Seminar Stochastische Unternehmensmodelle Varianzreduzierende Techniken

Größe: px
Ab Seite anzeigen:

Download "Seminar Stochastische Unternehmensmodelle Varianzreduzierende Techniken"

Transkript

1 Seminar Stochastische Unternehmensmodelle Varianzreduzierende Techniken 25. Juni / 37

2 Übersicht 1. Ziel des Vortrags 2. Einleitung 3. Varianzreduzierende Techniken Bedingtes Monte Carlo Importance Sampling 4. Diskrepanz geringe Diskrepanz Koksma-Hlawka Ungleichung 5. Low-Discrepancy Folgen Vorteil anhand eines Beispiels Beispiel Halton Folge mit Basis 3 Beispiel Vergleich Sobol zu Faure 6. Zusammenfassung 2 / 37

3 Ziel des Vortrags Was sind Monte-Carlo-Simulationen? Was wollen die Lebensversicherer mit den Monte-Carlo-Methoden erreichen? Bewertung von (komplizierten) Cashflows Da jedoch keine Formel zu dessen Bestimmung existiert MC Methode Ziel: Wahren Wert bzw. Verteilung zu schätzen Da nur endliche Rechenkapazität: Begrenzte Anzahl an MC-Simulationen Ziel der varianzreduzierenden Techniken: möglichst gute Approximation 3 / 37

4 Übersicht 1. Ziel des Vortrags 2. Einleitung 3. Varianzreduzierende Techniken Bedingtes Monte Carlo Importance Sampling 4. Diskrepanz geringe Diskrepanz Koksma-Hlawka Ungleichung 5. Low-Discrepancy Folgen Vorteil anhand eines Beispiels Beispiel Halton Folge mit Basis 3 Beispiel Vergleich Sobol zu Faure 6. Zusammenfassung 4 / 37

5 Einführung 1/6 Die Monte Carlo Methode ist eine Methode zur numerischen Integration mit Hilfe einer Folge von Zufallszahlen mit I(f ) = 1 f (x)dx 1 n 0 } {{ } (1) n f (ξ i ) = I N (f ) i=1 wobei f bekannt Integral von f zu approximieren n Anzahl zufälliger Punkte und ξ 1,..., ξ n [0, 1] Beispiel Wähle für ξ i = i n i 1,..., n so ergibt sich die Trapezregel. 5 / 37

6 Einführung 2/6 Wir wollen den Fehler I N (f ) I(f ) minimieren: I N (f ) I(f ) = 1 n n f (ξ i ) E[f ] i=1 G.d.g.Z. durch normalvert. ZV mit µ = 0 und σ2 n wobei : σ 2 = (f (ξ) I) 2 dξ [0,1] s beschrieben werden So ergibt sich das 95%-Konfidenzintervall I n (f ) + 1, 96 ˆσ n 6 / 37

7 Einführung 3/6 wobei ˆσ 2 = 1 n n (f (ξ i )) 2 In(f 2 ). i=1 So ergibt sich die Fehlerschranke : O(n 1 2 ) Merke Um eine zusätzliche genaue Kommastelle eines Schätzwerts zu bekommen muss die Zahl n um den Faktor 100 wachsen. 7 / 37

8 Einführung 4/6 Wenn man nun keine Vorschrift (vgl. Trapezregel) um die Stützstellen ξ i zu generieren, sondern randmoisierte Monte Carlo Methode Ziel: Folgen zu finden, sodass möglichst geringe Rechenzeit möglichst große Genauigkeit möglichst kleine Diskrepanz (Low-Discrepancy Folgen) Definition Wenn die Koordinatenmit Hilfe Low-Discrepancy Folgen generiert werden wird die Methode als quasi-monte Carlo Methode bezeichnet. 8 / 37

9 Einführung 5/6 Merke Diese Folgen helfen dabei den Raum anstelle mit Millionen (exakten) Werten, (möglichst) intelligent, mit deutlich weniger Punkten abzudecken. Simulation und Auswertung zur Approximation Beispiel Mit Hilfe dieser Verfahren kann man u.a. das Solvency Capital Requirement ( eine Sollgröße für das EK) bestimmen π bestimmen 9 / 37

10 Einführung 6/6 Abbildung: Approximation von π mit Hilfe eines Viertelkreises Bildquelle: 10 / 37

11 Übersicht 1. Ziel des Vortrags 2. Einleitung 3. Varianzreduzierende Techniken Bedingtes Monte Carlo Importance Sampling 4. Diskrepanz geringe Diskrepanz Koksma-Hlawka Ungleichung 5. Low-Discrepancy Folgen Vorteil anhand eines Beispiels Beispiel Halton Folge mit Basis 3 Beispiel Vergleich Sobol zu Faure 6. Zusammenfassung 11 / 37

12 Varianzreduzierende Techniken 1 Man versucht eine andere ZV Z als Z zu finden, sodass α = E[g(Z )] = g(z )df R s Z (z ) äquivalent zu (1) mit g : R s R. Beispiel: europäische Option g(z ) Payoff der Option F Z Verteilungsfunktion des Underlyings sodass: E[g(Z )] = E[g(Z )] (1) jedoch :Var[g(Z )] < Var[g(Z )] (2) 12 / 37

13 Bedingtes Monte Carlo Sei Y eine weitere, aber gleichzeitig erzeugte ZV wie Z. Dann gilt: g 1 (Y ) = E[g(Z ) Y ] und E[g 1 (Y )] = E[g(Z )] = α Dann kann man für g 1 (Y ) den MC Schätzer von α verwenden: Var[g(Z )] =Var[E[g(Z ) Y ]] + E[Var[[g(Z ) Y ]] }{{}}{{} Vor. 0 Var[g 1 (Y )] Var[g(Z )] Varianzreduktion. 13 / 37

