-Flipflop (RS-Flipflop) - Register, Schieberegister, Zähler 3.Übung: Inhalte: - binäre Logik, boolsche Gleichungen - logische Grundschaltungen - trukturentwurf elementarer echenwerke - Grund-Flipflop (-Flipflop) - egister, chieberegister, Zähler Übung Informatik

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

Inventur. mit Microsoft Dynamics NAV 2013 R2

Inventur. mit Microsoft Dynamics NAV 2013 R2 Inventur mit Microsoft Dynamics NAV (2013 R2) Angaben zum Dokument Autor Pablo Maurer Revidiert von Armin Brack Version 2013 R2 Status Gültig In Arbeit: Ausgabedatum 26.05.14 Hinweise zu den Symbolen Wichtiger

Mehr

Das Perzeptron. Künstliche neuronale Netze. Sebastian Otte. 1 Grundlegendes. 2 Perzeptron Modell

Das Perzeptron. Künstliche neuronale Netze. Sebastian Otte. 1 Grundlegendes. 2 Perzeptron Modell Fachbereich Design Informatik Medien Studiengang Master Informatik Künstliche neuronale Netze Das Perzeptron Sebastian Otte Dezember 2009 1 Grundlegendes Als Perzeptron bezeichnet man eine Form von künstlichen

Mehr

Formale Sprachen. Der Unterschied zwischen Grammatiken und Sprachen. Rudolf Freund, Marian Kogler

Formale Sprachen. Der Unterschied zwischen Grammatiken und Sprachen. Rudolf Freund, Marian Kogler Formale Sprachen Der Unterschied zwischen Grammatiken und Sprachen Rudolf Freund, Marian Kogler Es gibt reguläre Sprachen, die nicht von einer nichtregulären kontextfreien Grammatik erzeugt werden können.

Mehr

Nullserie zur Prüfungsvorbereitung

Nullserie zur Prüfungsvorbereitung Nullserie zur Prüfungsvorbereitung Die folgenden Hilfsmittel und Bedingungen sind an der Prüfung zu beachten. Erlaubte Hilfsmittel Beliebiger Taschenrechner (Der Einsatz von Lösungs- und Hilfsprogrammen

Mehr

Zahlen und Fakten zur Pflegeversicherung (01/05)

Zahlen und Fakten zur Pflegeversicherung (01/05) Zahlen und Fakten zur Pflegeversicherung (01/05) XXZahlen+Fakten (K) I. Zahl der Versicherten Soziale Pflegeversicherung rd. 70,36 Mio (Stand: 01.04.2004) Private Pflege-Pflichtversicherung rd. 8,92 Mio

Mehr

Studien News. Juni 2015

Studien News. Juni 2015 Studien News Juni 2015 1 Agenda STUDIEN NEWS JUNI 2015 - Studie: Mobile Activity Trends 2015 I - Tomorrow Focus Studie: Video Effects 2015 - IP Trendline: Potenziale kostenpflichtiger Online-Videotheken

Mehr

W-Rechnung und Statistik für Ingenieure Übung 11

W-Rechnung und Statistik für Ingenieure Übung 11 W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) Mathematikgebäude Raum 715 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) W-Rechnung und Statistik

Mehr

Methoden zur Visualisierung von Ergebnissen aus Optimierungs- und DOE-Studien

Methoden zur Visualisierung von Ergebnissen aus Optimierungs- und DOE-Studien Methoden zur Visualisierung von Ergebnissen aus Optimierungs- und DOE-Studien Katharina Witowski katharina.witowski@dynamore.de Übersicht Beispiel Allgemeines zum LS-OPT Viewer Visualisierung von Simulationsergebnissen

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Vorbereitungsaufgaben

Vorbereitungsaufgaben Praktikum Bildverarbeitung / Bildinformationstechnik Versuch BV 4 / BIT 3: Mustererkennung Paddy Gadegast, CV00, 160967 Alexander Opel, CV00, 16075 Gruppe 3 Otto-von-Guericke Universität Magdeburg Fakultät

