Sechste Vorlesung: Gravitation II

Größe: px
Ab Seite anzeigen:

Download "Sechste Vorlesung: Gravitation II"

Transkript

1 Sechste Vorlesung: Gravitation II 6.1 Das Einstein-Hilbert-Funktional 6.2 Relativistische Elektrodynamik 6.3 Spurfreiheit des Energie-Impuls-Tensors T αβ em *

2 6.1 Das Einstein-Hilbert-Funktional Wir wollen skizzieren, wie sich die materiefreien Feldgleichungen R µν R 2 g µν = 0 für µ, ν = 0, 1, 2, 3 (6.1) aus einem Variationsprinzip ableiten lassen. Diese Skizze verbleibt unvollständig. Zum detaillierten Studium verweisen wir auf die Literatur. Wir schließen an die Ausführungen des Abschnitts 5.4 an. Wir wollen zunächst den Ricci-Skalar in eine für uns brauchbare Form überführen. Hilfssatz. Es gilt R µϑ = Rµνϑ ν, µ, ν = 0, 1, 2, 3. (6.2) Beweis. Denn wir berechnen R µϑ (5.15) = g τν R τµνϑ (5.19) = g τν g τσ R σ µνϑ = ν σr σ µνϑ = R ν µνϑ. (6.3) Folgerung. Dann gilt auch R (5.16) = g µϑ R µϑ = g µϑ Rµνϑ ν (5.18) = g { µϑ Γ ν ϑµ,ν Γν νµ,ϑ + Γν ντ Γτ ϑµ Γν ϑτ νµ} Γτ. (6.4) Mit David Hilbert stellen wir uns nun auf den Standpunkt, daß das Integral G R(g µν (x), Γ σ µν (x), Γσ µν,τ (x)) g dx (6.5) mit g := det (g µν ) µ,ν für eine optimale Wahl der Metrik (g µν ) µ,ν einen stationären Wert besitzt. Beachte dabei g < 0. Schließlich bedeutet G ein vierdimensionales Integrationsgebiet. Dessen spezielle Wahl sowie das globale Verhalten des Integranden bestimmen die Sinnvolligkeit des Integrals. Gesucht sind also die Euler-Lagrangeschen Differentialgleichungen des zu (6.5) gehörigen Variationsproblems. Wir wollen nicht nach den g µν und dessen ersten und zweiten Ableitungen differenzieren. Vielmehr betrachten wir die g µν und Γ σ µν als eigenständige Funktionen. Es liegt also ein Funktional folgender Form vor: ( L f i (x), f ) i x (x) dx, i = 1,..., N. (6.6) k G Hilfssatz. Das Euler-Lagrange-System zu (6.6) lautet L f i = 4 k=1 x k Beachte die sukzessiven Ableitungen auf der rechten Seite! L f i,k, i = 1,..., N. (6.7) 55

3 Aufgabe 6.1. Verifizieren Sie (6.7). Für die weiteren Rechnungen geben wir die Konvention nach (5.7) auf, da schlicht die Indizes ausgehen. Wir wenden (6.7) auf (6.5) an: Mit R = g µϑ R µϑ folgt Satz. Die Euler-Lagrange-Gleichungen zu (6.5) lauten ( ) g g µϑ R g αβ µϑ = 0, Γ γ αβ Das liefert die wichtige ( ) g g µϑ R µϑ = 3 =0 ( ) g g µϑ R µϑ x Γ γ. αβ, (6.8) Folgerung. Das erste System aus (6.8) liefert die Einsteinschen Feldgleichungen (6.1). Beweis. Es müssen insbesondere die partiellen Ableitungen von g bestimmt werden. Wir entwickeln nach der µ-ten Zeile: 1 g = det (gµν ) µ,ν = g µν G µ ν, µ {0, 1, 2, 3}, (6.9) mit den (vorzeichenbehafteten) Unterdeterminanten G µ ν, welche durch Streichen der µ-ten Zeile und ν-ten Spalte entstehen. Es folgt Um die G µν zu eliminieren, berechnen wir aus (6.9) Mit (6.10) ist also Nun beachten wir so daß sowie g αβ 1 g = Gα β. (6.10) g λµ 1 g = g λµg µν G µ ν = ν λ Gµ ν = Gµ λ bzw. g λµ = gg µ λ. (6.11) 1 g αβ g = 1 g g βα. (6.12) 0 = ( ) 1 g αβ g g = 1 g g g αβ = 1 2 g g g g 1 + g, (6.13) αβ gαβ g g αβ = ( g) g βα (6.14) g g = 1 g gβα. (6.15) αβ 2 Nach (6.4) und unser Interpretation des Variationsproblems wirken die Ableitungen nach den g αβ nicht auf den Ricci-Tensor R µν. Die erste Gleichung in (6.8) liefert also 0 = ( ) g g µϑ R g αβ µϑ = 1 g gαβ g µϑ R µϑ + g R αβ 2 = ( g R αβ 1 ) (6.16) 2 Rg αβ. Es folgen die gesuchten Gleichungen (6.1). 56

