Klassische und Relativistische Mechanik

Größe: px
Ab Seite anzeigen:

Download "Klassische und Relativistische Mechanik"

Transkript

1 Klassische und Relativistische Mechanik Othmar Marti Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik

2 Seite 2 Physik Klassische und Relativistische Mechanik Lösen von Aufgaben Ab jeweils am Freitag, 14:00-16:00 im H1

3 Seite 3 Physik Klassische und Relativistische Mechanik Lage der Vektoren Lage von r und R relativ zu ω.

4 Seite 4 Physik Klassische und Relativistische Mechanik Zentrifugal- und Corioliskraft Die Zentrifugalkraft ist nur von der Position, nicht aber von der Geschwindigkeit v im gleichförmig rotierenden Bezugssystem abhängig. Die Corioliskraft andererseits hängt nur von v ab, aber nicht von R. Zentrifugalkraft und Corioliskraft

5 Seite 5 Physik Klassische und Relativistische Mechanik Zentrifugal- und Corioliskraft Wir verwenden die Vektoridentität a (b c) = (a c) b (a b) c und setzen a = ω, b = ω und a = R und erhalten ω (ω R) = (ω R) ω (ω ω) R Mit ω R = 0 bekommen wir dann a = a ω 2 R + 2 ( ω v )

6 Seite 6 Physik Klassische und Relativistische Mechanik Trägheitskräfte Zentrifugalkraft: F zentrifugal = m (ω (ω r)) = +mω 2 R Corioliskraft: F coriolis = 2m (ω v ) = 2m (v ω) Tabelle: Trägheitskräfte im Laborsystem

7 Seite 7 Physik Klassische und Relativistische Mechanik Foucault-Pendel Foucault-Pendel

8 Seite 8 Physik Klassische und Relativistische Mechanik Foucault-Pendel Das Foucault-Pendel ist an einem Punkt mit der Erde verbunden. ω projiziert auf z, dies entspricht der Drehgeschwindigkeit gegen x,y,z also ω Foucault = ω z = ω sin ϑ Rotationsperiode T = 2π ω Foucault = 2π ω sin ϑ = 1Tag sin ϑ

9 Seite 9 Physik Klassische und Relativistische Mechanik Spezielle Relativitätstheorie - Phänomene der Elektrizität widersprechen der Galileischen Relativität. Die Maxwellgleichungen sind nicht invariant gegenüber der Galileischen Relativität. - Es wurde postuliert, dass Licht sich in einem Äther sich fortpflanzt. Was passiert bei der Fortpflanzung im Äther? Das Beispiel eines Schwimmers in der Donau zeigt:

10 Seite 10 Physik Klassische und Relativistische Mechanik Beispiel: Donauschwimmer Schwimmen mit und senkrecht zur Strömung.

11 Seite 11 Physik Klassische und Relativistische Mechanik Donauschwimmer Die beiden Schwimmer brauchen unterschiedlich lange. Das Verhältnis ihrer Schwimmzeiten ist t 1 = 2v ss 0 vs 2 vd 2 v ( s 1 t 2 v 2 s vd) 2 = = 2s0 v 2 s v 2 D 1 v 2 D v 2 s

12 Seite 12 Physik Klassische und Relativistische Mechanik Anwendung auf Äther Wir machen nun die folgende Identifikation Schwimmer Licht Donau Äther v s c v D v Äther Wir erhalten also t = s 0v 2 Äther c 3 Die maximale Geschwindigkeitsdifferenz durch den Äther ist im Laufe eines Jahre zwei mal die Bahngeschwindigkeit der Erde um die Sonne, also 60km/s.

13 Seite 13 Physik Klassische und Relativistische Mechanik Michelson and Moreley Michelson-Morley-Experiment: Interferometrische Längenmessung.

14 Seite 14 Physik Klassische und Relativistische Mechanik Michelson and Moreley Der zu t gehörende Weglängenunterschied x ist x = c t = s 0v 2 Äther c 2 Im Michelson-Morley-Versuch erwartet man für die verwendeten Parameter L = 10m λ = 300nm v Äther = 30km/s c = km/s eine Verschiebung um knapp einen Interfe

15 Seite 15 Physik Klassische und Relativistische Mechanik Michelson and Moreley Wenn man eine Verschiebung um einen Viertel Interferenzring beobachten kann, dann gilt für die Äthergeschwindigkeit x v Äther c = m m/4 = m s 0 s 10m s Wie die Rechnung zeigt, ist das Michelson-Morley-Experiment an der Grenze der Signifikanz. Der aufgrund der Messdaten durchaus zweifelhafte Befund der beiden wurde später glänzend bestätigt. Heute wird eine äquivalente Technik zur Gravitationswellendetektion angewandt.

16 Seite 16 Physik Klassische und Relativistische Mechanik Michelson and Moreley Es wurde aber kein Gangunterschied beobachtet über eine Jahreszeit. Es gibt nun zwei Lösungen: 1. Äther wird durch die Erde mitgeführt, aber: die Lichtgeschwindigkeit in Flüssigkeiten zeigt kein Mitführeffekt. 2. Lorentz und Fitzgerald sagen, dass der in die Richtung der Ätherbewegung stehende Arm um 1 v 2 Äther kürzer wird c 2 und so die Laufzeit kompensiert. Experimente mit elektrischen Ladungen zeigen diese Längenkontraktion Das Experiment kann so interpretiert werden: Das Interferometer bewegt sich gleich schnell gegenüber dem Äther, unabhängig von der Position auf der Erdbahn.

