Die Geburt der Astronomie

Größe: px
Ab Seite anzeigen:

Download "Die Geburt der Astronomie"

Transkript

1 Die Geburt der Astronomie 1. Der mittlere Radius der Umlaufbahn des Mars um die Sonne ist 1,5 mal so groß wie der der Erde. Wie lange braucht der Mars um die Sonne zu umrunden? T Mars = 1,5 3 a 1,87a. Zeige, dass die Umlaufdauer eines Himmelskörpers um einen Zentralkörper mit zunehmenden Radius seiner Umlaufbahn wächst. T 0 bezeichnet die Umlaufdauer eines Himmelskörpers um den Zentralkörper. r 0 ist der zu dieser Umlaufbahn gehörige Radius, der beliebig klein sein kann. Aus dem dritten Kepler schen Gesetz folgt für die Umlaufdauer T mit dem Radius r T (r) = ( r r 0 ) 1,5 }{{} 1,falls r r 0 T Fahrplanauszug km Ort RB500 ICE110 0 Mittenwald ab Garmisch-Partenkirchen an Garmisch-Partenkirchen ab Murnau ab Weilheim an Weilheim ab München Hbf an (a) Erstelle ein t s Diagramm und ein t v Diagramm; trage für jeden Zeitpunkt der Fahrt Ort und Geschwindigkeit für jeden der beiden Züge (mit jeweils unterschiedlicher Farbe) in das zugehörige Diagramm. (b) Vergleiche die Linien der beiden Züge im t s Diagramm zwischen Weilheim ab und München Hbf an. Welche Aussage kannst du über die beiden Geschwindigkeiten aus der Steigung der beiden Linien machen? (c) Ermittle die Geschwindigkeit des ICE110 zwischen je zwei Haltestellen. (d) Ermittle die Durchschnittsgeschwindigkeit der beiden Züge zwischen Mittenwald und München. 4. 1

2 5. Aus dem Fahrplan der eingleisigen Bahnstrecke Garmisch Partenkirchen Murnau ist folgender Fahrplanauszug gegeben: km Haltestelle RB1883 RB189 Ankunft Abfahrt Ankunft Abfahrt 0 Garmisch Partenkirchen 7:16 6:56 9 Oberau 7:07 7:08 7:03 7:09 14 Eschenlohe 7:01 7:0 7:15 7:16 19 Ohlstadt 6:57 6:57 7:0 7:1 9 Murnau 6:51 7:8 (a) Stelle die Fahrt der beiden Züge in einem graphischen Fahrplan (= gemeinsames Zeit Ort Diagramm, t s Diagramm) dar. (DIN A4 quer, Maßstab auf der Zeitachse: 1 cm für min, Bereich 6:50 Uhr 7:40 Uhr, Maßstab auf der Ortsachse: 1 cm für km) (b) Berechne die Geschwindigkeit der Züge auf den einzelnen Streckenabschnitten. Wie kann man die dafür benötigten Daten aus der Tabelle, wie aus dem Diagramm entnehmen? (c) Auf welchem Abschnitt ist welcher Zug am langsamsten, wo welcher am schnellsten? Woran erkennt man dies im Diagramm? (d) Der Zug RB189 muss gleich nach dem ersten Streckenabschnitt in Oberau 6 min warten, um den Gegenzug passieren zu lassen. Wie erkennt man diese Situation im Diagramm? Überlege dir Optimierungsmöglichkeiten für den Fahrplan. (e) Der Zug RB1883 hat Verspätung. Ab welcher Verspätung wäre es sinnvoll, den Zug RB189 in Oberau nicht warten zu lassen, um die Züge in einem anderen Ort passieren zu lassen? Probiere graphisch verschiedene Möglichkeiten aus. (a) t s Diagramm: 0 auf der t Achse entspricht der Uhrzeit 6:50 Uhr.

3 s in km 30 RB1883 RB t in min (b) RB1883 Garmisch Partenkirchen Oberau: 9km 0km 7h16min 7h8min = 9km 8min = 67,5 km h Oberau Eschenlohe: 14km 9km 7h7min 7hmin = 5km 5min = 60 km h Eschenlohe Ohlstadt: 19km 14km 7h1min 6h57min = 5km 4min = 75 km h Ohlstadt Murnau: 9km 19km 6h57min 6h51min = 10km 6min = 100 km h RB189 Garmisch Partenkirchen Oberau: 9km 0km 7h3min 6h56min = 9km 7min = 77 km h Oberau Eschenlohe: 14km 9km 7h15min 7h9min = 5km 6min = 50 km h Eschenlohe Ohlstadt: 19km 14km 7h0min 7h16min = 5km 4min = 75 km h Ohlstadt Murnau: 9km 19km 7h8min 7h1min = 10km 7min = 86 km h (c) Beide Züge sind auf dem Abschnitt von Eschenlohe nach Oberau am schnellsten. Im 3

4 Diagramm erkennt man das, dass auf diesen Abschnitten die Linien am steilsten sind. (d) Das Warten eines Zuges erkennt man im Diagramm, dass die Linie waagrecht verläuft. Die beiden Züge fahren aneinander vorbei, wenn sich ihre Linien schneiden. Man könnte die RB189 4 Minuten später losfahren lassen. (e) Die beiden Züge sollten dann in Eschenlohe aneinander vorbeifahren. Die RB189 ist um 7:15 Uhr in Eschenlohe, die RB1883 normalerweise um 7:01 Uhr. Das heißt die RB1883 sollte dazu 14 Minuten Verspätung haben. 6. Die Masse der Sonne ist etwa mal so groß wie die der Erde und ihr Radius etwa 110 mal so groß wie der der Erde. Um welchen Faktor ist die Gewichtskraft eines Körpers an der Sonnenoberfläche größer als an der Erdoberfläche? Ein recht gut trainierter Sprinter schafft es seine Geschwindigkeit beim Start von 0 in etwa 5 Sekunden auf 10 m s zu steigern. Das bedeutet, dass er eine durchschnittliche Beschleunigung von m s erreicht. Wenn wir eine Masse des Sprinters von 75kg unterstellen, benötigt er nach dem zweiten Newtonschen Gesetz dazu eine Kraft von F = ma = 75kg m s = 150N. Dies entspricht in etwa einer Gewichtskraft von 15kg. Ist der Sprinter so schwach oder woran liegt es, dass er so langsam beschleunigt? Der Sprinter kann nur dann eine beschleunigende Kraft erfahren, wenn er Kontakt mit dem Boden hat. Damit die mittlere beschleunigende Kraft dann 150N ist, muss die beschleunigende Kraft während dieser Zeit bedeutend größer sein. 8. Wie schnell kann ein (professioneller) Rennradfahrer fahren? Bergab: Die Frequenz mit der ein Profi tritt ist etwa 00 1 min. Die größte Übersetzung die er zur Verfügung hat ist 53 : 1 und der Radumfang beträgt,00m. Der Berg soll nicht so steil sein, dass der Rennradfahrer nicht mehr treten muss. v = 00 1 min 53 1,00m = 9,4 m s = 106 km h Bergauf: Ein Radprofi kann etwa eine Dauerleistung von 500 W erbringen. Wir sehen von Reibungsverlusten und vom Luftwiderstand ab und nehmen an, dass die Steigung 10% beträgt. Die Masse des Radfahrers inclusive Rennrad soll 85 kg betragen. P = mgh t = mgh = mg 0,1 l t P P v = l t = l P mg 0,1 l = P mg 0,1 = 6,00 m s = 1,6 km h 9. Eratosthenes ( v.chr.) berechnet den Erdradius 4