14 Importance Sampling Idee: anderes Wahrscheinlichkeitsmaß verwenden wichtige Pfad mehr Gewicht Effizienz erhöhen F Z hat Dichte f : R s R + α = E[g(Z )] = g(z)f (z)dz. R s Sei nun f I : R s R + andere Dichtefkt., sodass f I (z) > 0 z R s \{z : f (z) g(z) = 0} α = g(z) f (z) [ R s f I (z) f I(z)dz = E I g(z) f (z) ] f I (z) Z mit f I verteilt. 14 / 37

15 Generiere Stichproben z 1,..., z n und verwende erwartungstreuen Schätzer: ˆα I = 1 n n i=1 g(z i ) f (z i) f I (z i ) Varianzreduktion falls f I so gewählt, dass [ ( E I g(z ) f (Z ) ) ] 2 [ = E I g 2 (Z ) f (Z ) ] f I (Z ) f I (Z ) [ ] < E g 2 (Z ) Erfolgreich wenn f I so proportional wie möglich an g(z) f (z). Weitere Möglichkeit der Varianzreduktion: Kontrollvariablen. 15 / 37

16 Übersicht 1. Ziel des Vortrags 2. Einleitung 3. Varianzreduzierende Techniken Bedingtes Monte Carlo Importance Sampling 4. Diskrepanz geringe Diskrepanz Koksma-Hlawka Ungleichung 5. Low-Discrepancy Folgen Vorteil anhand eines Beispiels Beispiel Halton Folge mit Basis 3 Beispiel Vergleich Sobol zu Faure 6. Zusammenfassung 16 / 37

17 Diskrepanz D (ξ, A(R; ξ) N) = sup λ s (R) R J N mit ξ = ξ 1,...ξ N A(R; ξ) Anzahl Punkte von ξ in R λ s s-dim. Lebesguemaß J Menge der Intervalle der Form: s i=1 u i und u i [0, 1) 17 / 37

18 geringe Diskrepanz 1/4 Definition geringe Diskrepanz Eine Folge (ξ i ) i N [0, 1] n hat geringe Diskrepanz, falls D k (ξ 1,..., ξ k ) C n (log k) n für alle k mit einer von der Dimension abhängigen Konstante C n, wobei k 18 / 37

19 geringe Diskrepanz 2/4 Diskrepanz ist ein Maß dafür, wie weit die durch Folge ξ 1,..., ξ n gegebene Verteilung vom Idealzustand auf [0, 1] entfernt ist. Merke Desto kleiner der Fehler der Quasi-Monte-Carlo-Schätzung Desto geringer ist die Diskrepanz der Folge 19 / 37

20 geringe Diskrepanz 3/4 Definition Koksma-Hlawka Ungleichung Sei f eine Funktion mit endlicher Variation V auf [0, 1] s und sei ξ = (ξ i ) eine Folge in [0, 1] s, dann gilt für irgendein n : f (x)dx 1 [0,1] s n n f (ξ i ) V (f ) D (ξ, n) i=1 20 / 37

21 geringe Diskrepanz 4/4 Diese Ungleichung stellt die Basis für die Überlegenheit der QMC gegen über der MC Methode, weil der Fehler der Berechnung des Integrals gegen Null geht in O( (logn)s N ). Problem: Praxis fast unmöglich Fehlerabschätzung mit der Koksma-Hlawka Ungleichung (Variation von f schwer berechenbar) 21 / 37

22 Übersicht 1. Ziel des Vortrags 2. Einleitung 3. Varianzreduzierende Techniken Bedingtes Monte Carlo Importance Sampling 4. Diskrepanz geringe Diskrepanz Koksma-Hlawka Ungleichung 5. Low-Discrepancy Folgen Vorteil anhand eines Beispiels Beispiel Halton Folge mit Basis 3 Beispiel Vergleich Sobol zu Faure 6. Zusammenfassung 22 / 37

23 Low-Discrepancy Folgen Es gibt mehrere Low-Discrepancy Folgen: Sobolfolge Haltonfolge Faurefolge Niederreiterfolge Niederreiter-Xingfolge 23 / 37

24 Beispiel Vorteil gegenüber zufälligen Folgen Beispiel Integriere I = (i cos(ix i ))dx 1 dx 2 dx 3 dx 4 dx 5 dx i=1 Der exakte Wert des Integrals ist: 6 I = sin(i) = sin(1) sin(2) sin(3) sin(4) sin(5) sin(6) i=1 Approximativ: I / 37

25 Betrachte folgende Approximationen Abbildung: Wert der approximierten Integralen in Abhängigkeit der Anzahl von Punkten Bildquelle: 25 / 37

26 Beispiel Halton Folge mit Basis 3 einfach zu berechnen mit Hilfe von Basen, welche die ersten d(dimension) Primzahlen sind Jede Dimension hat andere Basen Ziel: Generieren von Punkten (0, 1) (0, 1) R 2 Auf den folgenden Folien exemplarisch zur Basis 3 26 / 37

27 Beispiel Halton Folge (0, 1) (0, 1) R 2 1/3 Schritt 1 Teile das Intervall in 3 (=Basis) Teile auf und extrahiere die inneren Punkte als erste Koordinaten Intervall 3. Intervall Schritt 2 Betrachte jedes Teilintervall separat und unterteile es wieder in 3 Teilintervalle und starte bei jedem Intervall wieder bei Schritt / 37