4 Bemerkungen: 1. Um nachzuweisen, daß die Γ γ αβ tatsächlich die bekannten Christoffel-Symbole darstellen, investiert man die zweiten Gleichungen aus (6.8). 2. Addiert man im Integranden von (6.5) einen zusätzlichen Term κl mat, so läßt sich die rechte Seite in (5.14) aus dem besprochenen Variationsprinzip realisieren. Aufgabe 6.2. Durch Überschieben der inhomogenen Feldgleichungen (5.14) mit g ωµ und anschließender Spurbildung (Summation über ω = ν) zeige man Folgern Sie dann die modifizierte Form der Feldgleichungen R = 8πg c 4 T mit T := T ν ν. (6.17) R µν = 8πg c 4 ( T µν T ) 2 g µν. (6.18) Aufgabe 6.3. Gelegentlich führt man eine kosmologische Konstante Λ > 0 ein und verlangt R µν R 2 g µν + Λg µν = 8πg c 4 T µν. (6.19) Zeigen Sie, daß dann gilt R + 4Λ = 8πg T. (6.20) c4 Was folgern Sie für materiefreie Räume? 6.2 Relativistische Elektrodynamik Um der rechten Seite der Feldgleichungen mehr Anschauung zu verleihen, stellen wir zum Abschluß dieses Kapitels den Energie-Impuls-Tensor der Elektrodynamik (Spezielle Relativitätstheorie) auf. Definition. Das elektromagnetische Feld wird beschrieben durch einen schiefsymmetrischen Feldstärketensor 0 E x E y E z (F αβ E x 0 B z B y ) α,β = E y B z 0 B x. (6.21) E z B y B x 0 Dabei bedeuten E = (E x, E y, E z ) und B = (B x, B y, B z ) das elektrische bzw. magnetische Feld (beide werden in gleichen Einheiten gemessen). Mit der Ladungsdichte ϱ e (x, t) und der Stromdichte j(x, t) gelten die Maxwellschen Gleichungen div E = ϱ e, rot B = c j + 1 c E t, Hilfssatz. Das System (6.22) ist äquivalent zu rot E = 1 c B t, div B = 0. (6.22) mit der Ableitung α :=. x α α F αβ = c jβ, β = 0, 1, 2, 3, (6.23) 57

5 Definition. Wir definieren nun den Energie-Impuls-Tensor der Elektrodynamik Tem αβ :η γ F α F γβ + 14 ) ηαβ F γ F γ. (6.24) Aufgabe 6.4. Zeigen Sie, daß T αβ em symmetrisch ist. Aufgabe 6.5. Zeigen Sie T 00 em = 1 8π (E2 + B 2 ), 3 i=1 T 0i em e i = 1 E B (6.25) in der Standardbasis {e 1, e 2, e 3 } des R 3. Die Komponente Tem 00 stellt die Energiedichte des Feldes dar, der Vektor S := c E B ist dessen Energiestromdichte, auch Poynting-Vektor genannt. Unter Verwendung der Maxwell-Gleichungen gilt ferner für die Divergenz des Energie- Impuls-Tensors α T αβ em = 1 c F βγ j γ. (6.26) Im ladungsfreien Raum (j α = 0) gilt deshalb die Kontinuitätsgleichung der Energie-Impuls- Dichte α Tem αβ = 0. (6.27) 6.3 Spurfreiheit des Energie-Impuls-Tensors T αβ em * Die Antisymmetrie des Feldstärketensors (6.21) begründet die Spurfreiheit des Energie- Impuls-Tensors (6.24). Dieses wollen wir hier prüfen. Wir führen folgende Bezeichnungen ein: Definition. Die gemischten Komponenten eines zweifach kovarianten bzw. zweifach kontravarianten Tensors ergeben sich zu α := gβγ S αγ = g αγ S γβ, α := gβγ S γα = g αγ γ. (6.28) Offenbar gilt für antisymmetrische Tensoren α = g αγs γβ = g αγ γ = α. (6.29) Die unterschiedliche Stellung der Indizes ist nur bei nichtsymmetrischen Tensoren zu beachten. Hilfssatz. Ist S αβ = α symmetrisch, so gilt α = Sβ α =: Sβ α. (6.30) Beweis. Es ist was zu zeigen war. α = g αγs γβ = g αγ γ = α, (6.31) Satz. Der Energie-Impuls-Tensor T αβ := T αβ em der Elektrodynamik ist spurfrei, d.h. T α α = 0 für T αβ := T αβ em. (6.32) 58

6 Beweis. Wir berechnen nämlich T β λ η λα η γ F α F γβ + 14 ) η λαη αβ F γ F γ F β + 1 ) 4 β λ F γf γ F β + 1 ) 4 β λ η γαf α F γ F β + 1 ) 4 β λ F α F α F β 1 ) 4 β λ F α Fα. (6.33) Hierbei beachten wir in der dritten Zeile die Identität η γα F α = F γ, in der letzten Zeile nutzten wir die Eigenschaft (6.29) der Antisymmetrie. Spurbildung liefert T β β Fβ F β 1 ) 4 β β F α Fα = 1 (F β F β F α Fα ) = 0, (6.34) was zu zeigen war. Im allgemeinen ersetzen wir η αβ durch g µν und F αβ usw. durch ihre kovarianten Verallgemeinerungen. Überschieben der Gleichungen (5.14) mit dem metrischen Tensor g γα und T αβ := T αβ em liefert dann R = 0. Ist das ein Widerspruch? Diese und weitere Schwierigkeiten bei der Untersuchung elektromagnetischer Phänomene im Kontext der allgemeinen Relativitätstheorie veranlaßten Einstein, anstelle von (5.14) die Feldgleichungen R µν R 4 g µν = 8πg c 4 T µν (6.35) vorzuschlagen, wobei jetzt auf der rechten Seite der Energie-Impuls-Tensor der Elektrodynamik zu setzen ist. Dann hätten wir nach Spurbildung nämlich R = 0! 59