5 Die ägyptischen Städte Alexandria und Syene (heute Assuan) liegen auf dem gleichen Sonnenstrahlen Längengrad (Meridian). Am Tag der Sommersonnwende spiegelte sich zur Mittagszeit Syene 5000 Stadien die Sonne im tiefen Brunnen von Syene, d.h. Alexandria die Sonne stand genau senkrecht über Syene ϕ ϕ = 7, (Syene liegt auf dem Wendekreis des Krebses).ZurgleichenZeitwarfdieSonneim5000 Stadien ( 800 km) nördlich gelegenen Alexandria einen kleinen Schatten (siehe Abb.). Berechne den Erdradius. Welche anderen Argumente für die kugelförmige Gestalt der Erde konnten zur damaligen Zeit noch vorgebracht werden, welche gibt es heute? R = b ϕ = 800km π 6, km 7, 180 Schiffe, kreisförmiger Schatten bei Mondfinsternissen heute: Blick aus einem Raumschiff 10. Aristarch aus Samos ( v.chr.) berechnet das Verhältnis der Entfernungen Erde-Sonne und Erde-Mond Nebenstehende Abbildung zeigt die Lage von Erde, Sonne und Mond, wenn von der Erde aus der Mond gerade als Halbmond erscheint. Aristarch aus Samos, der auch ein heliozentrisches Weltbild vorgeschlagen hatte, bestimmte den Winkel Sonne- Erde-Mond etwas ungenau zu ϕ 87. Berechne daraus das Verhältnis der Entfernungen Erde-Sonne und Erde-Mond. Sonne Berechne den wahren Wert des Winkels ϕ aus den heute bekannten Entfernungen SE = 1, km und ME = km. Mond ϕ Erde ES EM = 1 cosϕ = 19,1; in Wirklichkeit: ES EM = 1, km 3, km = 389 cosϕ = EM ES = 3, km 1, km = 0,0057 = ϕ = 89,85 Ein kleiner Fehler beim Winkel bewirkt einen sehr großen Fehler im Verhältnis ES EM. 11. (a) Erkläre anhand geeigneter Skizzen das Zustandekommen einer Sonnen- und einer Mondfinsternis. (b) Es gibt ringförmige und totale Sonnenfinsternisse. Schätze auf Grund dieser Tatsache den Radius der Sonne ab (R Mond = 1738km). 5

6 (a) Mondfinsternis: Wenn Sonne, Mond und Erde (fast) auf einer Geraden liegen, gibt es eine Finsternis. Eine Mondfinsternis kann es nur bei Vollmond, eine Sonnenfinsternis nur bei Neumond geben. Außerdem muss der Mond bei einer Finsternis in der Erdbahnebene liegen. Bei der Mondfinsternis liegt der Mond im Schatten der Erde. Sonne Halbschatten Erde Kernschatten Mond Sonnenfinsternis: Bei der Sonnenfinsternis liegt der Beobachtungsort auf der Erde im Schatten des Mondes. Der Sichtbarkeitsbereich einer totalen Sonnenfinsternis ist nicht sehr groß und hängt von den momentanen Entfernungen Erde-Mond und Erde-Sonne ab. Sonne Halbschatten Mond Kernschatten Erde (b) Ist die Erde zu weit vom Mond entfernt, dann ist der scheinbare Durchmesser (Winkeldurchmesser) des Mondes kleiner als der der Sonne und man beobachtet eine ringförmige Sonnenfinsternis. Ungefähr aber erscheint der Mond genauso groß wie die Sonne. Aus dem Strahlensatz folgt dann R = 1AE = R Mond r Mond R = 1AE R Mond r Mond = 1, m 1, m 3, m = 6, m 1. Mondentfernung (a) DieOrtePundQliegenaufdem39.Breitengrad bei 11 östlicher und bei 93 westlicher Länge. Berechne a = PQ. (b) Von P und Q aus wird gleichzeitig ein Punkt M des Mondes anvisiert und es werden die Winkel β = 63,000 und γ = 64,000 gegen die Gerade PQ gemessen. Berechne die Entfernung r p = PM. P β a r p Q γ M h (c) Von P aus erscheint der Monddurchmesser unter dem Winkel δ = 9 43,5. Berechne den Radius R M des Mondes. 6

7 (a) ϕ = 39, α = 104, R = 6378km r = Rcosϕ = 4957km a = PQ = rsin α = 781km (b) ε =<) PMQ = γ β = 1,000 Sinussatz: r p a = sin(180 γ) sinε r p = asin116 sin1 = 4, km Q P r α ϕ R ϕ (c) δ = ( ,5 ) = 0, R M = r p tan δ = 1, km 13. In verschiedenen Lehrbüchern findet man verschiedene Definitionen der Länge 1 pc nämlich a oder b in nebenstehender Abbildung (S: Sonne, E: Erde, SE = 1AE). Um welche Strecke unterscheiden sich die beiden Definitionen und wie groß ist der relative Fehler? E S b 1 a P a = 1AE tan1 = 0664, AE b a =, AE = 363km = δ rel = b a b b = 1AE sin1 = 0664, AE = 1, Ordne die Erdentfernungen folgender Sterne der Größe nach: Sirius 8,65 LJ ε-eridani 3,30 pc Barnards Stern 5, m α-centauri, AE Altair Erdbahnradius erscheint unter dem Winkel 0,198 LJ Parsec AE m ϕ Sirius 8,65,65 ε-eridani 3,30 Barnards Stern 5, α-centauri, Altair 0, (a) Schätze ab, aus wie vielen Protonen das Universum besteht. Nimm dazu an, dass das Weltall nur Wasserstoff enthält. 7

8 (b) Das Alter des Universums ist 13, a. Wie viele Sekunden sind das? (c) Nimm an, dass sich das All seit dem Urknall mit Lichtgeschwindigkeit ausgedehnt hat und dass es kugelförmig ist. Wie groß ist dann die Dichte des Universums? Wie viele Wasserstoffatome enthält es pro m 3? (d) Wie groß ist die gesamte Energie W m der Materie des Universums? Es ist fast unglaublich, dass die aus der Gravitation resultierende potentielle Energie des Weltalls gleich W m ist und somit seine Gesamtenergie ziemlich exakt null ist! 16. Welche Dichte hat ein Neutronenstern der 1,5-fachen Sonnenmasse und mit dem Radius R = 0 km? Welche Masse hat ein Kubikzentimeter dieses Sterns? 17. Der Ereignishorizont (Point of no Return) eines schwarzen Lochs der Masse M ist eine Kugelfläche mit dem Radius R S = GM c (Schwarzschildradius), 11 m3 wobei G = 6,67 10 die Gravitationskonstante ist. kgs (a) Berechne den Schwarzschildradius der Sonne und der Erde. (b) Das schwarze Loch im Zentrum unserer Galaxis hat den Schwarzschildradius R S = 7, km. Welche Masse hat dieses Monstrum? 18. (a) Der Komet Tempel-Tuttle umrundet die Sonne in T = 33,7a und hat die kleinste Sonnenentfernung r 1 = 0,976AE. Berechne die Halbachsen der Kometenbahn und seine größte Entfernung r von der Sonne. Skizziere die Bahn des Kometen und zeichne auch die Erdbahn ein. (b) Der Komet Hale-Bopp hat den Perihelabstand r min = 0,914AE und die Exzentrizität seiner Bahn ist e = 0, Berechne seine Umlaufdauer und die Halbachsen seiner Bahn. (a) T a 3 = C = 1 a AE 3 = a = 3 = 10,335AE C d = a r 1 = 9,359AE = b = a d = 4,386AE r = a+d = 19,694AE T 8