17 Seite 17 Physik Klassische und Relativistische Mechanik Einsteins Theorie 1. Es gibt kein physikalisch bevorzugtes Inertialsystem. Die Naturgesetze nehmen in allen Inertialsystemen dieselbe Form an. 2. Die Lichtgeschwindigkeit im Vakuum ist in jedem beliebigen Inertialsystem konstant unabhängig vom Bewegungszustand der Quelle. Eine andere Formulierung des 2. Postulates ist Jeder Beobachter misst für die Lichtgeschwindigkeit c im Vakuum den gleichen Wert.

18 Seite 18 Physik Klassische und Relativistische Mechanik Einsteins Theorie Relativitätsprinzip: Es gibt keine Möglichkeit, eine absolute Geschwindigkeit zu messen. Lichtgeschwindigkeit c ist unabhängig von der Bewegung der Lichtquelle. Licht breitet sich mit c = m/s aus in jeden Inertialsystem. Information bewegt sich nicht schneller als mit c

19 Seite 19 Physik Klassische und Relativistische Mechanik Punktereignisse Zwei Ereignisse sind in jedem Inertialsystem gleichzeitig, wenn sie am Ort und zur gleiche Zeit (an dem betreffenden Ort) stattfinden. Ein Bezugssystem ist allgemein formuliert ein System von Mechanismen und materiellen Körpern, (Z.B. Uhren und Massstäbe), mit deren Hilfe die Lage anderer Körper zu einem bestimmten Zeitpunkt relativ zu den Massstäben angegeben werden kann (das Punktereignis).

20 Seite 20 Physik Klassische und Relativistische Mechanik Rückdatierung Rückdatierung der Beobachtung eines Ereignisses auf die wahre Zeit und den wahren Ort.

21 Seite 21 Physik Klassische und Relativistische Mechanik Raum-Zeit für eine Raumdimension Die Zeitachse wird mit ct bezeichnet, um die gleiche Einheit wie die x-achse zu haben. Die x-achse fasst alles zusammen, was jetzt geschieht. Die ct-achse fasst alles zusammen, was am Ort des Beobachters, hier geschieht. Zum dargestellten Zeitpunkt hat der Beobachter bei x = 0 und ct = 0 Kenntnis über alles was im zeitartigen Gebiet unterhalb der x-achse liegt. Alles was im zeitartigen Gebiet über der x-achse liegt, kann beeinflusst werden. Zum dargestellten Zeitpunkt gibt es keine gegenseitige Beeinflussung von Punkten im raumartigen Gebiet.

22 Seite 22 Physik Klassische und Relativistische Mechanik Gleichzeitigkeit Die zwei Novae sollen an den angegebenen Orten und Zeiten ausbrechen. B befindet sich in einem Inertialsystem, das sich mit der Geschwindigkeit u gegenüber dem Inertialsystem von A bewegt.

Grundlagen der Physik 1 Mechanik und spezielle Relativität

Grundlagen der Physik 1 Mechanik und spezielle Relativität Grundlagen der Physik 1 Mechanik und spezielle Relativität 09. 12. 2005 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. 1/30 Weihnachtsvorlesung (c) Ulm

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

3 Bewegte Bezugssysteme

3 Bewegte Bezugssysteme 3 Bewegte Bezugssysteme 3.1 Inertialsysteme 3.2 Beschleunigte Bezugssysteme 3.2.1 Geradlinige Beschleunigung 3.2.2 Rotierende Bezugssysteme 3.3 Spezielle Relativitätstheorie Caren Hagner / PHYSIK 1 / Sommersemester

Mehr

Spezielle Relativität

Spezielle Relativität Spezielle Relativität Gleichzeitigkeit und Bezugssysteme Thomas Schwarz 31. Mai 2007 Inhalt 1 Einführung 2 Raum und Zeit Bezugssysteme 3 Relativitätstheorie Beginn der Entwicklung Relativitätsprinzip Lichtausbreitung

Mehr

Allgemeine Relativitätstheorie: Systeme, die gegeneinander beschleunigt werden; Einfluss von Gravitationsfeldern.

Allgemeine Relativitätstheorie: Systeme, die gegeneinander beschleunigt werden; Einfluss von Gravitationsfeldern. II Spezielle Relativitätstheorie II.1 Einleitung Mechanik für v c (Lichtgeschwindigkeit: 3x10 8 m/s) Spezielle Relativitätstheorie: Raum und Zeit in Systemen, die sich gegeneinander mit konstanter Geschwindigkeit

Mehr

Spezielle Relativitätstheorie

Spezielle Relativitätstheorie Die SRT behandelt Ereignisse, die von einem Inertialsystem (IS) beobachtet werden und gemessen werden. Dabei handelt es sich um Bezugssyteme, in denen das erste Newton sche Axiom gilt. Die Erde ist strenggenommen

Mehr

Vorträge gehalten im Rahmen der L2 Vorlesung von Prof. R.A. Bertlmann Jänner Philipp Köhler