7 Aufgaben zur sechsten Vorlesung 6.1 Verifizieren Sie (6.7). 6.2 Durch Überschieben der inhomogenen Feldgleichungen (5.14) mit g ωµ und anschließender Spurbildung (Summation über ω = ν) zeige man R = 8πg c 4 T mit T := T ν ν. (6.17) Folgern Sie dann die modifizierte Form der Feldgleichungen ( T µν T 2 g µν R µν = 8πg c 4 ). (6.18) 6.3 Gelegentlich führt man eine kosmologische Konstante Λ > 0 ein und verlangt R µν R 2 g µν + Λg µν = 8πg c 4 T µν. (6.19) Zeigen Sie, daß dann gilt R + 4Λ = 8πg T. (6.20) c4 Was folgern Sie für materiefreie Räume? 6.4 Zeigen Sie, daß T αβ em 6.5 Zeigen Sie symmetrisch ist. T 00 em = 1 8π (E2 + B 2 ), 3 i=1 T 0i em e i = 1 E B (6.25) in der Standardbasis {e 1, e 2, e 3 } des R 3. Die Komponente Tem 00 stellt die Energiedichte des Feldes dar, der Vektor S := c E B ist dessen Energiestromdichte, auch Poynting-Vektor genannt. Unter Verwendung der Maxwell-Gleichungen gilt ferner für die Divergenz des Energie-Impuls-Tensors α T αβ em = 1 c F βγ j γ. (6.26) Im ladungsfreien Raum (j α = 0) gilt deshalb die Kontinuitätsgleichung der Energie-Impuls-Dichte α Tem αβ = 0. (6.27) 61

Die Einsteinschen Feldgleichungen

Die Einsteinschen Feldgleichungen Die Einsteinschen Feldgleichungen 1 Forderungen an die Feldgleichungen 2 2 Forderungen an die Feldgleichungen Es ist nicht möglich die Einsteinschen Feldgleichungen strikt aus bekannten Tatsachen abzuleiten.

Mehr

Die Einsteinsche Feldgleichung

Die Einsteinsche Feldgleichung Die Einsteinsche Feldgleichung Volker Perlick ZARM, Univ. Bremen, Germany Eisenbahnfriedhof Uyuni, Bolivien Heraeus-Seminar 100 Jahre Allgemeine Relativitätstheorie Potsdam, 11 März 2015 Newton Einstein

Mehr

9 Der Riemann sche Krümmungstensor

9 Der Riemann sche Krümmungstensor 9 Der Riemann sche Krümmungstensor Bevor wir weitere physikalische Ergebnisse der ART wie Gravitationswellen oder die Verwirbelung der Raumzeit durch rotierende Massen diskutieren, wollen wir uns in den

Mehr

2.2 4-Stromdichte [Griffiths , Jackson 11.9]

2.2 4-Stromdichte [Griffiths , Jackson 11.9] Um zu verstehen, wie sich die elektromagnetischen Felder transformieren, gehen wir von den Maxwellgleichungen aus. Dazu brauchen wir zunächst die. 4-Stromdichte [Griffiths 1.3.4, Jackson 11.9] Die Ladungsdichte

Mehr

Das Standardmodell der Kosmologie Die Friedmann-Gleichung

Das Standardmodell der Kosmologie Die Friedmann-Gleichung Seminar: Theorie der Teilchen und Felder Das Standardmodell der Kosmologie Die Friedmann-Gleichung Bastian Brandt 1 1 bastianbrandt@uni-muenster.de Inhaltsverzeichnis 1 Inhaltsverzeichnis 1 Einleitung

Mehr

10 Die Einstein-Gleichung

10 Die Einstein-Gleichung 10 Die Einstein-Gleichung In dieser Vorlesung wollen wir die Einstein-Gleichung, die Feldgleichung der Allgemeinen Relativitätstheorie, diskutieren. Sie hat die Struktur ( ) ( ) Maß für die lokale Maß

Mehr

Lösungen zu Übungsblatt 1

Lösungen zu Übungsblatt 1 Maike Tormählen Übung 1, 11.4.213 Lösungen zu Übungsblatt 1 Aufgabe 1: Large Extra Dimensions & lanck-länge Die Newtonsche Gravitation ist hinreichend, um fundamentale Größen wie die lanck- Länge in diversen

Mehr

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes X.3 Energie und Impuls des elektromagnetischen Feldes 169 X.3 Energie und Impuls des elektromagnetischen Feldes Genau wie mechanische Systeme trägt das elektromagnetische Feld Energie ( X.3.1 und Impuls

Mehr

Differentialgeometrie II (Flächentheorie) WS

Differentialgeometrie II (Flächentheorie) WS Differentialgeometrie II (Flächentheorie) WS 2013-2014 Lektion 10 8. Januar 2014 c Daria Apushkinskaya 2014 () Flächentheorie: Lektion 10 8. Januar 2014 1 / 21 10. Konforme Abbildungen 10. Konforme Abbildungen

Mehr

Spezielle Relativitätstheorie und Elektrodynamik Ferienkurs Elektrodynamik

Spezielle Relativitätstheorie und Elektrodynamik Ferienkurs Elektrodynamik Spezielle Relativitätstheorie und Elektrodynamik Ferienkurs Elektrodynamik 22.03.2011 Inhaltsverzeichnis 1 Spezielle Relativitätstheorie 2 1.1 Grundlagen................................... 2 1.2 Minkowski-Raum................................

Mehr

10. Spezielle Relativitätstheorie (SRT) 10.1 Grundlagen und Lorentztransformation

10. Spezielle Relativitätstheorie (SRT) 10.1 Grundlagen und Lorentztransformation 10. Spezielle Relativitätstheorie (SRT) 10.1 Grundlagen und Lorentztransformation (a) Inertialsysteme und das spezielle Relativitätsprinzip Es gibt unendlich viele Inertialsysteme (IS), die sich relativ

Mehr

Differentialgeometrie II (Flächentheorie) WS

Differentialgeometrie II (Flächentheorie) WS Differentialgeometrie II (Flächentheorie) WS 2013-2014 Lektion 11 15. Januar 2014 c Daria Apushkinskaya 2014 () Flächentheorie: Lektion 11 15. Januar 2014 1 / 15 11. Das Theorema Egregium von Gauß (1827)

Mehr

Energie und Impuls des Metrischen Feldes

Energie und Impuls des Metrischen Feldes Astrophysikalisches Institut Neunhof Mitteilung sd02071, April 2013 1 Energie und Impuls des Metrischen Feldes Übersicht In der Allgemeine Relativitätstheorie tritt das metrische Feld der vierdimensionalen

Mehr

Aufgabe K5: Kurzfragen (9 1 = 9 Punkte)

Aufgabe K5: Kurzfragen (9 1 = 9 Punkte) Aufgabe K5: Kurzfragen (9 = 9 Punkte) Beantworten Sie nur, was gefragt ist. (a) Wie transformiert das Vektorpotential bzw. das magnetische Feld unter Eichtransformationen? Wie ist die Coulomb-Eichung definiert?