9 y AE x AE 4 (b) d = ea = r min = a d = a(1 e) = a = r min 1 e = 187AE b = a 1 e = 18,5AE T a 3 = C = 1 a AE 3 = T = a 3 C =, a 19. Der Jupitermond Io umrundet den Planeten in der Zeit T Io = 1,77d auf einer Bahn mit der großen Halbachse a Io = 4, 10 5 km. (a) T Eu a 3 Eu (a) Der Jupitermond Europa hat die Umlaufdauer T Eu = 3,55d. Wie lang ist die große Halbachse a Eu der Umlaufbahn von Europa? (b) Eine Jupitersonde soll den Planeten so umrunden, dass ihre kleinste Entfernung (Punkt A) vom Planetenmittelpunkt r 1 =, km und ihre größte Entfernung (Punkt B) r = 8, km ist. Berechne die Länge a der großen Halbachse, die Umlaufdauer T, die Exzentrizität e und die Länge b der kleinen Halbachse der Sondenbahn. (c) Zeichne von der Sondenbahn die Punkte A, B und die beiden Brennpunkte S 1 (Jupiter) und S (10 5 km =1cm). Zeichne auch die Punkte C und D ein, die aus der Kenntnis der kleinen Halbachse resultieren. Konstruiere (mit kurzer Erläuterung) die Bahnpunkte E und F, die von Jupiter die Entfernung r 3 = 3, 10 5 km haben. Welche Entfernung r 4 haben diese Punkte von S? Beweise, dass EF AB gilt. Skizziere jetzt die Bahn unter Ausnutzung von Symmetrien. = T Io a 3 Io a Eu = 3 T Eu a3 Io T Io (b) a = r 1 +r 17 d = C Jup = 4,17 10 km 3 = = a Io 3 = km T Eu T Io = 1,59a Io = 6, km 9

10 T a 3 = C Jup = T = a 3 C Jup =,8d d = a r 1 = km = ea = e = d a = 0,6 b = a d = a 1 e = 0,8a = km (c) r 4 = ES = a r 3 = 6, km k(s 1,r 3 ) k(s,r 4 ) = {E,F} E C E S 1 S = d = km r 3 r 4 r3 +S 1S = 46, km r4 = 6, km = r3 +S 1S = A S 1 S B <) S S 1 E = 90 F D F 0. Ein kurzer Laserpuls wird von einem Teleskop T am Äquator zu einem Spiegel S r auf dem Mond geschickt, dort reflektiert und R E t bei T wieder empfangen, die Zeit t, die R M der Strahl unterwegs war, wird von einer Atomuhr gemessen. Im Verlauf eines Monats misst man die kleinste Zeitdifferenz t min =, s und den größten Wert t max =, s. Der Erdradius ist R E = 6378km, der Radius des Mondes R M = 1738km. (a) Berechne die kleinste (r min ) und die größte (r max ) Entfernung der Mittelpunkte von Erde und Mond. Ermittle daraus die große Halbachse a M und die kleine Halbachse b M der Mondbahn. (b) Die siderische (in einem zu den Sternen ruhenden Koordinatensystem betrachtete) Umlaufdauer des Mondes ist T M = 7,3166d. Welchen Radius hat die kreisförmige Bahn eines geostationären Satelliten, der die Erde in genau einem siderischen Tag (Sterntag), d.h. in d sid = 3h56min4s umrundet? (c) Erkläre das Zustandekommen des Zahlenwertes eines siderischen Tages. (a) r min = c t min r max = c t max a M = r min +r max +R E +R M = 36396km +R E +R M = km = km d M = a M r min = 1104km, e M = d M = 0,0549 a M b M = a M d M = 38380km 10

11 T ( ) (b) T = d sid = 86164s, a 3 = T M T 3 a 3 = a = a M = 498km M T M über Erdoberfläche: x = a R E = 3590km (c) Ein Jahr hat 365,5 4h-Tage und 366,5 Sterntage: 365,5 4h = 366,5 d sid d sid = 365, s = 86164s 366,5 d sid = 3h56min4s Sonne Erde 11

SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Gymnasium Jahrgangstufe 10 (Physik)

SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Gymnasium Jahrgangstufe 10 (Physik) SMART Sammlung mathematischer Aufgaben als Hypertext mit TEX Gymnasium Jahrgangstufe 10 (Physik) herausgegeben vom Zentrum zur Förderung des mathematisch-naturwissenschaftlichen Unterrichts der Universität

Mehr

Keplergesetzte S = 4,2 km. GM r a = a 2GM rv 2 = 5,5 102 AE (c) Perihel (1 e)a = 82AE Aphel (1+e)a = 1, AE.

Keplergesetzte S = 4,2 km. GM r a = a 2GM rv 2 = 5,5 102 AE (c) Perihel (1 e)a = 82AE Aphel (1+e)a = 1, AE. Keplergesetzte 1. Am 14.November 003 wurde der Planetoid Sedna entdeckt. Noch nie zuvor wurde ein natürliches Objekt aus unserem Sonnensystem in einer so großen Entfernung von der Erde entdeckt. Im folgenden

Mehr

Astronomische Einheit. σ SB = W m 2 K 4 G= m 3 kg 1 s 2 M = kg M = kg c= km s 1. a=d/(1 e)=3.

Astronomische Einheit. σ SB = W m 2 K 4 G= m 3 kg 1 s 2 M = kg M = kg c= km s 1. a=d/(1 e)=3. Einführung in die Astronomie I Wintersemester 2007/2008 Beispielklausur Musterlösung Allgemeine Regeln Die Bearbeitungszeit der Klausur beträgt eine Stunde (60 Minuten). Außer eines Taschenrechners sind

Mehr

Messung der Astronomischen Einheit nach Aristarch (mit Lösung)

Messung der Astronomischen Einheit nach Aristarch (mit Lösung) Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Messung der Astronomischen Einheit nach Aristarch (mit Lösung) 1 Einleitung Bis ins 17. Jahrhundert

Mehr

U. Backhaus, Universität Duisburg-Essen. Die Mondentfernung. (mit Lösungen)

U. Backhaus, Universität Duisburg-Essen. Die Mondentfernung. (mit Lösungen) Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen 1 Einleitung Die Mondentfernung (mit Lösungen) Als Aristarch versuchte, die Sonnenentfernung

Mehr

Allgemeine Regeln. Nützliche Konstanten. Frage 1: Sonnensystem. Einführung in die Astronomie i. Sommersemester 2011 Beispielklausur Musterlösung