28 Beispiel Halton Folge (0, 1) (0, 1) R 2 2/ ( 1 3, 2 3, 1 9, 4 9, 7 9, 2 9, 5 9, 8 9) 28 / 37

29 Beispiel Halton Folge (0, 1) (0, 1) R 2 3/3 analog ergeben sich die Punkte zur Basis 2 und es ergeben sich die ersten 10 Koordinaten wie folgt ( 1 2, 1 3) ( 7 8, 5 9), ( 1, 4, 2 3) ( 1 16, 8 9 ( 3, 4, 1 9) ), ( 9 16, 1 27 ( 1, 8, 4 9) ), ( 5, 8 9), 7 ( 5 16, ), ( 3, 8, 2, 9) 29 / 37

30 Abbildung: ersten 10 Paare der 2D-Halton Folge in (0, 1) (0, 1) R 2 30 / 37

31 Abbildung: ersten 1000 Paare der 2D-Halton Folge in (0, 1) (0, 1) R 2 31 / 37

32 Sobolzahlen Vorteile leichter die Anzahl der Punkte und/oder Dimensionen zu variieren Durch das Muster, welches sich ergibt, kann man problemlos nur Teilmengen betrachten höhere Einheitlichkeit als bei Gleichverteilung Schnelligkeit: die ersten zehn Millionen Sobol-Paare benötigen auf meinem PC weniger als zwei Sekunden 32 / 37

33 Vergleich an Hand eines Beispiels: Sobol zu Faure 1/2 Die zu integrierende Funktion lautet: s 4x i 2 dx 1...dx 2 = 1 i=1 Beide Folgen lösen die Aufgabe in fast identischer Zeit mit folgenden Ergebnissen 33 / 37

34 Vergleich an Hand eines Beispiels: Sobol zu Faure 2/2 Abbildung: Direkter Vergleich, wobei N Anzahl Punkte, s dim. Einheitswürfel Bildquelle: 34 / 37

35 35 / 37

36 Übersicht 1. Ziel des Vortrags 2. Einleitung 3. Varianzreduzierende Techniken Bedingtes Monte Carlo Importance Sampling 4. Diskrepanz geringe Diskrepanz Koksma-Hlawka Ungleichung 5. Low-Discrepancy Folgen Vorteil anhand eines Beispiels Beispiel Halton Folge mit Basis 3 Beispiel Vergleich Sobol zu Faure 6. Zusammenfassung 36 / 37

37 Zusammenfassung Ziel: möglichst geringe Rechenzeit möglichst große Genauigkeit Varianzreduktion kann u.a. erreicht werden durch: Bedingte Monte Carlo Importance Sampling kluge Auswahl von Stützpunkten 37 / 37

Einführung in Quasi-Monte Carlo Verfahren

Einführung in Quasi-Monte Carlo Verfahren Einführung in Quasi- Markus Zahrnhofer 3. Mai 2007 Markus Zahrnhofer () Einführung in Quasi- 3. Mai 2007 1 / 27 Inhalt der Präsentation 1 Motivierendes Beispiel 2 Einführung 3 quasi- Allgemeines Diskrepanz

Mehr

Simulationstechniken in Finanz- und Versicherungsmathematik

Simulationstechniken in Finanz- und Versicherungsmathematik Simulationstechniken in Finanz- und Versicherungsmathematik 10. Januar 2010 1 Motivation 2 Monte Carlo Methoden 3 Quasi-Monte Carlo Methoden 4 Folgen kleiner Diskrepanz Motivation Mortgage-backed Security

Mehr

Quasi-Monte-Carlo-Algorithmen

Quasi-Monte-Carlo-Algorithmen Quasi-Monte-Carlo-Algorithmen Peter Kritzer Institut für Finanzmathematik/Institut für Didaktik der Mathematik Johannes Kepler Universität Linz peter.kritzer@jku.at Tag der Mathematik, April 2011 P. Kritzer

Mehr

Monte-Carlo-Methode. mit Pseudo- und Quasizufallszahlen

Monte-Carlo-Methode. mit Pseudo- und Quasizufallszahlen Gott würfelt nicht Monte-Carlo-Methode mit Pseudo- und Quasizufallszahlen Inhaltsverzeichnis Pseudo- und Quasizufallszahlen Monte-Carlo- Monte-Carlo- Monte-Carlo-Methode Bekannt nach Stadt Monte Carlo

Mehr

1/26. Integration. Numerische Mathematik 1 WS 2011/12

1/26. Integration. Numerische Mathematik 1 WS 2011/12 1/26 Integration Numerische Mathematik 1 WS 2011/12 Notation 2/26 Die Abbildung I b a : C([a, b]) R gegeben durch Ia b (f ) := beschreibt die Integration. b a f (x)dx, Um das Integral I(f ) zu approximieren

Mehr

Stochastik-Praktikum

Stochastik-Praktikum Stochastik-Praktikum Zufallszahlen und Monte Carlo Peter Frentrup Humboldt-Universität zu Berlin 17. Oktober 2017 (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 17. Oktober 2017 1 / 23

Mehr

Lösung zur Monte-Carlo Integration

Lösung zur Monte-Carlo Integration Lösung zur Monte-Carlo Integration Berechnen Sie 1 0 1 1 0 0 exp(x+y +z)dxdydz mittels einer geeigneten Monte-Carlo Simulation! Erste Beobachtung: e 0 e x+y+z e 3 für (x,y,z) [0,1] 3. Hier zwei Lösungen,