Mehr

Ferienkurs Elektrodynamik WS11/12 - Elektrodynamik und spezielle Relativitätstheorie

Ferienkurs Elektrodynamik WS11/12 - Elektrodynamik und spezielle Relativitätstheorie Ferienkurs Elektrodynamik WS11/1 - Elektrodynamik und spezielle Relativitätstheorie Isabell Groß, Martin Ibrügger, Markus Krottenmüller. März 01 TU München Inhaltsverzeichnis 1 Minkowski-Raum und Lorentz-Transformation

Mehr

Schnellkurs ART: Metrik in der SRT und ART, Äquivalenzprinzip

Schnellkurs ART: Metrik in der SRT und ART, Äquivalenzprinzip Schnellkurs ART: Metrik in der SRT und ART, Äquivalenzprinzip Space tells matter how to move, matter tells space how to curve. 1 1 Misner, Thorne, Wheeler Grundlegende Frage Mit welchen mathematischen

Mehr

Analysis für Physiker Zusätze

Analysis für Physiker Zusätze Analysis für Physiker Zusätze nach den Vorlesungen von Prof. Dr. Werner Timmermann (Sommersemester 2007, Wintersemester 2007/08) Herausgegeben von Jeffrey Kelling Felix Lemke Stefan Majewsky Stand: 23.

Mehr

Die Einsteinsche Feldgleichung. Seminararbeit

Die Einsteinsche Feldgleichung. Seminararbeit Die Einsteinsche Feldgleichung Seminararbeit David Eiber Oktober 2015 Inhaltsverzeichnis 1 Probleme der Verallgemeinerung des Newtonschen Potentials 3 2 Einsteinsche Feldgleichung 4 2.1 Einsteins Annahmen..............................

Mehr

. Name motiviert durch (hängt von Einbettung in höher dimensionalen Raum ab) folgendes Bild:

. Name motiviert durch (hängt von Einbettung in höher dimensionalen Raum ab) folgendes Bild: 1.4 Vektoren Jeder Vektor (Vierer-Vektor) lebt an einem bestimmten Punkt der Raumzeit. Dieser lässt sich bei Krümmung nicht einfach verschieben. Betrachte deshalb Menge alle Vektoren an einem Punkt p =

Mehr

Klausur Sommersemester 2011 Tensorrechnung für Ingenieure Musterlösung

Klausur Sommersemester 2011 Tensorrechnung für Ingenieure Musterlösung Klausur Sommersemester 2011 Tensorrechnung für Ingenieure Musterlösung Prof Dr-Ing Ch Tsakmakis Dipl-Ing J Frischmann FB 13, FG Kontinuumsmechanik Aufgabe 1 (Klausuraufgabe) Seien drei Vektoren u, v, w

Mehr

7.6 Relativitätstheorie und Elektrodynamik

7.6 Relativitätstheorie und Elektrodynamik 7.6. RELATIVITÄTSTHEORIE UND ELEKTRODYNAMIK 77 7.6 Relativitätstheorie un Elektroynamik Für eine Beschreibung von Kenngrößen in er Natur, ie mit er speziellen Relativitätstheorie verträglich ist, ist es

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu Klassische Elektrodynamik 1 Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astrono mie Auf de m Hügel 71 kbasu@astro.uni-bonn.de

Mehr

IX. Relativistische Formulierung der Elektrodynamik

IX. Relativistische Formulierung der Elektrodynamik Kurzer Rückblick auf klass. relativ. Mechanik 1 IX. Relativistische Formulierung der Elektrodynamik Die Aufteilung des elektromagnetischen Felds (auch von Strom und Ladungsdichte) in elektrisches und magnetisches

Mehr

Elektrodynamik (T3p)

Elektrodynamik (T3p) Zusatzaufgaben zur Vorlesung Elektrodynamik (T3p) SoSe 5 Beachten Sie, dass die nachfolgenden Aufgaben nur als zusätzliche Übung und nicht als potenzielle Klausuraufgaben angesehen werden sollten! Aufgabe

Mehr

8. Energie, Impuls und Drehimpuls des elektromagnetischen

8. Energie, Impuls und Drehimpuls des elektromagnetischen 8. Energie, Impuls und Drehimpuls des elektromagnetischen Feldes 8.1 Energie In Abschnitt 2.5 hatten wir dem elektrostatischen Feld eine Energie zugeordnet, charakterisiert durch die Energiedichte ω el

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

6 Bilanz - Gleichungen

6 Bilanz - Gleichungen 36 II. Allgemeine Grundlagen der Maxwell-Theorie 6 Bilanz - Gleichungen 6.1 Bilanz der elektromagnetischen Energie Durchflutungs- und Induktionsgesetz werden in folgender Weise miteinander kombiniert:

Mehr

2. Vorlesung Partielle Differentialgleichungen

2. Vorlesung Partielle Differentialgleichungen 2. Vorlesung Partielle Differentialgleichungen Wolfgang Reichel Karlsruhe, 22. Oktober 204 Institut für Analysis KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz

Mehr

Theoretischen Physik II SS 2007 Klausur II - Aufgaben und Lösungen

Theoretischen Physik II SS 2007 Klausur II - Aufgaben und Lösungen Theoretischen Physik II SS 007 Klausur II - Aufgaben und Lösungen Aufgabe Hohlleiter Gegeben sei ein in z-richtung unendlich langer, gerader Hohlleiter (Innenradius R/3, Außenradius R), der einen Stromfaden

Mehr

Lehrstuhl für Technische Elektrophysik Technische Universität München

Lehrstuhl für Technische Elektrophysik Technische Universität München Lehrstuhl für Technische Elektrophysik Technische Universität München Tutorübungen zu "Elektromagnetische Feldtheorie II" (Prof. Wachutka) SS9 Blatt 1 Aufgabe: Ebene Wellen Im Vakuum, daß heißt die Leitfähigkeit

Mehr

Das Noether-Theorem. Philipp Arras, Jakob Moritz. 18. Juli Quellen 6

Das Noether-Theorem. Philipp Arras, Jakob Moritz. 18. Juli Quellen 6 Das Noether-Theorem Philipp Arras, Jakob Moritz 18. Juli 013 Inhaltsverzeichnis 1 Herleitung des Noether-Theorems in der Feldtheorie 1 1.1 Voraussetzungen.......................................... 1 1.

Mehr

Dirac Gl. relativistischer Fall

Dirac Gl. relativistischer Fall Dirac Gl. relativistischer Fall Freie Dirac Gleichung ohne Feld: ħ = c = iħ Ψ t α = Lösungsansatz: Ψx = = [ α p + mβ]ψ σ, β = σ 2 2 Pauli Matrizen ϕp χp pos. Energie e ipx iet p x neg. Energie Lösungen

Mehr

ART 5. Kontravarianter und kovarianter Vierervektor

ART 5. Kontravarianter und kovarianter Vierervektor ART 5. Kontravarianter und kovarianter Vierervektor Wolfgang Lange. Oktober 205 B. Mathematische Hilfsmittel für die Aufstellung allgemein kovarianter Gleichungen. Über 5. Kontravarianter und kovarianter

Mehr

Relativistische Form der Elektrodynamik

Relativistische Form der Elektrodynamik Kapitel 10 Relativistische Form der Elektrodynamik Die Lorentz-Kovarianz der Feldgleichungen wurde von Lorentz und Poincare schon vor der Formulierung der speziellen Relativitätstheorie durch Einstein

Mehr

Theoretische Physik II: Elektrodynamik SS 96 C.C. Noack. Das Noether-Theorem. for Pedestrians

Theoretische Physik II: Elektrodynamik SS 96 C.C. Noack. Das Noether-Theorem. for Pedestrians ITP ITP ÍÒ Ú Ö ØĐ Ø Ö Ñ Ò ÁÒ Ø ØÙØ ĐÙÖ Ì ÓÖ Ø È Ý Theoretische Physik II: Elektrodynamik SS 96 C.C. Noack A Einleitung Das Noether-Theorem for Pedestrians Das Noether-Theorem [E. Noether: Nachr.Gesellsch.Wiss.

Mehr

Schwarzschild-Metrik. Stefan Wittmann

Schwarzschild-Metrik. Stefan Wittmann Schwarzschild-Metrik Stefan Wittmann 28.10.2015 Inhaltsverzeichnis 1 Einleitung 3 2 Grundlagen 3 2.1 Spezielle Relativitätstheorie......................... 3 2.2 Äquivalenzprinzip...............................

Mehr

Klein-Gordon-Gleichung

Klein-Gordon-Gleichung Seminar zur Theorie der Atome, Kerne und kondensierten Matierie Klein-Gordon-Gleichung Judith Beier 17.12.2014 1 Inhaltsverzeichnis 1 Einblick in die Geschichte der relativistischen Quantenmechanik 3 2

Mehr

2. Vorlesung Partielle Differentialgleichungen

2. Vorlesung Partielle Differentialgleichungen 2. Vorlesung Partielle Differentialgleichungen Wolfgang Reichel 2.Transatlantische Vorlesung aus Oaxaca, Mexiko, 20. Oktober 2010 Institut für Analysis KIT University of the State of Baden-Wuerttemberg

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 kbasu@astro.uni-bonn.de Website: www.astro.uni-bonn.de/tp-l

Mehr

Über teleparallele Gravitationstheorien

Über teleparallele Gravitationstheorien Diplomkolloquium Über teleparallele Gravitationstheorien Uwe Münch 24. September 1997 Übersicht: Geometrische Größen Gravitation als Eichtheorie der Translationen: Teleparallelismus-Theorien Alternative

Mehr

Theoretische Physik C Elektrodynamik

Theoretische Physik C Elektrodynamik Universität Karlsruhe (TH WS 27/8 Theoretische Physik C Elektrodynamik V: Prof Dr D Zeppenfeld, Ü: Dr S Gieseke Klausur Nr 2 Name/Matrikelnummer/Übungsgruppe: 2 3 4 Σ Aufgabe : Vergütungsschicht 4] Die

Mehr

Theoretische Elektrotechnik

Theoretische Elektrotechnik Theoretische Elektrotechnik Band 1: Variationstechnik und Maxwellsche Gleichungen von Dr. Roland Süße und Prof. Dr. Bernd Marx Technische Universität Ilmenau Wissenschaftsverlag Mannheim Leipzig Wien Zürich

Mehr

Friedmann-Robertson-Walker-Metrik und Friedmann-Gleichung

Friedmann-Robertson-Walker-Metrik und Friedmann-Gleichung Friedmann-Robertson-Walker-Metrik und Friedmann-Gleichung Anja Teuber Münster, 29. Oktober 2008 Inhaltsverzeichnis 1 Einleitung 2 2 Allgemeine Relativitätstheorie und die Einstein schen Feldgleichungen