Vorträge gehalten im Rahmen der L2 Vorlesung von Prof. R.A. Bertlmann Jänner Philipp Köhler Vorträge gehalten im Rahmen der L2 Vorlesung von Prof. R.A. Bertlmann Jänner 2012 Philipp Köhler Übersicht Newton sche Mechanik und Galileitransformation Elektrodynamik Äther und das Michelson Morley Experiment

Mehr

Wiederholung: Gravitation in der klassischen Physik

Wiederholung: Gravitation in der klassischen Physik Gravitation II Wiederholung: Gravitation in der klassischen Physik Eigenschaften: Intrinsische (ladungsartige) Eigenschaft der schweren Masse (Gravitationsladung) Es gibt nur positive Gravitationsladungen

Mehr

Doku Spezielle Relativität

Doku Spezielle Relativität Doku Spezielle Relativität Äther-Diskussion um 1900 Newton Mechanik ist Galilei-invariant Maxwell EM ist jedoch Lorentz-invariant Michelson-Morley Experiment Albert Michelson & Edward Morley Drehbarer

Mehr

5.3.3 Die Lorentz-Transformationen

5.3.3 Die Lorentz-Transformationen 5.3. EINSTEINS SPEZIELLE RELATIVITÄTSTHEORIE 135 Wir kennen bereits die Transformationen zwischen Inertialsystemen der Potentiale der Elektrodynamik. So sind ϕ und A für eine gleichmäßig, geradlinig bewegte

Mehr

Einsteins Relativitätstheorie

Einsteins Relativitätstheorie Dr. Michael Seniuch Astronomiefreunde 2000 Waghäusel e.v. Einsteins Relativitätstheorie 16. April 2010 Inhalt: I. Raum, Zeit und Geschwindigkeit im Alltag II. Die Spezielle Relativitätstheorie III. Die

Mehr

Eigenschaften der Schwerkraft

Eigenschaften der Schwerkraft Gravitation Teil 1 Eigenschaften der Schwerkraft Bewirkt die gegenseitige Anziehung von Massen Ist prinzipiell nicht abschirmbar Ist im Vergleich zu den anderen Naturkräften extrem schwach: F E F G 10

Mehr

Spezielle Relativitätstheorie mit Zirkel, Lineal und GeoGebra

Spezielle Relativitätstheorie mit Zirkel, Lineal und GeoGebra Spezielle Relativitätstheorie mit Zirkel, Lineal und GeoGebra Karl-Heinz Lotze und Stefan Völker, Jena 21.07.15 Einsteins Postulate Einstein stellte die folgenden beiden Prinzipien an die Spitze seiner

Mehr

Klassische und Relativistische Mechanik

Klassische und Relativistische Mechanik Klassische und Relativistische Mechanik Othmar Marti 19. 12. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik

Mehr

9. Spezielle Relativitätstheorie

9. Spezielle Relativitätstheorie 7. Relativistischer Impuls 9. Spezielle Relativitätstheorie (SRT) Inhalt 9. Spezielle Relativitätstheorie 9.1 Galilei-Transformation 9.2 Lorentz-Transformation 9.3 Transformation von Geschwindigkeiten

Mehr

Konsequenzen der Konstanz der Lichtgeschwindigkeit

Konsequenzen der Konstanz der Lichtgeschwindigkeit Konsequenzen der Konstanz der Lichtgeschwindigkeit Wir beginnen mit einer kurzen Zusammenfassung einiger Dinge, die am Ende des vorigen Semesters behandelt wurden. Neben dem Relativitätspostulat Die Gesetze

Mehr

12. Spezielle Relativitätstheorie

12. Spezielle Relativitätstheorie Inhalt 12. Spezielle Relativitätstheorie 12.1 Lorentz-Transformation 12.2 Transformation von Geschwindigkeiten 12.3 Zeitdilatation 12.4 Längenkontraktion kti 12.5 Relativistischer Impuls 12.6 Relativistische

Mehr

Seminararbeit. Spezielle Relativitätstheorie

Seminararbeit. Spezielle Relativitätstheorie Seminararbeit Spezielle Relativitätstheorie Karl-Franzens-Universität Graz vorgelegt von Philipp Selinger 1011077 eingereicht bei Prof.Dr. Karin Baur Graz, Jänner 2015 Inhaltsverzeichnis Inhaltsverzeichnis

Mehr

8 Spezielle Relativitätstheorie

8 Spezielle Relativitätstheorie 8 Spezielle Relativitätstheorie Im Jahr 1905 veröffentlichte Albert Einstein seine berühmte spezielle Relativitätstheorie, in der er die Kenntnisse über die Struktur von Raum und Zeit revolutionierte.

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 05. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 05. 06.

Mehr

Warum ist die RAUMZEIT gekrümmt? Was ist eigentlich Gravitation?

Warum ist die RAUMZEIT gekrümmt? Was ist eigentlich Gravitation? Warum ist die RAUMZEIT gekrümmt? Was ist eigentlich Gravitation? Was ist RAUMZEIT? z t 3 dimensionaler Raum y + Zeitachse x = 4 dimensionale RAUMZEIT Was ist RAUMZEIT? Zeitachse = t c http://www.ws5.com/spacetime

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 16. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 16. 06.