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge der Elementarereignisse

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 16. November 2009 2. Monte Carlo-Methoden 2.1 Zufallszahlen - Warum? 2.2 Zahlendarstellung im Rechner 2.3 Generatoren 2.3.1 Linear kongruente Generatoren

Mehr

Quasi-Monte Carlo Methoden

Quasi-Monte Carlo Methoden zur numerischen Integration Am Schnittpunkt von numerischer Analysis, Zahlentheorie und Finanzmathematik FG Finanz- und Versicherungsmathematik Institut für Wirtschaftsmathematik Technische Universität

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Marcel Thoms Mathematik Online Herbst 211 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge

Mehr

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar "Statistische Methoden in der Physik"

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar Statistische Methoden in der Physik Studentenseminar "Statistische Methoden in der Physik" Gliederung 1 2 3 Worum geht es hier? Gliederung 1 2 3 Stichproben Gegeben eine Beobachtungsreihe x = (x 1, x 2,..., x n ): Realisierung der n-dimensionalen

Mehr

28. Lineare Approximation und Differentiale

28. Lineare Approximation und Differentiale 28. Lineare Approximation und Differentiale Sei y = f(x) differenzierbar. Die Gleichung der Tangente t im Punkt x 0 lautet t : y f(x 0 ) = f (x 0 )(x x 0 ) Für x nahe bei x 0 können wir f(x) durch den

Mehr

Beispiel 6 (Einige Aufgaben zur Gleichverteilung)

Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Aufgabe (Anwendung der Chebyshev-Ungleichung) Sei X eine Zufallsvariable mit E(X) = µ und var(x) = σ a) Schätzen Sie die Wahrscheinlichkeit dafür, daß

Mehr

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 23. Bemerkung Integralbegriffe für Funktionen f : R d R (i) Lebesgue-Integral (Vorlesung Analysis IV). Spezialfall: (ii) Uneigentliches Riemann-Integral

Mehr

13 Grenzwertsätze Das Gesetz der großen Zahlen

13 Grenzwertsätze Das Gesetz der großen Zahlen 13 Grenzwertsätze 13.1 Das Gesetz der großen Zahlen Der Erwartungswert einer zufälligen Variablen X ist in der Praxis meist nicht bekannt. Um ihn zu bestimmen, sammelt man Beobachtungen X 1,X 2,...,X n

Mehr

Das empirische VaR bzw. CVaR

Das empirische VaR bzw. CVaR Das empirische VaR bzw. CVaR Sei x 1, x 2,..., x n eine Stichprobe der unabhängigen identischverteilten ZV X 1, X 2,..., X n mit Verteilungsfunktion F (Notation: Die ZV X 1, X 2,..., X n sind i.i.d. Empirische

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

5. Numerische Differentiation. und Integration

5. Numerische Differentiation. und Integration 5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen

Mehr

1.3 Zufallsvariablen

1.3 Zufallsvariablen 1.3 Zufallsvariablen Beispiel Irrfahrt zwischen drei Zuständen Start in G bei t = 0, Zeithorizont T N Grundraum σ-algebra Ω = {ω = (ω 0, ω 1,..., ω T ) {G, R, B} T +1, ω 0 = G} Wahrscheinlichkeitsmaß P

Mehr

Stochastik Praktikum Markov Chain Monte Carlo Methoden

Stochastik Praktikum Markov Chain Monte Carlo Methoden Stochastik Praktikum Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 14.10.2010 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

Vorlesung 5a. Zufallsvariable mit Dichten

Vorlesung 5a. Zufallsvariable mit Dichten Vorlesung 5a 1 Vorlesung 5a Zufallsvariable mit Dichten Vorlesung 5a Zufallsvariable mit Dichten Teil 1 Uniforme Verteilung, Exponentialverteilung. Kontinuierlich uniform verteilte Zufallsvariable: 2 Kontinuierlich

Mehr

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Georg Bol georg.bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Stetige Verteilungen Definition: Sei

Mehr

Master Seminar Mathematik Monte-Carlo Integration. Stephan Napierala 06. Juli 2017

Master Seminar Mathematik Monte-Carlo Integration. Stephan Napierala 06. Juli 2017 Master Seminar Mathematik Stephan Napierala 12 Inhaltsverzeichnis 1. Geschichtlicher Hintergrund 2. Stochastische Grundbegriffe 3. 4. Vorteile gegenüber anderen Verfahren 5. Konvergenzbeschleunigung Geschichtlicher

Mehr

5. Numerische Differentiation. und Integration

5. Numerische Differentiation. und Integration 5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 21 Quadraturverfahren R. Steuding

Mehr

15.5 Stetige Zufallsvariablen

15.5 Stetige Zufallsvariablen 5.5 Stetige Zufallsvariablen Es gibt auch Zufallsvariable, bei denen jedes Elementarereignis die Wahrscheinlich keit hat. Beispiel: Lebensdauer eines radioaktiven Atoms Die Lebensdauer eines radioaktiven

Mehr

Lösung Semesterendprüfung

Lösung Semesterendprüfung MAE4 Mathematik: Analysis für Ingenieure 4 Frühlingssemester 26 Dr. Christoph Kirsch ZHAW Winterthur Aufgabe : Lösung Semesterendprüfung Wir betrachten die Ergebnismenge Ω : {, 2,, 4, 5, 6} 2 6 2 6 Elemente,

Mehr

6. Schätzverfahren für Parameter

6. Schätzverfahren für Parameter 6. Schätzverfahren für Parameter Ausgangssituation: Ein interessierender Zufallsvorgang werde durch die ZV X repräsentiert X habe eine unbekannte Verteilungsfunktion F X (x) Wir interessieren uns für einen