Mehr

5. Grundgleichungen der Magnetostatik

5. Grundgleichungen der Magnetostatik 5. Grundgleichungen der Magnetostatik 5.1 Divergenz der magnetischen Induktion Wir bestimmen jetzt die eldgleichungen der Magnetostatik, d.h. infinitesimale (lokale) Gleichungen für die magnetische lussdichte,

Mehr

Aufgabe 1 (2+2+2=6 Punkte)

Aufgabe 1 (2+2+2=6 Punkte) Klausur zu Theoretische Physik 3 Elektrodynamik 0. Februar 017 Prof. Marc Wagner Goethe-Universität Frankfurt am Main Institut für Theoretische Physik 5 Aufgaben mit insgesamt 50 Punkten. Die Klausur ist

Mehr

2.10 Normierung der Dirac-Spinoren

2.10 Normierung der Dirac-Spinoren 2.10 Normierung der Dirac-Spinoren In der schwachen Wechselwirkung, die die Parität verletzt, werden auch Axial-Vektoren eine große Rolle spielen, da der Strom eines linkshändigen Spin-1/2 Teilchens ū

Mehr

Vorlesung Lineare Funktionale LINEARE FUNKTIONALE 69

Vorlesung Lineare Funktionale LINEARE FUNKTIONALE 69 13.1. LINEARE FUNKTIONALE 69 Vorlesung 13 13.1 Lineare Funktionale Der Begriff der schwachen Konvergenz wird klarer, wenn man lineare Funktionale betrachtet. Das Skalarprodukt f, g in Hilberträumenkann

Mehr

Theoretische Physik III: Elektrodynamik

Theoretische Physik III: Elektrodynamik Theoretische Physik III: Elektrodynamik Dirk H. Rischke Wintersemester 200/20 Inhaltsverzeichnis Grundlagen der Elektrodynamik. Lagrange-Formalismus für Felder....................... 2.. Lagrange-Mechanik

Mehr

Elektrostatik. Im stationären Fall vereinfachen sich die Maxwell Gauß- und Maxwell Faraday-Gleichungen zu

Elektrostatik. Im stationären Fall vereinfachen sich die Maxwell Gauß- und Maxwell Faraday-Gleichungen zu KAPITEL II Elektrostatik Im stationären Fall vereinfachen sich die Maxwell Gauß- und Maxwell Faraday-Gleichungen zu E( r) = ρ el.( r) E( r) = 0. (II.1a) (II.1b) Dabei hängt die Rotation der jetzt zeitunabhängigen

Mehr

Klassische Elektrodynamik

Klassische Elektrodynamik Klassische Elektrodynamik Pascal Peter 13.01.09 Pascal Peter () Klassische Elektrodynamik 13.01.09 1 / 35 Gliederung 1 Klassische Elektrodynamik Einführung Die maxwellschen Gleichungen Vektornotation 2

Mehr

Kapitel 6. Der Lagrange-Formalismus. 6.2 Lagrange-Funktion in der relativistischen Feldtheorie. 6.1 Euler-Lagrange-Gleichung

Kapitel 6. Der Lagrange-Formalismus. 6.2 Lagrange-Funktion in der relativistischen Feldtheorie. 6.1 Euler-Lagrange-Gleichung 92 Teilchenphysik, HS 2007-SS 2008, Prof. A. Rubbia (ETH Zurich) 6.2 Lagrange-Funktion in der relativistischen Felheorie Kapitel 6 Der Lagrange-Formalismus 6.1 Euler-Lagrange-Gleichung In der Quantenmechanik

Mehr

24 Herleitung der Maxwell-Gleichungen

24 Herleitung der Maxwell-Gleichungen 24 Herleitung der Maxwell-Gleichungen In dieser Vorlesung werden wir die Maxwell-Gleichungen aus rein theoretischen Erwägungen herleiten. Dabei muß der Begriff Herleitung allerdings mit Vorsicht betrachtet

Mehr

Die wichtigsten Lehrbücher bei HD. Gravitation. Einführung in die Allgemeine Relativitätstheorie. Bearbeitet von Ulrich E.

Die wichtigsten Lehrbücher bei HD. Gravitation. Einführung in die Allgemeine Relativitätstheorie. Bearbeitet von Ulrich E. Die wichtigsten Lehrbücher bei HD Gravitation Einführung in die Allgemeine Relativitätstheorie Bearbeitet von Ulrich E. Schröder 5., überarb. und erw. Aufl. 2011. Taschenbuch. 163 S. Paperback ISBN 978

Mehr

Langrange-Dichte & Elektromagnetische Felder

Langrange-Dichte & Elektromagnetische Felder Langrange-Dichte & Elektromagnetische Felder David Benjamin Blüher,Paul Schoissengeier, Thomas Aichinger 10. Februar 2011 Inhaltsverzeichnis 1 Die Lagrange-Dichte und Feldgleichungen 1 2 Elektromagnetische

Mehr

KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung

KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung KAPITEL III Elektrostatik Hier fehlt die obligatorische Einleitung... Im stationären Fall vereinfachen sich die Maxwell Gauß und die Maxwell Faraday-Gleichungen für die elektrische Feldstärke E( r) die

Mehr

Kapitel 11 Eigenwerte und Eigenvektoren

Kapitel 11 Eigenwerte und Eigenvektoren Kapitel Eigenwerte und Eigenvektoren. Problem der Diagonalisierbarkeit Es sei wieder K gleich R oder. Eine n n)-matrix A mit Koeffizienten aus K wird als diagonalisierbar bezeichnet, wenn es eine invertierbare

Mehr

Ferienkurs Elektrodynamik

Ferienkurs Elektrodynamik Ferienkurs Elektrodynamik Zusammenfassung Zeitabhängige Maxwellgleichungen Erhaltungsgrößen Retardierte Potentiale 7. März Bernhard Frank Bisher sind in der Elektro- und Magnetostatik folgende Gesetze

Mehr

Theorie der Gravitationswellen

Theorie der Gravitationswellen 28. Januar 2008 1 Historisches 2 Theoretische Grundlagen 3 Die Feldgleichungen 4 Eigenschaften von Gravitationswellen 5 Ausblick Historisches Historisches 1905 H. Poincaré : Gravitationswechselwirkung

Mehr

5. Grundgleichungen der Magnetostatik

5. Grundgleichungen der Magnetostatik 5. Grundgleichungen der Magnetostatik 5.1 Divergenz der magnetischen Induktion Wir bestimmen etzt die eldgleichungen der Magnetostatik, d.h. infinitesimale (lokale Gleichungen für die magnetische lussdichte,

Mehr

Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h.