Mehr

Vorlesungsskript Integrierter Kurs III - spezielle Relativitätstheorie. Marcel Indlekofer, Thomas Lauermann, Vincent Peikert und Raphael Straub

Vorlesungsskript Integrierter Kurs III - spezielle Relativitätstheorie. Marcel Indlekofer, Thomas Lauermann, Vincent Peikert und Raphael Straub Vorlesungsskript Integrierter Kurs III - spezielle Relativitätstheorie Marcel Indlekofer, Thomas Lauermann, Vincent Peikert und Raphael Straub 6. Dezember 2004 2 Inhaltsverzeichnis 2 spezielle Relativitätstheorie

Mehr

Probestudium Sommersemester 2010, Theoriekurs

Probestudium Sommersemester 2010, Theoriekurs Probestudium Sommersemester 2010, Theoriekurs 2 Vorlesungen zur Einführung in die spezielle Relativitätstheorie H. W. Diehl Fakultät für Physik, U. Duisburg-Essen 26. Juni und 3. Juli 2010 Einführung Physik:

Mehr

A E t. Teil 1 25/ Klassische Theoretische Physik Lehramt (220 LA), WS 2014/15. Thomas Tauris AIfA Bonn Uni. / MPIfR

A E t. Teil 1 25/ Klassische Theoretische Physik Lehramt (220 LA), WS 2014/15. Thomas Tauris AIfA Bonn Uni. / MPIfR F F A E t Teil 1 5/11-014 T Klassische Theoretische Physik Lehramt (0 LA), WS 014/15 Thomas Tauris AIfA Bonn Uni. / MPIfR Kapitel 6+7 + Anhang C Weiterführende Literatur: - Introduction to Special Relatiity

Mehr

Experimentalphysik E1

Experimentalphysik E1 Eperimentalphysik E1 Spezielle Relativitätstheorie Relativisitische Impuls-Energie Beziehung Schwerpunktssysteme Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/inde.html

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Arten der Bewegung 2.2 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung

Mehr

13. Relativitätstheorie

13. Relativitätstheorie Inhalt 13. Relativitätstheorie 13.1 Addition von Geschwindigkeiten 13.2 Zeitdilatation 13.33 Längenkontraktion kti 13.4 Relativistischer Impuls 13.5 Relativistische Energie 13.6 Allgemeine Relativitätstheorie

Mehr

mentor Abiturhilfe: Physik Oberstufe Weidl

mentor Abiturhilfe: Physik Oberstufe Weidl mentor Abiturhilfen mentor Abiturhilfe: Physik Oberstufe Relativitätstheorie, Quanten-, Atom- und Kernphysik von Erhard Weidl 1. Auflage mentor Abiturhilfe: Physik Oberstufe Weidl schnell und portofrei

Mehr

Ferienkurs der Experimentalphysik II Teil IV Spezielle Relativitätstheorie

Ferienkurs der Experimentalphysik II Teil IV Spezielle Relativitätstheorie Ferienkurs der Experimentalphysik II Teil IV Spezielle Relativitätstheorie Michael Mittermair 29. August 2013 1 Inhaltsverzeichnis 1 Spezielle Relativitätstheorie 3 1.1 Warum heißt das so?.......................

Mehr

3.1 Trägheitskräfte bei linearer Bewegung. 3.2 Trägheitskräfte in rotierenden Bezugssystemen. 3.5 Die Erde als rotierendes System

3.1 Trägheitskräfte bei linearer Bewegung. 3.2 Trägheitskräfte in rotierenden Bezugssystemen. 3.5 Die Erde als rotierendes System 3 Beschleunigte Bezugssysteme und Trägheitskräfte 3.1 Trägheitskräfte bei linearer Bewegung 3. Trägheitskräfte in rotierenden Bezugssystemen 3.3 Corioliskraft 3.4 Trägheitskräfte R. Girwidz 1 3.1 Trägheitskräfte

Mehr

Klassische und Relativistische Mechanik

Klassische und Relativistische Mechanik Klassische und Relativistische Mechanik Othmar Marti 30. 11. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik

Mehr

Grundlagen der Physik 1 Lösung zu Übungsblatt 5

Grundlagen der Physik 1 Lösung zu Übungsblatt 5 Grundlagen der Physik Lösung zu Übungsblatt 5 Daniel Weiss 8. November 2009 Inhaltsverzeichnis Aufgabe - Aberation des Lichtes a) Winkelbeziehungen................................ b) Winkeldierenz für

Mehr

1.7 Bezugssysteme und Trägheitskräfte Physikalische Größen sind Angaben über Messgrößen

1.7 Bezugssysteme und Trägheitskräfte Physikalische Größen sind Angaben über Messgrößen 1.7 Bezugssysteme und Trägheitskräfte Physikalische Größen sind Angaben über Messgrößen z.b.: Ort: Festlegung der Nullpunkte Klassische Mechanik a) Zeitnullpunkt und Maßstab unabhängig von Ort und sonstigen

Mehr

Spezielle Relativitätstheorie. Alon J. Böttcher

Spezielle Relativitätstheorie. Alon J. Böttcher Spezielle Relativitätstheorie Alon J. Böttcher Hausarbeit an der Lernwerft Club of Rome Schule Kiel Klasse 12 Schuljahr 2012/2013 Inhaltsverzeichnis 1 Vorwort 2 2 Transformationen 3 2.1 Der Beobachter..........................