Mehr

PVK Probeprüfung FS 2017

PVK Probeprüfung FS 2017 PVK Probeprüfung FS 07 Lucas Böttcher Numerische Methoden ETH Zürich June 3, 07. Radioaktiver Zerfall Gegeben sind zwei radioaktive Substanzen, welche mit den Raten λ = 0.5 und λ = 0. zerfallen: A λ B

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

10 Transformation von Zufallsvariablen

10 Transformation von Zufallsvariablen 10 Transformation von Zufallsvariablen Sei X : Ω R eine Zufallsvariable mit Verteilungsfunktion F X (x) = P(X < x). Wir betrachten eine Funktion g: R R und sei Zufallsvariable Y : Ω R mit Y = g(x). Y :

Mehr

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Karlsruher Institut für Technologie Ulrich Husemann Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

Methoden der Statistik Markov Chain Monte Carlo Methoden

Methoden der Statistik Markov Chain Monte Carlo Methoden Methoden der Statistik Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 08.02.2013 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL)

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Prof. Dr. P. Embrechts ETH Zürich Sommer 204 Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Schreiben Sie für Aufgabe 2-4 stets alle Zwischenschritte und -rechnungen sowie Begründungen auf. Vereinfachen

Mehr

Vorlesung 7b. Der Zentrale Grenzwertsatz

Vorlesung 7b. Der Zentrale Grenzwertsatz Vorlesung 7b Der Zentrale Grenzwertsatz 1 Zentraler Grenzwertsatz (Tschebyscheff) Die standardisierte Summe von unabhängigen, identisch verteilten R-wertigen Zufallsvariablen konvergiert in Verteilung

Mehr

Simulation von Zufallszahlen. Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt

Simulation von Zufallszahlen. Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt Simulation von Zufallszahlen Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt Definition: Eine Folge von Pseudo-Zufallszahlen U i ist eine deterministische

Mehr

Varianzkomponentenschätzung

Varianzkomponentenschätzung Qualitas AG Varianzkomponentenschätzung Peter von Rohr Qualitas AG Peter von Rohr Folien ZL I+II LFW C11 October 29, 2015 2 / 23 Multiple Lineare Regression Annahmen Modell y = Xb + e Varianz der Fehler

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

UE Statistische Mustererkennung WS 2018 Angaben zur 2ten Aufgabengruppe

UE Statistische Mustererkennung WS 2018 Angaben zur 2ten Aufgabengruppe UE Statistische Mustererkennung WS 2018 Angaben zur 2ten Aufgabengruppe 1 Aufgabe UE-II.1 Generieren Sie je 1000 Stichproben (samples) mit Umfang 5/30/100/500 für die Normalverteilung N(µ, σ 2 ) = N(4,

Mehr

Seminar stochastische Geometrie. 25. Januar Faserprozesse im R 2. Simona Renner. Faserprozesse. Kenngrößen Intensität Richtungsrose

Seminar stochastische Geometrie. 25. Januar Faserprozesse im R 2. Simona Renner. Faserprozesse. Kenngrößen Intensität Richtungsrose Seminar stochastische Geometrie 25. Januar 2010 Contents 1 2 3 4 5 Definitionen Faser: glatte Kurve endlicher Länge in der Ebene Faser γ ist das Bild der Kurve γ(t) = (γ 1 (t), γ 2 (t)) mit (i) γ : [0,

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Motivation Grundgesamtheit mit unbekannter Verteilung F Stichprobe X 1,...,X n mit Verteilung F Realisation x 1,...,x n der Stichprobe Rückschluss auf F Dr. Karsten Webel 160 Motivation (Fortsetzung) Kapitel

Mehr

Definition 18 (Die verallgemeinerte Pareto Verteilung (GPD)) Die standard GPD G γ : ) 1/γ. G γ,ν,β = 1 (1 + γ x ν β

Definition 18 (Die verallgemeinerte Pareto Verteilung (GPD)) Die standard GPD G γ : ) 1/γ. G γ,ν,β = 1 (1 + γ x ν β Die POT Methode (Peaks over Threshold) Definition 18 (Die verallgemeinerte Pareto Verteilung (GPD)) Die standard GPD G γ : G γ (x) = { 1 (1 + γx) 1/γ für γ 0 1 exp{ x} für γ = 0 wobei x D(γ) D(γ) = { 0

Mehr

Gegenbeispiele in der Wahrscheinlichkeitstheorie

Gegenbeispiele in der Wahrscheinlichkeitstheorie Gegenbeispiele in der Wahrscheinlichkeitstheorie Mathias Schaefer Universität Ulm 26. November 212 1 / 38 Übersicht 1 Normalverteilung Definition Eigenschaften Gegenbeispiele 2 Momentenproblem Definition

Mehr

Statistische Methoden der Datenanalyse Wintersemester 2011/2012 Albert-Ludwigs-Universität Freiburg

Statistische Methoden der Datenanalyse Wintersemester 2011/2012 Albert-Ludwigs-Universität Freiburg Statistische Methoden der Datenanalyse Wintersemester 2011/2012 Albert-Ludwigs-Universität Freiburg Dr. Stan Lai und Prof. Markus Schumacher Physikalisches Institut Westbau 2 OG Raum 008 Telefonnummer

Mehr

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1 Aufgabe 1 (2 + 2 + 2 + 1 Punkte) Gegeben sei folgende gemeinsame Wahrscheinlichkeitsfunktion f(x, y) = P (X = x, Y = y) der Zufallsvariablen X und Y : 0.2 x = 1, y = 1 0.3 x = 2, y = 1 f(x, y) = 0.45 x