Mehr

Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt 4

Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt 4 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter H. Schmitt David Farago, Christoph Scheben, Mattias Ulbrich Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt

Mehr

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 4 Woche Decodierung; Maximale, Perfekte und Optimale Codes 4 Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 Szenario für fehlerkorrigierende Codes Definition (n, M)-Code Sei C {0, 1}

Mehr

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können. 6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente

Mehr

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery Seminar Business Intelligence Teil II Data Mining & Knowledge Discovery Was ist Data Mining? Sabine Queckbörner Was ist Data Mining? Data Mining Was ist Data Mining? Nach welchen Mustern wird gesucht?

Mehr

Kohonennetze Selbstorganisierende Karten

Kohonennetze Selbstorganisierende Karten Kohonennetze Selbstorganisierende Karten Julian Rith, Simon Regnet, Falk Kniffka Seminar: Umgebungsexploration und Wegeplanung mit Robotern Kohonennetze: Neuronale Netze In Dendriten werden die ankommenden

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 1 8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 2 8.6.3 Beispiel: Orts- und Impuls-Erwartungswerte für

Mehr

Pädagogische Hochschule Thurgau. Lehre Weiterbildung Forschung

Pädagogische Hochschule Thurgau. Lehre Weiterbildung Forschung Variante 1 Swisscom-Router direkt ans Netzwerk angeschlossen fixe IP-Adressen (kein DHCP) 1. Aufrufen des «Netz- und Freigabecenters». 2. Doppelklick auf «LAN-Verbindung» 3. Klick auf «Eigenschaften» 4.

Mehr

Hannah Wester Juan Jose Gonzalez

Hannah Wester Juan Jose Gonzalez Neuronale Netze Supervised Learning Proseminar Kognitive Robotik (SS12) Hannah Wester Juan Jose Gonzalez Kurze Einführung Warum braucht man Neuronale Netze und insbesondere Supervised Learning? Das Perzeptron

Mehr

Der Einsatz künstlicher neuronaler Netze in der industriellen Feuerversicherung

Der Einsatz künstlicher neuronaler Netze in der industriellen Feuerversicherung Tobias Nagel Der Einsatz künstlicher neuronaler Netze in der industriellen Feuerversicherung PETER LANG Frankfurt am Main Berlin Bern Bruxelles New York- Oxford Wien Inhaltsverzeichnis Inhaltsverzeichnis

Mehr

Kontrollfragen Die nötigen Netzwerkgrundlagen

Kontrollfragen Die nötigen Netzwerkgrundlagen Kontrollfragen Die nötigen Netzwerkgrundlagen ISO/OSI Referenzmodell Ordnung muss sein... Das ISO/OSI-Referenzmodell besteht bekanntlich aus sieben unterschiedlichen Schichten. Welche der offerierten Varianten

Mehr

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen?

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? BITte ein BIT Vom Bit zum Binärsystem A Bit Of Magic 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? 3. Gegeben ist der Bitstrom: 10010110 Was repräsentiert

Mehr

4. Übungsblatt Matrikelnr.: 6423043

4. Übungsblatt Matrikelnr.: 6423043 Lineare Algebra I 1. Name: Bleeck, Christian 4. Übungsblatt Matrikelnr.: 6423043 Abgabe: 15.11.06 12 Uhr (Kasten D1 320) Übungsgruppe: 03 Patrick Schützdeller 2. Name: Niemann, Philipp Matrikelnr.: 6388613

Mehr

Auswertungssoftware des Deutschen-Motorik-Tests

Auswertungssoftware des Deutschen-Motorik-Tests Auswertungssoftware des Deutschen-Motorik-Tests Mit der Online-Auswertungssoftware für den Deutschen- Motorik-Test können empirisch gemessene Daten der Test-Übungen des DMT ausgewertet werden. Des Weiteren

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................