Mehr

Gravitationstheorie: nach Newton und nach Einstein

Gravitationstheorie: nach Newton und nach Einstein Gravitationstheorie: nach Newton und nach Einstein Franz Embacher Fakultät für Physik der Universität Wien Vortrag im Astronomischen Seminar Kuffner Sternwarte, Wien, 13. April 2015 Inhalt Kepler: die

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 16. Nov. Spezielle Relativitätstheorie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Newtonsche Mechanik ist invariant unter Gallilei-

Mehr

Grundideen der allgemeinen Relativitätstheorie

Grundideen der allgemeinen Relativitätstheorie Grundideen der allgemeinen Relativitätstheorie David Moch La Villa 2006 Inhalt Newtons Physik und ihr Versagen Einsteins Lösung von Raum und Zeit: Die spezielle Relativitätstheorie Minkowskis Vereinigung

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 13. Nov. Scheinkräfte Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Die Newtonschen Grundgesetze 1. Newtonsche Axiom (Trägheitsprinzip)

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 28. 05. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 28. 05. 2009

Mehr

Inhaltsverzeichnis: Einleitung: 1. Experimentbeschreibung. 2. Ergebnisse. 3. Diskussion der Ergebnisse. 4. Zusammenfassung. 5. Literaturverzeichnis

Inhaltsverzeichnis: Einleitung: 1. Experimentbeschreibung. 2. Ergebnisse. 3. Diskussion der Ergebnisse. 4. Zusammenfassung. 5. Literaturverzeichnis Braun Josef Pesenlern 61 85456 Wartenberg Tel.: 0876/974 E-Mail: Braun-Wartenberg@t-online.de 3. Dezember 009 Widerlegung der Lorentztransformation bzw. des Lorentzfaktors aus dem Michelson-Morley-Versuch

Mehr

Inertialsysteme, Galilei-Transformation

Inertialsysteme, Galilei-Transformation Inertialsysteme, Galilei-Transformation N1 liefert Definition von Inertialsystem (IS) Relativitätsprinzip von Galilei: alle IS sind gleichwertig sehen gleich aus Genauer: (Alle) Inertialsysteme sind für

Mehr

IX. Relativistische Formulierung der Elektrodynamik

IX. Relativistische Formulierung der Elektrodynamik Kurzer Rückblick auf klass. relativ. Mechanik 1 IX. Relativistische Formulierung der Elektrodynamik Die Aufteilung des elektromagnetischen Felds (auch von Strom und Ladungsdichte) in elektrisches und magnetisches

Mehr

RAUM UND ZEIT RAUMZEIT RAUMKRÜMMUNG DURCH GRAVITATION GRAVITATIONSWELLEN

RAUM UND ZEIT RAUMZEIT RAUMKRÜMMUNG DURCH GRAVITATION GRAVITATIONSWELLEN RAUM UND ZEIT RAUMZEIT RAUMKRÜMMUNG DURCH GRAVITATION GRAVITATIONSWELLEN Andreas Neyer AK Naturwissenscha2 und Theologie Villigst, 09.04.2016 RAUM UND ZEIT Newton postulierte den absoluten Raum und die

Mehr

Spezielle Relativitätstheorie (Einstein, 1905)

Spezielle Relativitätstheorie (Einstein, 1905) Spezielle Relativitätstheorie (Einstein, 1905) A. Einstein, 1905, Annalen der Physik: "Zur Elektrodynamik bewegter Körper" http://www.physik.uni-augsburg.de/annalen/history/einstein-papers/1905_17_891-921.pdf

Mehr

Allgemeine Relativitätstheorie

Allgemeine Relativitätstheorie Allgemeine Relativitätstheorie Eine anschauliche Einführung in die Grundlagen Wegelemente euklidischer Raum: Minkowski-Raum: y c t ds dy ds 2 =dx 2 dy 2 ds c d t ds 2 =c 2 dt 2 dx 2 dx x invariant bei

Mehr

Vorlesung 7+8+9: Roter Faden: Heute: Spezielle Relativitätstheorie. Versuche: Messung der Lichtgeschwindigkeit, Film

Vorlesung 7+8+9: Roter Faden: Heute: Spezielle Relativitätstheorie. Versuche: Messung der Lichtgeschwindigkeit, Film Vorlesung 7+8+9: Roter Faden: Heute: Spezielle Relativitätstheorie Versuche: Messung der Lichtgeschwindigkeit, Film Ausgewählte Kapitel der Physik, SS 06, Prof. W. de Boer 1 Transformationen zwischen Inertialsystemen,

Mehr

Rotierende Bezugssysteme

Rotierende Bezugssysteme Rotierende Bezugssysteme David Graß 13.1.1 1 Problematik Fährt ein Auto in eine Kurve, so werden die Innsassen nach außen gedrückt, denn scheinbar wirkt eine Kraft auf die Personen im Innern des Fahrzeuges.

Mehr

Kapitel 2. Lorentz-Transformation

Kapitel 2. Lorentz-Transformation Kapitel 2 Lorentz-Transformation Die Galilei-Transformation aus Abschnitt 1.7 wurde durch eine Vielzahl von Experimenten erfolgreich überprüft und gehört zu den Grundlagen der klassischen Mechanik. Die

Mehr

I.2.3 Minkowski-Raum. ~r x 3 benutzt.