Mehr

AKVFM Numerische Methoden in der Finanz- und Versicherungsmathematik

AKVFM Numerische Methoden in der Finanz- und Versicherungsmathematik AKVFM Numerische Methoden in der Finanz- und Versicherungsmathematik Übungsbeispiele zur Lehrveranstaltung Reinhold Kainhofer Juni 2006 Institut für Wirtschaftsmathematik FG Finanz- und Versicherungsmathematik

Mehr

KAPITEL 10. Numerische Integration

KAPITEL 10. Numerische Integration KAPITEL 10. Numerische Integration 10.1 Einleitung Sei Es gilt I Ĩ = b I = b a a f(x) f(x) dx f(x) dx, Ĩ = b b a f(x) dx. a f(x) f(x) dx (b a) f f. I Ĩ I (b a) f f b a f(x) dx = ba f dx b a f(x) dx f f

Mehr

Einsatz von Varianzreduktionstechniken II

Einsatz von Varianzreduktionstechniken II Einsatz von Varianzreduktionstechniken II Stratified Sampling und Common Random Numbers Bastian Bluhm Betreuer: Christiane Barz Ausgewählte technische, rechtliche und ökonomische Aspekte des Entwurfs von

Mehr

10 Statistisches Schätzen

10 Statistisches Schätzen 10 Statistisches Schätzen 620 10 Statistisches Schätzen 10.1 Punktschätzung 623 10.1.1 Schätzer und ihre Gütekriterien 623 10.1.2 Erwartungstreue 627 10.1.3 Erwartete quadratische Abweichung (MSE) 634

Mehr

Numerische Integration

Numerische Integration Numerische Integration Fakultät Grundlagen Januar 0 Fakultät Grundlagen Numerische Integration Übersicht Grundsätzliches Grundsätzliches Trapezregel Simpsonformel 3 Fakultät Grundlagen Numerische Integration

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

TU DORTMUND Sommersemester 2018

TU DORTMUND Sommersemester 2018 Fakultät Statistik. April 08 Blatt Aufgabe.: Wir betrachten das Zufallsexperiment gleichzeitiges Werfen zweier nicht unterscheidbarer Würfel. Sei A das Ereignis, dass die Augensumme beider Würfel ungerade

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, May 12, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Experimentelle Methoden der Teilchenphysik Sommersemester 2011/2012 Albert-Ludwigs-Universität Freiburg

Experimentelle Methoden der Teilchenphysik Sommersemester 2011/2012 Albert-Ludwigs-Universität Freiburg Eperimentelle Methoden der Teilchenphysik Sommersemester 011/01 Albert-Ludwigs-Universität Freiburg Prof. Markus Schumacher Physikalisches Institut, Westbau,. OG Raum 008 Telefon 0761 03 761 E-Mail: Markus.Schumacher@physik.uni-freiburg.de

Mehr

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie Tobias Ried. März 2 2 Aufgabe (Messbarkeit der Komposition zweier Abbildungen). Seien (X, A), (Y, B) und (Z, C) Messräume und f : (X,

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Aufgaben zu Kapitel 0

Aufgaben zu Kapitel 0 Aufgaben zu Kapitel 0 0.1. Seien A und B zwei Mengen. Wie kann man paarweise disjunkte Mengen A 1, A 2 und A 3 so wählen, dass A 1 A 2 A 3 = A B gilt? 0.2. Seien E ein Menge und A eine Teilmengen von E.

Mehr

5 Konfidenzschätzung. 5.1 Einige Grundbegriffe zur Konfidenzschätzung

5 Konfidenzschätzung. 5.1 Einige Grundbegriffe zur Konfidenzschätzung 5 Konfidenzschätzung 5. Einige Grundbegriffe zur Konfidenzschätzung Diesem Kapitel liegt das parametrische Modell {X, B X, P } mit P {P Θ} zugrunde. {Θ, B Θ } sei ein Meßraum über Θ und µ ein σ-finites

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Techniken zur Berechnung der Dimension

Techniken zur Berechnung der Dimension Seminarvortrag Ulm, 21.11.2006 Übersicht Masse-Verteilungs-Prinzip Berechnung der Dimension von Fraktalen Es ist oft nicht einfach die Hausdorff - Dimension allein durch deren Definition zu berechnen.

Mehr

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler 6.6 Normalverteilung Die Normalverteilung kann als das wichtigste Verteilungsmodell der Statistik angesehen werden. Sie wird nach ihrem Entdecker auch Gaußsche Glockenkurve genannt. Die herausragende Stellung

Mehr

3.1 Punktschätzer für Mittelwert µ und Varianz σ 2. Messungen x 1,..., x N, die unabhängig voneinander auf gleiche Weise gewonnen worden sind

3.1 Punktschätzer für Mittelwert µ und Varianz σ 2. Messungen x 1,..., x N, die unabhängig voneinander auf gleiche Weise gewonnen worden sind Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 3.1 3.1 Punktschätzer für Mittelwert µ und Varianz σ 2 Messungen x 1,..., x N, die unabhängig voneinander auf gleiche Weise gewonnen worden

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 014 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis

Mehr

i =1 i =2 i =3 x i y i 4 0 1

i =1 i =2 i =3 x i y i 4 0 1 Aufgabe (5+5=0 Punkte) (a) Bei einem Minigolfturnier traten 6 Spieler gegeneinander an. Die Anzahlen der von ihnen über das gesamte Turnier hinweg benötigten Schläge betrugen x = 24, x 2 = 27, x = 2, x