Allgemeine Regeln. Nützliche Konstanten. Frage 1: Sonnensystem. Einführung in die Astronomie i. Sommersemester 2011 Beispielklausur Musterlösung Einführung in die Astronomie i Sommersemester 2011 Beispielklausur Musterlösung Allgemeine Regeln Die Bearbeitungszeit der Klausur beträgt eine Stunde (60 Minuten). Außer eines Taschenrechners sind keine

Mehr

Theoretische Physik I Mechanik Blatt 1

Theoretische Physik I Mechanik Blatt 1 PD Dr. S. Mertens S. Falkner, S. Mingramm Theoretische Physik I Mechanik Blatt 1 WS 27/28 8. 1. 27 1. Parabelbahn. Ein Punkt bewege sich auf der Kurve, die durch die Gleichung y 2 = 4ax + 4a 2 a > beschrieben

Mehr

Kleines Klassen-Planetarium

Kleines Klassen-Planetarium Kleines Klassen-Planetarium Prof. Dr. Christina Birkenhake http://www.thuisbrunn65.de/ 23. März 2015 Unser Sonnensystem Sonne Merkur Venus Erde Mars Jupiter Saturn Uranus Neptun Seit 24. Aug. 2006 ist

Mehr

Einführung in die Astronomie & Astrophysik 1. Kapitel: Historie

Einführung in die Astronomie & Astrophysik 1. Kapitel: Historie Einführung in die Astronomie & Astrophysik 1. Kapitel: Historie Wilhelm Kley & Andrea Santangelo Institut für Astronomie & Astrophysik Kepler Center for Astro and Particle Physics Sommersemester 2013 Astronomie

Mehr

Kreisberechnungen. 2. Kapitel aus meinem Lehrgang Geometrie

Kreisberechnungen. 2. Kapitel aus meinem Lehrgang Geometrie Kreisberechnungen 2. Kapitel aus meinem Lehrgang Geometrie Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch e-mail: theorie@ronaldbalestra.ch 8. Oktober 08 Überblick über die bisherigen Geometrie

Mehr

Das Sonnensystem. Teil 1. Peter Hauschildt 6. Dezember Hamburger Sternwarte Gojenbergsweg Hamburg

Das Sonnensystem. Teil 1. Peter Hauschildt 6. Dezember Hamburger Sternwarte Gojenbergsweg Hamburg Das Sonnensystem Teil 1 Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 6. Dezember 2016 1 / 42 Übersicht Allgemeiner Überblick Bahnen der Planeten historisch:

Mehr

Einführung in die Astronomie

Einführung in die Astronomie Einführung in die Astronomie Teil 2 Peter H. Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg part2.tex Einführung in die Astronomie Peter H. Hauschildt 30/10/2014

Mehr

Einführung in die Astronomie I

Einführung in die Astronomie I Einführung in die Astronomie I Teil 2 Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 20. Juni 2017 1 / 35 Tagesübersicht Übersicht Sonnensystem Bahnbewegungen

Mehr

Geometrie-Aufgaben: Kreisberechnungen Berechne jeweils die Längen der folgenden Kreislinien: (a) für x = 4. (b) allgemein.

Geometrie-Aufgaben: Kreisberechnungen Berechne jeweils die Längen der folgenden Kreislinien: (a) für x = 4. (b) allgemein. Geometrie-Aufgaben: Kreisberechnungen 3 1. Berechne jeweils die Längen der folgenden Kreislinien: (a) für x = 4. (b) allgemein. 1 2 Bilder: A. Tuor 3 2. Der Umfang eines Kreises ist um 2 grösser als der

Mehr

Abschlussprüfung Berufliche Oberschule 2015 Physik 12 Technik - Aufgabe III - Lösung

Abschlussprüfung Berufliche Oberschule 2015 Physik 12 Technik - Aufgabe III - Lösung Abschlussprüfung Berufliche Oberschule 15 Physik 1 Technik - Aufgabe III - Lösung Teilaufgabe 1. Ein Plattenkondensator mit Luft als Dielektrikum wird zunächst an eine Gleichspannungsquelle mit der Spannung

Mehr

Ein Lichtstrahl fällt aus der Luft ins Wasser. Man hat den Einfallswinkel α und den Brechungswinkel β gemessen und in folgende Tabelle eingetragen.

Ein Lichtstrahl fällt aus der Luft ins Wasser. Man hat den Einfallswinkel α und den Brechungswinkel β gemessen und in folgende Tabelle eingetragen. 1 Optik 1.1 Brechung des Lichtes Ein Lichtstrahl fällt aus der Luft ins Wasser. Man hat den Einfallswinkel α und den Brechungswinkel β gemessen und in folgende Tabelle eingetragen. α β 0 0 10 8 17 13 20

Mehr

Aufgaben zu Licht und Schatten - Lösungen:

Aufgaben zu Licht und Schatten - Lösungen: Aufgaben zu Licht und Schatten - Lösungen: Aufg. 5a: ØSo ØM Bei einer Sonnenfinsternis reicht die Spitze des rdschattens ungefähr bis zur rdoberfläche. Manchmal nicht ganz ==> ringförmige Sonnenfinsternis,

Mehr

Unser Sonnensystem. Prof. Dr. Christina Birkenhake. 8. März

Unser Sonnensystem. Prof. Dr. Christina Birkenhake. 8. März Unser Sonnensystem Prof. Dr. Christina Birkenhake christina@birkenhake.net http://christina.birkenhake.net 8. März 2010 Heliozentrisches Weltbild des Kopernikus Ellipsen überspringen Ellipsen und Planetenbahnen

Mehr

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 015/16 Übungsblatt 6 Übungsblatt 6 Lösung Aufgabe 1 Gravitation. a) Berechnen Sie die Beschleunigung g auf der Sonnenoberfläche. Gegeben

Mehr

Planetenschleifen mit Geogebra 1

Planetenschleifen mit Geogebra 1 Planetenschleifen Planetenschleifen mit Geogebra Entstehung der Planetenschleifen Nach dem dritten Kepler schen Gesetz stehen die Quadrate der Umlaufzeiten zweier Planeten im gleichen Verhältnis wie die

Mehr

3, wobei C eine Konstante ist. des Zentralgestirns abhängig ist.

3, wobei C eine Konstante ist. des Zentralgestirns abhängig ist. Abschlussprüfung Berufliche Oberschule 00 Physik Technik - Aufgabe I - Lösung Teilaufgabe.0 Für alle Körper, die sich antriebslos auf einer Kreisbahn mit dem Radius R und mit der Umlaufdauer T um ein Zentralgestirn

Mehr

Wir sollen erarbeiten, wie man mit Hilfe der Mondentfernung die Entfernung zur Sonne bestimmen kann.

Wir sollen erarbeiten, wie man mit Hilfe der Mondentfernung die Entfernung zur Sonne bestimmen kann. Expertengruppenarbeit Sonnenentfernung Das ist unsere Aufgabe: Wir sollen erarbeiten, wie man mit Hilfe der Mondentfernung die Entfernung zur Sonne bestimmen kann. Konkret ist Folgendes zu tun: Lesen Sie

Mehr

I. PHYSISCHE GEOGRAPHIE

I. PHYSISCHE GEOGRAPHIE I. PHYSISCHE GEOGRAPHIE 1. Unsere kosmische Umgebung 1. Ordne die Wissenschaftler den wissenschaftlichen Ergebnissen zu! Schreibe die Großbuchstaben an die entsprechende Stelle nach den wissenschaftlichen

Mehr

Astronomische Einheit

Astronomische Einheit Einführung in die Astronomie ii Sommersemester 2016 Musterlösung Nützliche Konstanten Astronomische Einheit Parsec Gravitationskonstante Sonnenmasse Sonnenleuchtkraft Lichtgeschwindigkeit Hubble Konstante

Mehr

Bei den Planetenwegen, die man durchwandern kann, sind die Dinge des Sonnensystems 1 Milliarde mal verkleinert dargestellt.