I.2.3 Minkowski-Raum. ~r x 3 benutzt. I.2 Lorentz-Transformationen 9 I.2.3 Minkowski-Raum Wegen der Absolutheit von Zeit und Raum in der klassischen Mechanik faktorisiert sich die zugehörige nicht-relativistische Raumzeit in das Produkt einer

Mehr

E1 Mechanik WS 2017 / 2018 Lösungen zu Übungsblatt 5

E1 Mechanik WS 2017 / 2018 Lösungen zu Übungsblatt 5 Ludwig Maximilians Universität München Fakultät für Physik E1 Mechanik WS 017 / 018 Lösungen zu Übungsblatt 5 Prof. Dr. Hermann Gaub, Dr. Martin Benoit und Dr. Res Jöhr Verständnisfragen ( i.) Sie drehen

Mehr

7.4 Einige Konsequenzen aus der Lorentz Transformation

7.4 Einige Konsequenzen aus der Lorentz Transformation 7.4. EINIGE KONSEQUENZEN AUS DER LORENTZ TRANSFORMATION 265 7.4 Einige Konsequenzen aus der Lorentz Transformation Um zu sehen welche Konsequenzen sich aus der Lorentz Transformation und damit ja eigentlich

Mehr

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Aufgaben 4 Translations-Mechanik Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Lernziele - die Grössen zur Beschreibung einer Kreisbewegung und deren Zusammenhänge kennen. - die Frequenz, Winkelgeschwindigkeit,

Mehr

Kapitel 3. Minkowski-Raum. 3.1 Raumzeitlicher Abstand

Kapitel 3. Minkowski-Raum. 3.1 Raumzeitlicher Abstand Kapitel 3 Minkowski-Raum Die Galilei-Transformation lässt zeitliche Abstände und Längen unverändert. Als Länge wird dabei der räumliche Abstand zwischen zwei gleichzeitigen Ereignissen verstanden. Solche

Mehr

Galilei-Transformation

Galilei-Transformation Galilei-Transformation Zur Erinnerung: Newtons Bwgl. gelten nur in Inertialsystemen (IS). In IS sind Bewegungsgleichungen besonders einfach (es gibt keine Scheinkräfte) Frage: Bessere Formulierung: Wie

Mehr

1 Einleitung: Die Lichtgeschwindigkeit

1 Einleitung: Die Lichtgeschwindigkeit 1 Einleitung: Die Lichtgeschwindigkeit In der zweiten Hälfte des 19. Jahrhunderts wurde die elektromagnetische Natur des Lichts erkannt (J. C. Maxwell, ca. 1870). Wir wollen die Argumentation kurz skizzieren.

Mehr

Grundlagen der Physik 1 Mechanik und spezielle Relativität

Grundlagen der Physik 1 Mechanik und spezielle Relativität Grundlagen der Physik 1 Mechanik und spezielle Relativität 13. 01. 2006 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. 1/21 Relativistische Beschleunigung

Mehr

Spezielle Relativitätstheorie

Spezielle Relativitätstheorie Spezielle Relativitätstheorie die wunderbare Welt des vierdimensionalen Raum-Zeit-Kontinuums Seminar des Physikalischen Vereins Frankfurt am Main 2012 Rainer Göhring W. Wien: Über der Eingangspforte zur

Mehr

Heute vor 100 Jahren zwischen Spezieller und Allgemeiner Relativitätstheorie (und danach)

Heute vor 100 Jahren zwischen Spezieller und Allgemeiner Relativitätstheorie (und danach) Heute vor 100 Jahren zwischen Spezieller und Allgemeiner Relativitätstheorie (und danach) Franz Embacher Fakultät für Physik Universität Wien Vortrag am GRG17 Parhamerplatz Wien, 30. 11. 2011 Inhalt Raum

Mehr

Sonne. Sonne. Δ t A 1. Δ t. Heliozentrisches Weltbild. Die Keplerschen Gesetze

Sonne. Sonne. Δ t A 1. Δ t. Heliozentrisches Weltbild. Die Keplerschen Gesetze Seite 1 von 6 Astronomische Weltbilder und Keplersche Gesetze Heliozentrisches Weltbild Die Sonne steht im Mittelpunkt unseres Sonnensystems, die Planeten umkreisen sie. Viele Planeten werden von Monden

Mehr

Widerlegt das Michelson-Morley-Experiment die Existenz des Lichtäthers?

Widerlegt das Michelson-Morley-Experiment die Existenz des Lichtäthers? Widerlegt das Michelson-Morley-Experiment die Existenz des Lichtäthers? F. Herrmann und M. Pohlig, Karlsruher Institut für Technologie www.physikdidaktik.uni-karlsruhe.de 1. Die Lehrmeinung Resnick: Es

Mehr

Relativistische Punktmechanik

Relativistische Punktmechanik KAPITEL II Relativistische Punktmechanik Der Formalismus des vorigen Kapitels wird nun angewandt, um die charakteristischen Größen und Funktionen zur Beschreibung der Bewegung eines freien relativistischen

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 07. 07. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 07. 07.