Mehr

Stochastik Praktikum Parametrische Schätztheorie

Stochastik Praktikum Parametrische Schätztheorie Stochastik Praktikum Parametrische Schätztheorie Thorsten Dickhaus Humboldt-Universität zu Berlin 05.10.2010 Prolog Momentenmethode X : Ω 1 Ω Zufallsgröße, die Experiment beschreibt. Ein statistisches

Mehr

D-MATH Numerische Methoden FS 2017 Dr. Vasile Gradinaru Luc Grosheintz. Serie 4. 1 f i (x)dx

D-MATH Numerische Methoden FS 2017 Dr. Vasile Gradinaru Luc Grosheintz. Serie 4. 1 f i (x)dx D-MATH Numerische Methoden FS 217 Dr. Vasile Gradinaru Luc Grosheintz Serie 4 Abgabedatum: Di./Mi. 2.3/21.3 in den Übungsgruppen oder im HG J68 Koordinatoren: Luc Grosheintz, HG J 46, luc.grosheintz@sam.ethz.ch

Mehr

Proseminar Technische Informatik: Rare Event Simulation. Jan Sydow Fachbereich Informatik Institut für Mathematik/Informatik

Proseminar Technische Informatik: Rare Event Simulation. Jan Sydow Fachbereich Informatik Institut für Mathematik/Informatik Proseminar Technische Informatik: Rare Event Simulation Jan Sydow Fachbereich Informatik Institut für Mathematik/Informatik Gliederung Motivation Methoden Standardsimulation Importance Sampling Importance

Mehr

1 Verteilungsfunktionen, Zufallsvariable etc.

1 Verteilungsfunktionen, Zufallsvariable etc. 4. Test M3 ET 27 6.6.27 4. Dezember 27 Regelung für den.ten Übungstest:. Wer bei den Professoren Dirschmid, Blümlinger, Vogl oder Langer die UE aus Mathematik 2 gemacht hat, sollte dort die WTH und Statistik

Mehr

Modellierung- und Simulation Mathis Plewa ( )

Modellierung- und Simulation Mathis Plewa ( ) Inhaltsverzeichnis Abbildungsverzeichnis... 1 Übungsaufgabe: Zufallsgeneratoren und Histogramme... 2 Standard Gleichverteilung... 2 Gaußverteilung... 3 Exponentialverteilung... 4 Übungsaufgabe: Geometrische

Mehr

7. Übung: Aufgabe 1. b), c), e) Aufgabe 2. a), c), e) Aufgabe 3. c), e) Aufgabe 4. Aufgabe 5. Aufgabe 6. Aufgabe 7. Aufgabe 8. Aufgabe 9.

7. Übung: Aufgabe 1. b), c), e) Aufgabe 2. a), c), e) Aufgabe 3. c), e) Aufgabe 4. Aufgabe 5. Aufgabe 6. Aufgabe 7. Aufgabe 8. Aufgabe 9. 7. Übung: Aufgabe 1 b), c), e) Aufgabe a), c), e) Aufgabe 3 c), e) Aufgabe 4 b) Aufgabe 5 a) Aufgabe 6 b) Aufgabe 7 e) Aufgabe 8 c) Aufgabe 9 a), c), e) Aufgabe 10 b), d) Aufgabe 11 a) Aufgabe 1 b) Aufgabe

Mehr

Sammlung alter Klausuraufgaben zur Stochastik keine Abgabe keine Besprechung in den Tutorien

Sammlung alter Klausuraufgaben zur Stochastik keine Abgabe keine Besprechung in den Tutorien Sammlung alter Klausuraufgaben zur Stochastik keine Abgabe keine Besprechung in den Tutorien Prof. F. Merkl 23. Mai 2016 Zu Ihrer Information und als zusätzliches Übungsmaterial sind hier die Aufgaben

Mehr

Frequentisten und Bayesianer. Volker Tresp

Frequentisten und Bayesianer. Volker Tresp Frequentisten und Bayesianer Volker Tresp 1 Frequentisten 2 Die W-Verteilung eines Datenmusters Nehmen wir an, dass die wahre Abhängigkeit linear ist, wir jedoch nur verrauschte Daten zur Verfügung haben

Mehr

Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren

Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren Michael Unrau HS WS 08/09 14 November 2008 HS 08/09 Monte-Carlo Methoden 14 November 2008 1 / 24

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

Fallzahlplanung bei unabhängigen Stichproben

Fallzahlplanung bei unabhängigen Stichproben Fallzahlplanung bei unabhängigen Stichproben Seminar Aktuelle biometrische Probleme Benjamin Hofner benjamin.hofner@stat.uni-muenchen.de 12. Januar 2005 Übersicht 1. Einführung und Grundlagen der Fallzahlplanung

Mehr

Simulation von Zufallsvariablen und Punktprozessen

Simulation von Zufallsvariablen und Punktprozessen Simulation von Zufallsvariablen und Punktprozessen 09.11.2009 Inhaltsverzeichnis 1 Einleitung 2 Pseudozufallszahlen 3 Punktprozesse Zufallszahlen Definition (Duden): Eine Zufallszahl ist eine Zahl, die

Mehr

Scheinklausur zur Vorlesung Stochastik II

Scheinklausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 2007/2008 Universität Karlsruhe 25. 02. 2008 Dr. B. Klar Scheinklausur zur Vorlesung Stochastik II Muster-Lösung Dauer: 90 Minuten Name: Vorname: Matrikelnummer:

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK)

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) für Studierende des Maschinenbaus vom 7. Juli (Dauer: 8 Minuten) Übersicht über die