Bei den Planetenwegen, die man durchwandern kann, sind die Dinge des Sonnensystems 1 Milliarde mal verkleinert dargestellt. Distanzen und Grössen im Planetenweg Arbeitsblatt 1 Bei den Planetenwegen, die man durchwandern kann, sind die Dinge des Sonnensystems 1 Milliarde mal verkleinert dargestellt. Anders gesagt: Der Massstab

Mehr

Übungen zur Einführung in die Astrophysik I. Musterlösung Blatt 2

Übungen zur Einführung in die Astrophysik I. Musterlösung Blatt 2 Übungen zur Einführung in die Astrophysik I Musterlösung Blatt 2 Aufgabe 1(a) Das Gravitationspotential der Erde ist ein Zentralpotential. Es gilt somit: γ Mm r 2 = m v2 r wobei γ die Gravitationskonstante,

Mehr

Kreisberechnungen. GEOMETRIE Kapitel 1 SprachProfil - Mittelstufe KSOe. Ronald Balestra CH Zürich

Kreisberechnungen. GEOMETRIE Kapitel 1 SprachProfil - Mittelstufe KSOe. Ronald Balestra CH Zürich Kreisberechnungen GEOMETRIE Kapitel 1 SprachProfil - Mittelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 16. November 12 Inhaltsverzeichnis 1 Kreisberechnungen 1 1.1

Mehr

Die scheinbare Grösse von Sonne und Mond Erfahrungen Experimente Berechnungen

Die scheinbare Grösse von Sonne und Mond Erfahrungen Experimente Berechnungen 1/9 Die scheinbare Grösse von Sonne und Mond Erfahrungen Experimente erechnungen Sonnefinsternisse sind total, wenn der Mond etwas grösser erscheint als die Sonne. Steht der Mond genügend weit weg, kann

Mehr

2.7 Gravitation, Keplersche Gesetze

2.7 Gravitation, Keplersche Gesetze 2.7 Gravitation, Keplersche Gesetze Insgesamt gibt es nur vier fundamentale Wechselwirkungen: 1. Gravitation: Massenanziehung 2. elektromagnetische Wechselwirkung: Kräfte zwischen Ladungen 3. starke Wechselwirkung:

Mehr

Messung der Astronomischen Einheit nach Ole Römer

Messung der Astronomischen Einheit nach Ole Römer Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Messung der Astronomischen Einheit nach Ole Römer (mit Lösungen) 1 Einleitung Misst man um die

Mehr

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler.

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler. Geozentrisches und heliozentrisches Weltbild Geozentrisches Weltbild: Vertreter Aristoteles, Ptolemäus, Kirche (im Mittelalter) Heliozentrisches Weltbild: Vertreter Aristarch von Samos, Kopernikus, Galilei

Mehr

1 AE = km = 149, km.

1 AE = km = 149, km. 1. Astronomische Entfernungsangaben Astronomische Einheit (AE) Die große Halbachse der Erdbahn um die Sonne = mittlere Entfernung Erde - Sonne, beträgt 149 597 892 ± 5 km. Sie wird als Astronomische Einheit

Mehr

Kreisberechnungen. GEOMETRIE Kapitel 2 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich

Kreisberechnungen. GEOMETRIE Kapitel 2 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich Kreisberechnungen GEOMETRIE Kapitel 2 MNProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 21. Februar 16 Überblick über die bisherigen Geometrie - Themen: 1

Mehr

Kepler sche Gesetze. = GMm ; mit v = 2rπ. folgt 3. Keplersches Gesetz

Kepler sche Gesetze. = GMm ; mit v = 2rπ. folgt 3. Keplersches Gesetz Kepler sche Gesetze 1. 3. Keplersche Gesetz (a) Wie kann man das 3. Keplersche Gesetz aus physikalischen Gesetzen ableiten? Welche vereinfachenden Annahmen werden dazu gemacht? (b) Welche Verfeinerung

Mehr

Physik 10. Klasse g8 Aufgaben

Physik 10. Klasse g8 Aufgaben Physik 10. Klasse g8 Aufgaben Richard Reindl Die aktuellste Version der Aufgaben findet man unter http://www.stbit.de Das Werk steht unter einer Creative Commons - Namensnennung - Nicht-kommerziell - Weitergabe

Mehr

Sinus- und Kosinussatz

Sinus- und Kosinussatz Sinus- und Kosinussatz Aufgabe 1 Bestimme für 0 α 360 die zwei Winkel, für die gilt a) sin α = 0,2 b) sin α = -0,74 c) cos α = 0,84 d) cos α = -0,05 e) tan α = 21 f) tan α = -0,51 g) cos α = -0,9 h) tan

Mehr

Optik. Schatten: Siehe: Spiegelung: Spiegel

Optik. Schatten: Siehe:  Spiegelung: Spiegel Optik Schatten: Siehe: http://www.leifiphysik.de/web_ph07_g8/grundwissen/0_schatten/schatten.htm Spiegelung: Wand Spiegel Beobachter Finde durch Konstruktion das Bild des Pfeils im Spiegel Brechung: Zeichne

Mehr

Grundwissen 8 - Aufgaben Seite 1

Grundwissen 8 - Aufgaben Seite 1 Grundwissen 8 - Aufgaben 22.01.2016 Seite 1 1. Ergänze jede der folgenden Aussagen zum Rechnen mit Potenzen mathematisch sinnvoll und grammatikalisch korrekt. a) Zwei Potenzen mit gleicher Basis werden

Mehr

Serie W1 Klasse 8 RS. 1. 7,4 dm³ = cm³ 2. 5 (13-6) = 3. Berechne für a = - 4,5 b = - 3

Serie W1 Klasse 8 RS. 1. 7,4 dm³ = cm³ 2. 5 (13-6) = 3. Berechne für a = - 4,5 b = - 3 Serie W1 Klasse 8 RS 1. 7,4 dm³ = cm³ 2. 5 (13-6) = 3. Berechne für a = - 4,5 b = - 3 3 c = 4 2a - b; a + b; b : c 4. 36:0,4 = 5. Vergleiche. 30+2 10+5 30+2 (10+5) 6. Kürze 12 44 7. Berechne a 8a - 28

Mehr

7 Beziehungen im Raum

7 Beziehungen im Raum Lange Zeit glaubten die Menschen, die Erde sei eine Scheibe. Heute zeigen dir Bilder aus dem Weltall sehr deutlich, dass die Erde die Gestalt einer Kugel hat. 7 Beziehungen im Raum Gradnetz der Erde Längengrade

Mehr

c) Berechnen Sie die Nullstelle der Ableitung ṡ(t) der Funktion s(t) = C 1 e λ1t + tc 2 e λ1t. (Bem.: Wir nehmen C 2 0 und λ 1 0 an.

c) Berechnen Sie die Nullstelle der Ableitung ṡ(t) der Funktion s(t) = C 1 e λ1t + tc 2 e λ1t. (Bem.: Wir nehmen C 2 0 und λ 1 0 an. Aufgaben Nr.1 Ein Satellit der Masse 600 kg wird auf eine stabile kreisförmige Umlaufbahn um die Erde (Bewegung in der Äquatorebene) gebracht. Der Satellit hat eine Höhe von 10 000 km über der Erdoberfläche.