Mehr

Seminar - Moderne Optik (2009) Moderne optische Tests der Relativitätstheorie

Seminar - Moderne Optik (2009) Moderne optische Tests der Relativitätstheorie Seminar - Moderne Optik (2009) Alexander Stark Institut für Physik Humboldt-Universität zu Berlin 24.06.2009 1 / 20 Inhaltsverzeichnis 1 Einleitung 2 Theoretische Grundlagen 3 Experimentelle Realisierung

Mehr

Was das Michelson- Morley-Experiment über die Existenz des Äthers aussagt

Was das Michelson- Morley-Experiment über die Existenz des Äthers aussagt Was das Michelson- Morley-Experiment über die Existenz des Äthers aussagt 1. Die Lehrmeinung Resnick: Es läßt sich also keine experimentelle Basis für die Vorstellung eines bevorzugten Bezugssystems, eines

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 12. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 12. 06.

Mehr

Gedankenexperimente zum Äquivalenzprinzip Ein Zugang zur Allgemeinen Relativitätstheorie. Karl-Heinz Lotze, Jena

Gedankenexperimente zum Äquivalenzprinzip Ein Zugang zur Allgemeinen Relativitätstheorie. Karl-Heinz Lotze, Jena Gedankenexperimente zum Äquivalenzprinzip Ein Zugang zur Allgemeinen Relativitätstheorie Karl-Heinz Lotze, Jena Elektrostatik und Gravitostatik ein Vergleich Wie schwer ist es, einen Körper zu beschleunigen

Mehr

Messung der Astronomischen Einheit durch Spektroskopie der Sonne

Messung der Astronomischen Einheit durch Spektroskopie der Sonne Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Messung der Astronomischen Einheit durch Spektroskopie der Sonne (mit Lösungen) 1 Einleitung

Mehr

Aufgabenblatt zum Seminar 09 PHYS70356 Klassische und relativistische Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 09 PHYS70356 Klassische und relativistische Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 09 PHYS70356 Klassische und relativistische Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, (othmar.marti@uni-ulm.de) 15. 12. 2008 1 Aufgaben

Mehr

Ferienkurs Elektrodynamik WS11/12 - Elektrodynamik und spezielle Relativitätstheorie

Ferienkurs Elektrodynamik WS11/12 - Elektrodynamik und spezielle Relativitätstheorie Ferienkurs Elektrodynamik WS11/1 - Elektrodynamik und spezielle Relativitätstheorie Isabell Groß, Martin Ibrügger, Markus Krottenmüller. März 01 TU München Inhaltsverzeichnis 1 Minkowski-Raum und Lorentz-Transformation

Mehr

Relativitätstheorie. in elementarer Darstellung mit Aufgaben und Lösungen. Prof. Dr. rer. nat. habil. H. Melcher. Vierte, neubearbeitete Auflage

Relativitätstheorie. in elementarer Darstellung mit Aufgaben und Lösungen. Prof. Dr. rer. nat. habil. H. Melcher. Vierte, neubearbeitete Auflage Relativitätstheorie in elementarer Darstellung mit Aufgaben und Lösungen Prof. Dr. rer. nat. habil. H. Melcher Vierte, neubearbeitete Auflage VEB Deutscher Verlag der Wissenschaften Berlin 1974 Inhaltsverzeichnis

Mehr

Die Lichtgeschwindigkeit im Vakuum

Die Lichtgeschwindigkeit im Vakuum Die Lichtgeschwindigkeit im Vakuum Versuch: Experimentelle Bestimmung der Lichtgeschwindigkeit c s = 2 t t s 4 s = 15 km t 10 s 1 Erste Bestimmung der Lichtgeschwindigkeit nach Olaf Römer 1676 Die schon

Mehr

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Technische Universität München Physik Department Ferienkurs Experimentalphysik 2 Vorlesung 4: Elektromagnetische Wellen und spezielle Relativitätstheorie Tutoren: Elena Kaiser Matthias Golibrzuch Nach

Mehr

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Aufgaben 4 Translations-Mechanik Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Lernziele - die Grössen zur Beschreibung einer Kreisbewegung und deren Zusammenhänge kennen. - die Frequenz, Winkelgeschwindigkeit,

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Newtonsche Axiome, Kräfte, Arbeit, Skalarprodukt, potentielle und kinetische Energie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html

Mehr

Das gravitomagnetische Feld der Erde

Das gravitomagnetische Feld der Erde Das gravitomagnetische Feld der Erde von T. Fließbach 1. Einführung magnetisch gravitomagnetisch 2. Bezugssysteme Bevorzugte Inertialsysteme 3. Newton und Mach Absoluter Raum? 4. Drehung eines Foucault-Pendels

Mehr

Übung 8 : Spezielle Relativitätstheorie

Übung 8 : Spezielle Relativitätstheorie Universität Potsdam Institut für Physik Vorlesung Theoretische Physik I LA) WS 13/14 M. Rosenblum Übung 8 : Spezielle Relativitätstheorie Besprechung am Montag, dem 03.0.014) Aufgabe 8.1 Zeigen Sie die

Mehr

Aber gerade in diesem Punkt ist Newton besonders konsequent.