Definition: Variablentransformation d. Form (2) heisst kanonisch, wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h. Zusammenfassung: kanonische Transformationen Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h., wenn ein existiert,

Mehr

Aufgabe 1 (2+8=10 Punkte)

Aufgabe 1 (2+8=10 Punkte) Klausur zu Theoretische Physik 3 Elektrodynamik 21. März 217 Prof. Marc Wagner Goethe-Universität Frankfurt am Main Institut für Theoretische Physik 6 Aufgaben mit insgesamt 5 Punkten. Die Klausur ist

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretische Physik 2 (Theoretische Mechanik Prof. Dr. Th. Feldmann 12. November 2013 Kurzzusammenfassung Vorlesung 8 vom 12.11.2013 2.4 Das Hamiltonsche Prinzip ( Prinzip der kleinsten Wirkung Wir zeigen,

Mehr

Die einfachsten Lösungen sind auch die wichtigsten

Die einfachsten Lösungen sind auch die wichtigsten Die einfachsten Lösungen sind auch die wichtigsten F. Herrmann und M. Pohlig www.physikdidaktik.uni-karlsruhe.de 1. Was versteht man unter einer Lösung der Einstein-Gleichung? 2. Die Schwarzschild-Lösung

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Kapitel 4. Lorentz-Tensoren

Kapitel 4. Lorentz-Tensoren Kapitel 4 Lorentz-Tensoren Nach Möglichkeit versucht man, die Gesetze der Physik so aufzustellen, dass sie in allen Inertialsystemen die gleiche Form haben, also forminvariant unter Translationen und Rotationen

Mehr

Die Maxwell Gleichungen

Die Maxwell Gleichungen Die Maxwell Gleichungen Die Maxwellschen Gleichungen beschreiben Beziehungen zwischen dem elektrischen Feld E = E( x;t), der magnetischen Flussdichte B = B( x;t), der elektrischen Stromstärke J = J( x;t),

Mehr

Holger Göbel. Gravitation und. Relativität. Eine Einführung in die Allgemeine Relativitätstheorie DE GRUYTER

Holger Göbel. Gravitation und. Relativität. Eine Einführung in die Allgemeine Relativitätstheorie DE GRUYTER Holger Göbel Gravitation und Relativität Eine Einführung in die Allgemeine Relativitätstheorie DE GRUYTER Vorwort V Liste der verwendeten Symbole XV 1 Newton'sche Mechanik 1 1.1 Die Grundgleichungen der

Mehr

Multilinear heißt: linear in jedem Argument: Beispiel (1,1) Tensor

Multilinear heißt: linear in jedem Argument: Beispiel (1,1) Tensor 1.6 Tensoren Tensor vom Typ (k,l) = multilineare Abb. nach R x bedeutet kartesisches Produkt (geordnetes Paar) Multilinear heißt: linear in jedem Argument: Beispiel (1,1) Tensor Skalar: Type (0,0) Vektor:

Mehr

Lorentz-Transformationen und Invarianz

Lorentz-Transformationen und Invarianz Lorentz-Transformationen und Invarianz Wolfgang Lange. April 0 Einleitung Bei der Suche nach einer allgemeinverständlichen Erläuterung von Transformationen und Tensoren fand ich die besten Erklärungen

Mehr

Allgemeine Relativitätstheorie

Allgemeine Relativitätstheorie Allgemeine Relativitätstheorie Eine Einführung in die Theorie des Gravitationsfeldes von Hans Stephani 4. Auflage Mit 54 Abbildungen / j.* i v, V r ' ''% Щ r \. ', Deutscher Verlag der Wissenschaften Berlin

Mehr

Geometrie der Maxwell-Theorie. Max Camenzind Senioren Uni Würzburg

Geometrie der Maxwell-Theorie. Max Camenzind Senioren Uni Würzburg Geometrie der Maxwell-Theorie Max Camenzind Senioren Uni Würzburg Die Themen Die Geometrisierung der Speziellen Relativität durch Hermann Minkowski im Jahre 1908. Die kausale Struktur der RaumZeit. Die

Mehr

Exakte Differentialgleichungen

Exakte Differentialgleichungen Kapitel 4 Exakte Differentialgleichungen 4.1 Kurvenscharen Sei D R 2 ein offenes und zusammenhängendes Gebiet. Dann kann man zu jeder D einfach überdeckenden Kurvenschar eine Differentialgleichung erster

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

Inhalt der Vorlesung. Die Friedmann-Lemaitre Gleichungen Der Energiesatz Die klassische Näherung Die kosmologische Konstante

Inhalt der Vorlesung. Die Friedmann-Lemaitre Gleichungen Der Energiesatz Die klassische Näherung Die kosmologische Konstante Inhalt der Vorlesung Die Friedmann-Lemaitre Gleichungen Der Energiesatz Die klassische Näherung Die kosmologische Konstante 14 Die Friedmann-Lemaitre Gleichungen Die Dynamik des Universums wird durch die