Mehr

x 1 x 2 a) Erläutern Sie den prinzipiellen Weg, wie man den Standort der Person aus den gegebenen Daten berechnen kann.

x 1 x 2 a) Erläutern Sie den prinzipiellen Weg, wie man den Standort der Person aus den gegebenen Daten berechnen kann. Lineare Algebra / Analytische Geometrie Leistungskurs Aufgabe 5: GPS Eine Person bestimmt ihre Position auf der Erdoberfläche mit Hilfe eines GPS-Gerätes. Dieser Vorgang soll in dieser Aufgabe prinzipiell

Mehr

Physik I Musterlösung 2

Physik I Musterlösung 2 Physik I Musterlösung 2 FS 08 Prof. R. Hahnloser Aufgabe 2.1 Flugzeug im Wind Ein Flugzeug fliegt nach Norden und zwar so dass es sich zu jedem Zeitpunkt genau über einer Autobahn befindet welche in Richtung

Mehr

Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung

Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung Udo Backhaus 14. Dezember 2004 1 Prinzip Die Messung der Astronomischen Einheit durch Kontaktzeitmessungen beim Venustransit

Mehr

Messen * Vergleich mit Standard

Messen * Vergleich mit Standard 1 2 Messen * Vergleich mit Standard Astronomische Messtechnik * Winkel (Position, Entfernung) * Helligkeit (Strahlung, Spektrum) Beobachtungen * Mondphasen * Sonnenauf /Untergang; Höchststand * Sonnen

Mehr

Sonnen- und Mondfinsternis (mit der Leuchtbox)

Sonnen- und Mondfinsternis (mit der Leuchtbox) Lehrer-/Dozentenblatt Sonnen- und Mondfinsternis (mit der Leuchtbox) (Artikelnr.: P063500) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-0 Lehrplanthema: Optik Unterthema: Lichtausbreitung

Mehr

Das geozentrischen Weltbild

Das geozentrischen Weltbild Das geozentrischen Weltbild Hier Firmenlogo hinzufügen von Alexander Erlich Physik LK 11/2 März 2005 Altes Gymnasium 1 Claudio Ptolemäus * ca. 100 n. Chr., ca. 160 n.chr. wahrscheinlich griechischer Herkunft

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Übung Qi Li, Bernhard Loitsch, Hannes Schmeiduch Dienstag, 06.03.0 Vergrößerungslinse Sie sollen mit einer Linse ein 0fach vergrößertes Bild eines Gegenstandes G auf einem

Mehr

numerische Berechnungen von Wurzeln

numerische Berechnungen von Wurzeln numerische Berechnungen von Wurzeln. a) Berechne x = 7 mit dem Newtonverfahren und dem Startwert x = 4. Mache die Probe nach jedem Iterationsschritt. b) h sei eine kleine Zahl, d.h. h. Wir suchen einen

Mehr

Eigenbewegung und Parallaxe von Barnards Pfeilstern (mit Lösungen)

Eigenbewegung und Parallaxe von Barnards Pfeilstern (mit Lösungen) Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Eigenbewegung und Parallaxe von Barnards Pfeilstern (mit Lösungen) 1 Einleitung Der Parallaxeneffekt

Mehr

Prof. Liedl Übungsblatt 6 zu PN1. Übungen zur Vorlesung PN1. Übungsblatt 6 Lösung. Besprechung am

Prof. Liedl Übungsblatt 6 zu PN1. Übungen zur Vorlesung PN1. Übungsblatt 6 Lösung. Besprechung am Übungen zur Vorlesung PN1 Übungsblatt 6 Lösung Besprechung a7.11.2012 Aufgabe 1: Zentrifuge Eine Zentrifuge habe einen Rotor mit einem Durchmesser von 80 cm. An jedem Ende hängen Schwinggefäße mit einer

Mehr

] bestimmen kann. Interpretieren Sie die Bedeutung der Zahl 6,5 im gegebenen Sachzusammenhang. (R)

] bestimmen kann. Interpretieren Sie die Bedeutung der Zahl 6,5 im gegebenen Sachzusammenhang. (R) b) Ein Auto macht eine Vollbremsung, bis es zum Stillstand kommt. Der Weg, den es dabei bis zum Stillstand zurücklegt, lässt sich in Abhängigkeit von der vergangenen Zeit t durch die Funktion s beschreiben:

Mehr

TEILPRÜFUNG ZUR BERUFSREIFEPRÜFUNG. Themenstellung für die schriftliche Berufsreifeprüfung. aus dem Fach Mathematik und angewandte Mathematik

TEILPRÜFUNG ZUR BERUFSREIFEPRÜFUNG. Themenstellung für die schriftliche Berufsreifeprüfung. aus dem Fach Mathematik und angewandte Mathematik TEILPRÜFUNG ZUR BERUFSREIFEPRÜFUNG Themenstellung für die schriftliche Berufsreifeprüfung aus dem Fach Mathematik und angewandte Mathematik Termin: Frühjahr 2017 Prüfer: Andreas Aschbacher Nikolaus Ettel

Mehr

Name: Punkte: Note Ø: Abzüge für Darstellungsmängel:

Name: Punkte: Note Ø: Abzüge für Darstellungsmängel: Name: Punkte: Note Ø: Abzüge für Darstellungsmängel: Klasse 9c. Klassenarbeit in NWT 4..05 Bitte achte auf gute Darstellung, denke an Geg., Ges., Formeln, Rundung, Einheiten... Aufgabe (0 Punkte) Ein Monat

Mehr

Eigenbewegung und Parallaxe von Barnards Pfeilstern

Eigenbewegung und Parallaxe von Barnards Pfeilstern Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Eigenbewegung und Parallaxe von Barnards Pfeilstern 1 Einleitung Der Parallaxeneffekt ist jedem,

Mehr

Newtonsche Gesetze. Lösung: a = F m =

Newtonsche Gesetze. Lösung: a = F m = Newtonsche Gesetze 1. Der ICE 3 hat laut Hersteller eine axiale Anzugkraft von 300kN und ein,,leergewicht von 405t. Der Zug hat 415 Sitzplätze. Wir unterstellen für die Masse eines Passagiers eine Masse

Mehr

Die Keplerschen Gesetze ==================================================================

Die Keplerschen Gesetze ================================================================== Die Keplerschen Gesetze ================================================================== Astronomische Daten, die bei den folgenden Berechnungen verwendet werden dürfen: Große Halbachse Sonne-Erde: 1

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 2017/18 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Dr. Neelima Paul, Sebastian Grott, Lucas Kreuzer,

Mehr

Experimentalphysik I: Mechanik

Experimentalphysik I: Mechanik Ferienkurs Experimentalphysik I: Mechanik Wintersemester 15/16 Übung 1 - Lösung Technische Universität München 1 Fakultät für Physik 1 Stein fällt in Brunnen Ein Stein fällt in einen Brunnen. Seine Anfangsgeschwindigkeit

Mehr

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H Formelsammlung Lagrange-Gleichungen: ( ) d L dt q k L q k = 0 mit k = 1,..., n. (1) Zur Koordinate q k konjugierter Impuls: p k = L q k. (2) Hamilton-Funktion: n H(q 1,..., q n, p 1,..., p n, t) = p k

Mehr

Marcus Chown Govert Schilling. Kurze Sätze über große Ideen

Marcus Chown Govert Schilling. Kurze Sätze über große Ideen Marcus Chown Govert Schilling DAS UNIVERSUM TW1TTERN Kurze Sätze über große Ideen Aus dem Englischen von Birgit Brandau Deutscher Taschenbuch Verlag INHALT Vorwort 7 Der Himmel 11 1. Wie entsteht ein Regenbogen?