Aber gerade in diesem Punkt ist Newton besonders konsequent. 2.1.Lorentz-Transformationen Aus Einstein, Mein Weltbild 1.) Trotzdem man allenthalben das Streben Newtons bemerkt, sein Gedankensystem als durch die Erfahrung notwendig bedingt hinzustellen und möglichst

Mehr

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen 12.1.2007 Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Klassische und Relativistische Mechanik

Klassische und Relativistische Mechanik Klassische und Relativistische Mechanik Othmar Marti 09. 01. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik

Mehr

GmM = r². mv² r. GM r M

GmM = r². mv² r. GM r M 1. Das Problem Galaxien zeigen ein unerwartetes Rotationsverhalten: Selbst in großen Abständen vom Zentrum bleibt die Bahngeschwindigkeit der Objekte (Sterne, Gase usw.) etwa konstant, obwohl eine Keplerrotation

Mehr

10. Spezielle Relativitätstheorie (SRT) 10.1 Grundlagen und Lorentztransformation

10. Spezielle Relativitätstheorie (SRT) 10.1 Grundlagen und Lorentztransformation 10. Spezielle Relativitätstheorie (SRT) 10.1 Grundlagen und Lorentztransformation (a) Inertialsysteme und das spezielle Relativitätsprinzip Es gibt unendlich viele Inertialsysteme (IS), die sich relativ

Mehr

Raum und Zeit Nobelpreisträger Max von Laue spricht über die Relativitätstheorien

Raum und Zeit Nobelpreisträger Max von Laue spricht über die Relativitätstheorien 2 Raum und Zeit Nobelpreisträger Max von Laue spricht über die Relativitätstheorien Seit 1951 treffen sich jedes Jahr für eine ganze Woche eine große Anzahl von Nobelpreisträgern aus Medizin, Physik, Chemie

Mehr

Grundlegende Aspekte der speziellen Relativitätstheorie

Grundlegende Aspekte der speziellen Relativitätstheorie Grundlegende Aspekte der speziellen Relativitätstheorie Theoretische Physik Universität Ulm 89069 Ulm Kolloquium für Physiklehrende Universität Ulm, 10. Feb. 2009 Inhalt Einleitung Lorentz-Transformation

Mehr

Vorlesung Theoretische Mechanik

Vorlesung Theoretische Mechanik Julius-Maximilians-Universität Würzburg Vorlesung Theoretische Mechanik Wintersemester 17/18 Prof. Dr. Johanna Erdmenger Vorläufiges Skript 1 (Zweite Vorlesung, aufgeschrieben von Manuel Kunkel, 23. 10.

Mehr

Philosophie der Physik II Relativitätstheorie

Philosophie der Physik II Relativitätstheorie Joachim Stiller Philosophie der Physik II Relativitätstheorie Copyright by Joachim Stiller Alle Rechte Vorbehalten Relativitätstheorie In diesem Thread soll es einmal um die Philosophie der Relativitätstheorie

Mehr

Kinematik des Massenpunktes

Kinematik des Massenpunktes Kinematik des Massenpunktes Kinematik: Beschreibt die Bewegung von Körpern, ohne die zugrunde liegenden Kräfte zu berücksichtigen. Bezugssysteme Trajektorien Zeit Raum Bezugssysteme Koordinatensystem,

Mehr

24 Minkowskis vierdimensionale Raumzeit

24 Minkowskis vierdimensionale Raumzeit 24 Minkowskis vierdimensionale Raumzeit Der deutsche Mathematiker Hermann Minkowski (1864 1909) erkannte, daß sich die von Albert Einstein 1905 entwickelte spezielle Relativitätstheorie am elegantesten

Mehr

Lorentz-Transformation

Lorentz-Transformation Lorentz-Transformation Aus Sicht von Alice fliegt Bob nach rechts. Aus Sicht von Bob fliegt Alice nach links. Für t = t' = 0 sei also x(0) = x'(0) = Lichtblitz starte bei t = t' = 0 in und erreiche etwas

Mehr

Kapitel 6: Relativbewegung, Inertialsysteme und die Relativitätstheorie

Kapitel 6: Relativbewegung, Inertialsysteme und die Relativitätstheorie Kapitel 6: Relativbewegung, Inertialsysteme und die Relativitätstheorie 6.1 Relativbewegung 6.2 Inertialsysteme 6.3 Beschleunigte Bezugssysteme und Scheinkräfte 6.4 Die Galileische Transformation 6.5 Das

Mehr

Einführung in die Spezielle Relativitätstheorie

Einführung in die Spezielle Relativitätstheorie Einführung in die Spezielle Relativitätstheorie Lara Kuhn 12.06.15 Dies ist eine Zusammenfassung des Vortrags, den ich in dem Semiar zur Elektrodynamik und Speziellen Relativitätstheorie von Professor

Mehr

Über drei Ecken zu Einstein

Über drei Ecken zu Einstein Raumzeit, Weltlinien, Lichtkegel Über drei Ecken zu Einstein Norbert Dragon Hannover 6. Februar 2015 Relativitätsprinzip Gleichzeitig und Gleichortig Dopplereffekt, Schiedsrichter Satz des Minkowski (Pythagoras)

Mehr

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler.

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler. Geozentrisches und heliozentrisches Weltbild Geozentrisches Weltbild: Vertreter Aristoteles, Ptolemäus, Kirche (im Mittelalter) Heliozentrisches Weltbild: Vertreter Aristarch von Samos, Kopernikus, Galilei

Mehr

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 12. Präsenzübungen

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 12. Präsenzübungen Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/201 Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 12 (P0) Das Garagen-Paradoxon Präsenzübungen Es kann selbstverständlich mit der Beschreibung

Mehr