Mehr

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12)

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Technische Universität München Zentrum Mathematik PD Dr. hristian Karpfinger http://www.ma.tum.de/mathematik/g8vorkurs 5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Aufgabe 5.1: In einer Implementierung

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

Gesucht und Gefunden: Die Funktionsweise einer Suchmaschine

Gesucht und Gefunden: Die Funktionsweise einer Suchmaschine Gesucht und Gefunden: Die Funktionsweise einer Suchmaschine Prof. Dr. Peter Becker FH Bonn-Rhein-Sieg Fachbereich Informatik peter.becker@fh-bonn-rhein-sieg.de Vortrag im Rahmen des Studieninformationstags

Mehr

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Klausur, Multivariate Verfahren, SS 2006, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 08.08.2006 Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Gesamtpunkte: 39 Aufgabe

Mehr

Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015

Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015 Markovketten Markovketten sind ein häufig verwendetes Modell zur Beschreibung von Systemen, deren Verhalten durch einen zufälligen Übergang von einem Systemzustand zu einem anderen Systemzustand gekennzeichnet

Mehr

Übungen zum Fach Betriebssysteme Kapitel 3

Übungen zum Fach Betriebssysteme Kapitel 3 Übungen zum Fach Betriebssysteme Kapitel 3 Prof. Dr. Kern & Prof. Dr. Wienkop Prozessverwaltung 1 Prozeßauslagerung Ein Betriebssystem, das die Zustände "rechnend", "bereit" und "wartend" sowie den künstlichen

Mehr

#CRYPTO888 MITGLIEDER CLUB

#CRYPTO888 MITGLIEDER CLUB MITGLIEDER CLUB Crypto888 die Crypto Programm Präsenta4on Das Crypto888 Programm Das Crypto Programm ist ein Sportwettensystem, in dem das Crypto888 Programm Einsätze auf verschiedene Sportwetten zur Gewinnmaximierung

Mehr

Motivation im Betrieb

Motivation im Betrieb LUTZ VON ROSENSTIEL Motivation im Betrieb Mit Fallstudien aus der Praxis ROSENBERGER FACHVERLAG LEONBERG IX Vorbemerkung zur 11. Auflage Vorbemerkung zur 10. Auflage Empfehlungen für den Leser Zielsetzung

Mehr

Eine Logikschaltung zur Addition zweier Zahlen

Eine Logikschaltung zur Addition zweier Zahlen Eine Logikschaltung zur Addition zweier Zahlen Grundlegender Ansatz für die Umsetzung arithmetischer Operationen als elektronische Schaltung ist die Darstellung von Zahlen im Binärsystem. Eine Logikschaltung

Mehr

Übungsaufgaben. - Vorgehensweise entsprechend dem Algorithmus der schriftlichen Multiplikation

Übungsaufgaben. - Vorgehensweise entsprechend dem Algorithmus der schriftlichen Multiplikation Übungsaufgaben Anmerkung Allen Beispielen soll noch hinzugefügt sein, dass wertvolle Hinweise, also die Tipps und Tricks die der schnellen maschinellen Multiplikation zu Grunde liegen, neben dem toff zur

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007

R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007 R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007 SG15/25D NAME: Lösungen 1. In einer Packung sind Glühbirnen, davon sind zwei

Mehr

Hedges of a Net Investment in a Foreign Operation

Hedges of a Net Investment in a Foreign Operation IFRIC Draft Interpretation D 22 Hedges of a Net Investment in a Foreign Operation Dr. Martin Schmidt Berlin, 2. Oktober 2007-1 - IFRIC D 22 Hintergrund funktionale Währung einer Foreign Operation (Zweigstelle,

Mehr

Einfache Ausdrücke Datentypen Rekursive funktionale Sprache Franz Wotawa Institut für Softwaretechnologie wotawa@ist.tugraz.at

Einfache Ausdrücke Datentypen Rekursive funktionale Sprache Franz Wotawa Institut für Softwaretechnologie wotawa@ist.tugraz.at Inhalt SWP Funktionale Programme (2. Teil) Einfache Ausdrücke Datentypen Rekursive funktionale Sprache Franz Wotawa Institut für Softwaretechnologie wotawa@ist.tugraz.at Interpreter für funktionale Sprache