Mehr

Stellarstatistik - Aufbau unseres Milchstraßensystems (3)

Stellarstatistik - Aufbau unseres Milchstraßensystems (3) Stellarstatistik - Aufbau unseres Milchstraßensystems (3) Die solare Nachbarschaft Die Bewegung der Sonne relativ zu den benachbarten Sternen Der Sonnenapex Der Sonnenapex ist der Fluchtpunkt der Bewegung

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Gravitation

Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Gravitation 22. Oktober 2015 Physik Gravitation Newton s Gravitationsgesetz Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen.

Mehr

1.1 Eindimensionale Bewegung. Aufgaben

1.1 Eindimensionale Bewegung. Aufgaben 1.1 Eindimensionale Bewegung Aufgaben Aufgabe 1: Fahrzeug B fährt mit der Geschwindigkeit v B am Punkt Q vorbei und fährt anschließend mit konstanter Geschwindigkeit weiter. Eine Zeitspanne Δt später fährt

Mehr

Nachklausur 2003 Physik I (Mechanik)

Nachklausur 2003 Physik I (Mechanik) Institut für Experimentelle Kernphysik WS2003, 8-10-03, 10 00 13 00 Nachklausur 2003 Physik I (Mechanik) Priv. Dozent Dr. M. Erdmann, Dr. G. Barker Name/Vorname : Matrikelnummer : Fachsemester : Übungsgruppe

Mehr

Brückenkurs Physik SS10

Brückenkurs Physik SS10 . Ein Vogel fliegt mit einer Geschwindigkeit von 5 km/ h. Wie lange benötigt er für eine Strecke von 75 km?. Ein Fahrzeug fährt im Stadtverkehr mit einer Geschwindigkeit von 48 km/h. Wie viele Minuten

Mehr

Wir sollen erarbeiten, wie man den Erdradius bestimmen kann.

Wir sollen erarbeiten, wie man den Erdradius bestimmen kann. Expertengruppenarbeit Erdradius Das ist unsere Aufgabe: Wir sollen erarbeiten, wie man den Erdradius bestimmen kann. Konkret ist Folgendes zu tun: Lesen Sie die Informationstexte und bearbeiten gemeinsam

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Mechanik der Bewegungen - Eine Einführung

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Mechanik der Bewegungen - Eine Einführung Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt: Mechanik der Bewegungen - Eine Einführung Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT Mechanik

Mehr

Einführung in die Astronomie und Astrophysik I. Jürgen Schmitt Hamburger Sternwarte

Einführung in die Astronomie und Astrophysik I. Jürgen Schmitt Hamburger Sternwarte Einführung in die Astronomie und Astrophysik I Jürgen Schmitt Hamburger Sternwarte Stellarastrophysik (I) Was wird behandelt? Helligkeitssystem Parallaxe und Entfernungen der Sterne Astronomische Einheit

Mehr

Brückenkurs Höhere Mathematik

Brückenkurs Höhere Mathematik Vorkurse der Hochschule Aalen Brückenkurs Höhere Mathematik Aufgabensammlung März 209 Das Grundlagenzentrum (GLZ) wird aus Mitteln des Bundesministeriums für Bildung und Forschung (BMBF) unter dem Förderkennzeichen

Mehr

Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11. von Matthias Kolodziej aol.com

Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11. von Matthias Kolodziej aol.com GRUNDLAGEN DER MECHANIK Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11 von Matthias Kolodziej shorebreak13 @ aol.com Hagen, Westfalen September 2002 Inhalt: I. Kinematik 1.

Mehr

Wiederholung Physik I - Mechanik

Wiederholung Physik I - Mechanik Universität Siegen Wintersemester 2011/12 Naturwissenschaftlich-Technische Fakultät Prof. Dr. M. Risse, M. Niechciol Department Physik 9. Übungsblatt zur Vorlesung Physik II für Elektrotechnik-Ingenieure

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 16/17 Lösung 1 Ronja Berg (ronja.berg@tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Aufgabe 1: Superposition

Mehr

Relativitätstheorie und Kosmologie Teil 2 Unterricht

Relativitätstheorie und Kosmologie Teil 2 Unterricht Relativitätstheorie und Kosmologie Teil 2 Unterricht F. Herrmann und M. Pohlig S www.physikdidaktik.uni-karlsruhe.de 9 DER GEKRÜMMTE RAUM 10 KOSMOLOGIE 9 DER GEKRÜMMTE RAUM Raum und Zeit getrennt behandeln

Mehr

Astronomische Einheit. d GC = 8kpc R(t e ) z + 1

Astronomische Einheit. d GC = 8kpc R(t e ) z + 1 Einführung in die Astronomie ii Sommersemester 2010 Musterlösung Allgemeine Regeln Die Bearbeitungszeit der Klausur beträgt eine Stunde. Außer eines Taschenrechners sind keine Hilfsmittel erlaubt. Alle

Mehr

AB1 Rund um die linearen Funktionen

AB1 Rund um die linearen Funktionen AB1 Rund um die linearen Funktionen Löse nacheinander die nachfolgenden zehn Aufgaben und trage am Ende ein, wie gut Du mit den Aufgaben klar gekommen bist. 1) Marillen Kaufte man 1998 Marillen beim Obsthändler,

Mehr

Einführung in die Astronomie und Astrophysik I

Einführung in die Astronomie und Astrophysik I Einführung in die Astronomie und Astrophysik I Teil 6 Jochen Liske Fachbereich Physik Hamburger Sternwarte jochen.liske@uni-hamburg.de Astronomische Nachricht der Woche Astronomical news of the week Astronomical

Mehr

Satellitennavigation-SS 2011

Satellitennavigation-SS 2011 Satellitennavigation-SS 011 LVA.-Nr. 183.060 Gerhard H. Schildt Buch zur Vorlesung: ISBN 978-3-950518-0-7 erschienen 008 LYK Informationstechnik GmbH www.lyk.at office@lyk.at Satellitennavigation GPS,

Mehr

Themen: Versuchsbeschreibungen, Optik 1 (Licht und Schatten)

Themen: Versuchsbeschreibungen, Optik 1 (Licht und Schatten) Klasse 7 Physik Vorbereitung zur 1. Lernkontrolle im November 2018 Themen: Versuchsbeschreibungen, Optik 1 (Licht und Schatten) Checkliste Was ich alles können soll Ich kenne die wichtigen Teile / Abschnitte