Mehr

Nachklausur Wahrscheinlichkeitstheorie und Inferenz II Sommersemester Oktober 2011

Nachklausur Wahrscheinlichkeitstheorie und Inferenz II Sommersemester Oktober 2011 Nachklausur Wahrscheinlichkeitstheorie und Inferenz II Sommersemester 2011 28. Oktober 2011 Prof. Dr. Torsten Hothorn Institut für Statistik Nachname: Vorname: Matrikelnummer: Anmerkungen: ˆ Schreiben

Mehr

ETHZ, D-MATH. Numerische Methoden D-PHYS, WS 2015/16 Dr. V. Gradinaru

ETHZ, D-MATH. Numerische Methoden D-PHYS, WS 2015/16 Dr. V. Gradinaru ETHZ, D-MATH Prüfung Numerische Methoden D-PHYS, WS 5/6 Dr. V. Gradinaru..6 Prüfungsdauer: 8 Minuten Maximal erreichbare Punktzahl: 6. Der van-der-pol Oszillator ( Punkte) Der van-der-pol Oszillator kann

Mehr

Grundgesamtheit und Stichprobe

Grundgesamtheit und Stichprobe Grundgesamtheit und Stichprobe Definition 1 Die Menge der Untersuchungseinheiten {U 1,U 2,...,U N } heißt Grundgesamtheit. Die Anzahl N der Einheiten ist der Umfang der Grundgesamtheit. Jeder Einheit U

Mehr

Theorie-Teil: Aufgaben 1-3: 30 Punkte Programmier-Teil: Aufgaben 4-9: 60 Punkte

Theorie-Teil: Aufgaben 1-3: 30 Punkte Programmier-Teil: Aufgaben 4-9: 60 Punkte Hochschule RheinMain WS 2018/19 Prof. Dr. D. Lehmann Probe-Klausur zur Vorlesung Ökonometrie Theorie-Teil: Aufgaben 1-3: 30 Punkte Programmier-Teil: Aufgaben 4-9: 60 Punkte (die eigentliche Klausur wird

Mehr

Vorlesung 7b. Unabhängigkeit bei Dichten. und die mehrdimensionale Standardnormalverteilung

Vorlesung 7b. Unabhängigkeit bei Dichten. und die mehrdimensionale Standardnormalverteilung Vorlesung 7b Unabhängigkeit bei Dichten und die mehrdimensionale Standardnormalverteilung 0. Wiederholung: Die Normalverteilung Dichtefunktion ϕ der Standardnormalverteilung ϕ(x) 0.0 0.1 0.2 0.3 0.4 4

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Mustererkennung: Wahrscheinlichkeitstheorie. D. Schlesinger () ME: Wahrscheinlichkeitstheorie 1 / 10

Mustererkennung: Wahrscheinlichkeitstheorie. D. Schlesinger () ME: Wahrscheinlichkeitstheorie 1 / 10 Mustererkennung: Wahrscheinlichkeitstheorie D. Schlesinger () ME: Wahrscheinlichkeitstheorie 1 / 10 Definitionen (axiomatisch) Wahrscheinlichkeitsraum (Ω, σ, P), mit Ω Die Grundmenge, die Menge der elementaren

Mehr

Finanzmathematische Modelle und Simulation

Finanzmathematische Modelle und Simulation Finanzmathematische Modelle und Simulation WS 9/1 Rebecca Henkelmann In meiner Ausarbeitung Grundbegriffe der Stochastik I, geht es darum die folgenden Begriffe für die nächsten Kapitel einzuführen. Auf

Mehr

1. Was ist eine Wahrscheinlichkeit P(A)?

1. Was ist eine Wahrscheinlichkeit P(A)? 1. Was ist eine Wahrscheinlichkeit P(A)? Als Wahrscheinlichkeit verwenden wir ein Maß, welches die gleichen Eigenschaften wie die relative Häufigkeit h n () besitzt, aber nicht zufallsbehaftet ist. Jan

Mehr

Gitterpunkt-Integrationsformeln

Gitterpunkt-Integrationsformeln Gliederung Gitterpunkt-Integrationsformeln Ulrich Telle FernUniversität Hagen, Fachbereich Mathematik Lehrgebiet Numerische Mathematik, Prof. Dr. F. Locher Mathematisches Praktikum 1074 18./19.02.2005

Mehr

Stochastik-Praktikum

Stochastik-Praktikum Stochastik-Praktikum Markov Chain Monte Carlo Peter Frentrup Humboldt-Universität zu Berlin 16. Januar 2018 (Humboldt-Universität zu Berlin) Markov Chain Monte Carlo 16. Januar 2018 1 / 17 Übersicht 1

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 4. Mai 2017 Dr. Michael O. Distler

Mehr

Grundgesamtheit und Stichprobe

Grundgesamtheit und Stichprobe Grundgesamtheit und Stichprobe Definition 1 Die Menge der Untersuchungseinheiten {U 1,U 2,...,U N } heißt Grundgesamtheit. Die Anzahl N der Einheiten ist der Umfang der Grundgesamtheit. Jeder Einheit U

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Vorlesung 7a. Der Zentrale Grenzwertsatz

Vorlesung 7a. Der Zentrale Grenzwertsatz Vorlesung 7a Der Zentrale Grenzwertsatz als Erlebnis und Das Schwache Gesetz der Großen Zahlen Wiederholung: Die Normalverteilung Dichtefunktion ϕ der Standardnormalverteilung ϕ(x) 0.0 0.1 0.2 0.3 0.4

Mehr