Mehr

http://www.olympiade-mathematik.de 4. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen

http://www.olympiade-mathematik.de 4. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen 4. Mathematik Olympiade Saison 1964/1965 Aufgaben und Lösungen 1 OJM 4. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

Informatik-Sommercamp 2012. Mastermind mit dem Android SDK

Informatik-Sommercamp 2012. Mastermind mit dem Android SDK Mastermind mit dem Android SDK Übersicht Einführungen Mastermind und Strategien (Stefan) Eclipse und das ADT Plugin (Jan) GUI-Programmierung (Dominik) Mastermind und Strategien - Übersicht Mastermind Spielregeln

Mehr

Systemanalyse. - Folien zur Vorlesung für AI3 im Sommersemester 2010 - -Teil 4 -

Systemanalyse. - Folien zur Vorlesung für AI3 im Sommersemester 2010 - -Teil 4 - Systemanalyse - Folien zur Vorlesung für AI3 im Sommersemester 2010 - -Teil 4 - Hans-Jürgen Steffens (by courtesy of Prof. Dr. Thomas Allweyer) Fachbereich Informatik und Mikrosystemtechnik Fachhochschule

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN Wir wollen nun die Rechengesetze der natürlichen Zahlen auf die Zahlenmenge der ganzen Zahlen erweitern und zwar so, dass sie zu keinem Widerspruch mit bisher geltenden

Mehr

DAP2-Klausur 07.08.2004

DAP2-Klausur 07.08.2004 DAP2-Klausur 07.08.2004 Vorname : Familienname: Ich studiere (Bitte markieren): Informatik/Inform. Lehramt/Inf.technik/Physik/ Mathe/Statistik/Sonstiges: Bitte beachten: Auf jedem Blatt Matrikelnummer

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

Online-Bestellung Tageskarten für Mitglieder des FC St. Pauli, die nicht im Besitz einer Dauer- oder Saisonkarte sind.

Online-Bestellung Tageskarten für Mitglieder des FC St. Pauli, die nicht im Besitz einer Dauer- oder Saisonkarte sind. Online-Bestellung Tageskarten für Mitglieder des FC St. Pauli, die nicht im Besitz einer Dauer- oder Saisonkarte sind. 1. Anmeldung Soweit noch nicht geschehen, muss im Vorfeld (vor Verkaufsstart am 21.07.)

Mehr

Reguläre Sprachen Endliche Automaten

Reguläre Sprachen Endliche Automaten Endliche Automaten (Folie 54, Seite 16 im Skript) Einige Vorteile endlicher deterministischer Automaten: durch Computer schnell simulierbar wenig Speicher benötigt: Tabelle für δ (read-only), aktueller

Mehr

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Ziel: Nachrichten fehlerfrei übertragen und ökonomisch (wenig Redundanz) übertragen Was ist der Hamming-Abstand?

Mehr

Aufgaben zum Datenmanagement

Aufgaben zum Datenmanagement Aufgaben zum Datenmanagement Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/10 Datentransformationen Berechnung neuer Variablen Berechne das Durchschnittsalter und die Durchschnittsgröße beider

Mehr

Alignment-Verfahren zum Vergleich biologischer Sequenzen

Alignment-Verfahren zum Vergleich biologischer Sequenzen zum Vergleich biologischer Sequenzen Hans-Joachim Böckenhauer Dennis Komm Volkshochschule Zürich. April Ein biologisches Problem Fragestellung Finde eine Methode zum Vergleich von DNA-Molekülen oder Proteinen

Mehr

Projektgruppe Algorithmen für die Cloud-unterstützte 3-D-Darstellung auf mobilen Endgeräten

Projektgruppe Algorithmen für die Cloud-unterstützte 3-D-Darstellung auf mobilen Endgeräten Projektgruppe Algorithmen für die Cloud-unterstützte 3-D-Darstellung auf mobilen Endgeräten WS 2011/2012 bis SS 2012 11. Juli 2011 Benjamin Eikel Matthias Fischer Projektgruppe Algorithmen für die Cloud-unterstützte

Mehr