Mehr

Sonnen- und Mondfinsternis (mit der Leuchtbox)

Sonnen- und Mondfinsternis (mit der Leuchtbox) Lehrer-/Dozentenblatt Gedruckt: 30.03.207 6:2:0 P063500 Sonnen- und Mondfinsternis (mit der Leuchtbox) (Artikelnr.: P063500) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-0 Lehrplanthema:

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 9. Nov. Keplergleichungen, Gravitation u. Scheinkräfte Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Planetenbahnen http://www.astro.uni-bonn.de/~deboer/pdm/planet/sonnenap2/

Mehr

Messung der Astronomischen Einheit nach Ole Römer

Messung der Astronomischen Einheit nach Ole Römer Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Messung der Astronomischen Einheit nach Ole Römer Einleitung Misst man um die Zeit der Jupiteropposition

Mehr

3. Koordinatensysteme, Zeit und Kalender

3. Koordinatensysteme, Zeit und Kalender 3.1 Erdumlaufbahn steininger@astro.univie.ac.at Folie 1 Ellipsen: a, b sind die großen, bzw. kleinen Halbachsen Exzentrizität e = f/a A = Aphel P = Perihel Folie 2 III.1 Exzentrizität der Erdumlaufbahn

Mehr

3. Koordinatensysteme, Zeit und Kalender

3. Koordinatensysteme, Zeit und Kalender 3.1 Erdumlaufbahn steininger@astro.univie.ac.at Folie 1 Ellipsen: a, b sind die großen, bzw. kleinen Halbachsen Exzentrizität e = f/a A = Aphel P = Perihel Folie 2 Exzentrizität der Erdumlaufbahn = 0,0167

Mehr

Examensaufgaben RELATIVITÄTSTHEORIE

Examensaufgaben RELATIVITÄTSTHEORIE Examensaufgaben RELATIVITÄTSTHEORIE Aufgabe 1 (Juni 2006) Ein Proton besitzt eine Gesamtenergie von 1800 MeV. a) Wie groß ist seine dynamische Masse? b) Berechne seine Geschwindigkeit in km/s. c) Welcher

Mehr

Abschlusstest der Unterrichtseinheit Astronomische Entfernungsbestimmung

Abschlusstest der Unterrichtseinheit Astronomische Entfernungsbestimmung Abschlusstest der Unterrichtseinheit Astronomische sbestimmung Codename: Expertengruppe: 1. Vielleicht haben Sie nun eine Vorstellung über Größen und en im Sonnensystem: Stellen Sie sich vor, die Sonne

Mehr

Messung der Astronomischen Einheit nach Aristarch

Messung der Astronomischen Einheit nach Aristarch Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Messung der Astronomischen Einheit nach Aristarch 1 Einleitung Bis ins 17. Jahrhundert war die

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E13 WS 2011/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung

Mehr

6 Gravitation (gravitación, la)

6 Gravitation (gravitación, la) 6 Gravitation Hofer 1 6 Gravitation (gravitación, la) A1: Informiere dich über unser Sonnensystem und trage dein Wissen in Form eines Kurzreferates vor. 6.1 Weltbilder 6.1.2 Das geozentrische Weltbild(concepto

Mehr

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt.

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Lösungen zum Thema Geometrie Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Höhe h c Winkelhalbierende w α Mittelsenkrechte ms c Seitenhalbierende s c b)

Mehr

RELATIVITÄTSTHEORIE. (Albert Einstein ) spezielle Relativitätstheorie - allgemeine Relativitätstheorie. Spezielle Relativitätstheorie

RELATIVITÄTSTHEORIE. (Albert Einstein ) spezielle Relativitätstheorie - allgemeine Relativitätstheorie. Spezielle Relativitätstheorie RELATIVITÄTSTHEORIE (Albert Einstein 1879-1955) spezielle Relativitätstheorie - allgemeine Relativitätstheorie Spezielle Relativitätstheorie (Albert Einstein 1905) Zeitdilatation - Längenkontraktion =

Mehr

Landeanflug. Anforderungsstufe: leicht

Landeanflug. Anforderungsstufe: leicht Landeanflug Moderne Flugzeugtypen erlauben Landegeschwindigkeiten von 250-300 km/h. Ein Flugzeug fliegt mit einer konstanten Geschwindigkeit von 252 km/h einen Landeplatz an. Seine Flugrichtung bildet

Mehr

1. Schularbeit - Gruppe A M 0 1(1) 6C A

1. Schularbeit - Gruppe A M 0 1(1) 6C A . Schularbeit - Gruppe A M 0 () 6C 3 0 97 A. Ergänze folgende Tabelle: Potenz Bruch / Wurzel numerischer Wert 3-5 n -5 8 0,00 3 5 4 x 3 8 7. Berechne: a) ( x y) ( x + y) 0 = b) 9x 6ax : = 5 4a 3 3. Rechne

Mehr

Die Lichtgeschwindigkeit im Vakuum

Die Lichtgeschwindigkeit im Vakuum Die Lichtgeschwindigkeit im Vakuum Versuch: Experimentelle Bestimmung der Lichtgeschwindigkeit c s = 2 t t s 4 s = 15 km t 10 s 1 Erste Bestimmung der Lichtgeschwindigkeit nach Olaf Römer 1676 Die schon

Mehr

1 Astronomie heute: Grundbegriffe

1 Astronomie heute: Grundbegriffe Sternhaufen: -> Sub-Systeme der Milchstraße (der Galaxien) durch Gravitation gebundene Sternsysteme 1000-1000000 Sterne offene Haufen : wenig gebunden, jung (Mio Jahre), lösen sich mit der Zeit auf Kugelsternhaufen

Mehr

Entfernungen im Weltall: 4Maßstäbe, 4Ecken, begehbar, begreifbar

Entfernungen im Weltall: 4Maßstäbe, 4Ecken, begehbar, begreifbar Entfernungen im Weltall: 4Maßstäbe, 4Ecken, begehbar, begreifbar AVT 23.1.2015 Wolfgang Müller-Schauenburg wolfgang.mueller-schauenburg@uni-tuebingen.de 07071-64468 4 Maßstäbe 4 Ecken 1. Unsere Erde 2.

Mehr

Experimentelle Astrophysik

Experimentelle Astrophysik Experimentelle Astrophysik Bachelor Freiwillige Veranstaltung Lehramt Wahlmodul Master in Kombination mit anderer 2 SWS Veranstaltung Experimentelle Astrophysik, 2 SWS, (4 Cr) 1. Vorlesung Montag 24. April

Mehr

J. Neunte Übungseinheit

J. Neunte Übungseinheit J. Neunte Übungseinheit Inhalt der neunten Übungseinheit: Aufgaben dieser Art kommen zum zweiten Kenntnisnachweis. Umformen von Differentialgleichungen 2. und höherer Ordnung auf Systeme 1. Ordnung J.1.

Mehr

Einführung in die Astronomie und Astrophysik I

Einführung in die Astronomie und Astrophysik I Einführung in die Astronomie und Astrophysik I Teil 6 Jochen Liske Hamburger Sternwarte jochen.liske@uni-hamburg.de Themen Einstieg: Was ist Astrophysik? Koordinatensysteme Astronomische Zeitrechnung Sonnensystem

Mehr