Mehr

Allgemeine Relativitätstheorie

Allgemeine Relativitätstheorie Allgemeine Relativitätstheorie Ein konzeptioneller Einblick Von Jan Kaprolat Gliederung Einleitung Übergang SRT -> ART Grundlegende Fragestellungen der ART Kurzer Einblick: Tensoralgebra Einsteinsche Feldgleichungen

Mehr

Übungsblatt 10 Musterlösung

Übungsblatt 10 Musterlösung Übungsblatt 0 Musterlösung Numerik gewöhnlicher Differentialgleichungen MA2304 - SS6 Aufgabe 45 Fehlerkonstante von MSV Betrachten Sie ein allgemeines lineares q Schrittverfahren α q j y i+ j = h β q j

Mehr

Bewegung im elektromagnetischen Feld

Bewegung im elektromagnetischen Feld Kapitel 6 Bewegung im elektromagnetischen Feld 6. Hamilton Operator und Schrödinger Gleichung Felder E und B. Aus der Elektrodynamik ist bekannt, dass in einem elektrischen Feld E(r) und einem Magnetfeld

Mehr

I. Das Weltbild der Gravitation vor Einstein Die Keplerschen Gesetze 25

I. Das Weltbild der Gravitation vor Einstein Die Keplerschen Gesetze 25 Inhaltsverzeichnis I. Das Weltbild der Gravitation vor Einstein 21 1. Die Keplerschen Gesetze 25 2. Fallgesetze 33 2.1. Bewegung in einer Dimension 33 2.1.1. Geschwindigkeit 34 2.1.2. Beschleunigung 42

Mehr

Wir wollen zunächst die fundamentalen Feldgleichungen der Elektrostatik. roth = j

Wir wollen zunächst die fundamentalen Feldgleichungen der Elektrostatik. roth = j 208 4. Elektrodynamik 4 Elektrodynamik Die Kapitel 2 und 3 haben gezeigt, dass sich elektrostatische und magnetostatische Probleme völlig unabhängig voneinander behandeln lassen. Gewisse formale Analogien

Mehr

ÜBUNGEN UR THEORETISCHEN PHYSIK C Bewertungsschema für Bachelor Punkte Note < 6 5. 6-7.5 4.7 8-9.5 4. -.5 3.7-3.5 3.3 4-5.5 3. 6-7.5.7 8-9.5.3 3-3.5. 3-33.5.7 34-35.5.3 36-4. nicht bestanden bestanden

Mehr

16 Elektromagnetische Wellen

16 Elektromagnetische Wellen 16 Elektromagnetische Wellen In den folgenden Kapiteln werden wir uns verschiedenen zeitabhängigen Phänomenen zuwenden. Zunächst werden wir uns mit elektromagnetischen Wellen beschäftigen und sehen, dass

Mehr

Formelsammlung Klassische Feldtheorie

Formelsammlung Klassische Feldtheorie Formelsammlung Klassische Feldtheorie 6 (Pseudo-)Orthogonale Gruppen 1. Definition Gruppe: Menge G mit einer Operation (g 1,g 2 ) G G g 1 g 2 G (Multiplikation) (1) die folgende Bedingungen erfüllt: Assoziativität:

Mehr

1.4 Die Dirac-Gleichung

1.4 Die Dirac-Gleichung .4 Die Dirac-Gleichung Suche Differentialgleichung. Ordnung in der Zeit, relativistische Kovarianz. Ordnung auch in Ortskoordinaten 2. Vorlesung, 9.4.2 H rel Ψ = i Ψ t (ħ = c = ) zu bestimmen Ansatz: H

Mehr

8 Eigenwerttheorie I 8. EIGENWERTTHEORIE I 139. Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet:

8 Eigenwerttheorie I 8. EIGENWERTTHEORIE I 139. Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet: 8. EIGENWERTTHEORIE I 139 8 Eigenwerttheorie I Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet: K[x] = Abb[N, K] = {P ; P = a n x n + a n 1 x n 1 + + a 0 ; a

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2 BIOL-B HST PHARM Prüfung zur Vorlesung Mathematik I/II. (8 Punkte) a) Mit Kürzen des Bruchs folgt ( ) x + sin(x) sin(x) cos(x) lim x sin(x) ( ) x = lim x sin(x) + cos(x)

Mehr

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen a) Es ist < x, y > α + + β β ( + α) und y α + + β α + + ( + α) (α + α + ) 6 α + α, also α, ± 5 + ± 9 4 ± 3 Es gibt also Lösungen: α, β

Mehr

Raum und Zeit - Kosmologie

Raum und Zeit - Kosmologie Raum und Zeit - Kosmologie York Schröder (Theoretische Physik / Uni Bielefeld) Herbstakademie Uni Bie, 13 Sep 2006 1 Weisser Zwerg, H1505+65. Temperatur: 200000 Grad 2 Neutronenstern im Krebs-Nebel. Distanz:

Mehr

10. Übung zur Linearen Algebra I -

10. Übung zur Linearen Algebra I - . Übung zur Linearen Algebra I - en Kommentare an Hannes.Klarner@FU-Berlin.de FU Berlin. WS 29-. Aufgabe 37 i Für welche α R besitzt das lineare Gleichungssystem 4 αx + αx 2 = 4x + α + 2x 2 = α genau eine,

Mehr

a 1 a 1 A = a n . det = λ det a i

a 1 a 1 A = a n . det = λ det a i 49 Determinanten Für gegebene Vektoren a 1,,a n K n, betrachte die Matrix deren Zeilenvektoren a 1,,a n sind, also A = Ab sofort benutzen wir diese bequeme Schreibweise Definition Sei M : K n K }{{ n K

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 5/.. Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

Kapitel 2 Kovariante vierdimensionale Formulierungen

Kapitel 2 Kovariante vierdimensionale Formulierungen Kapitel 2 Kovariante vierdimensionale Formulierungen 2 2 2 Kovariante vierdimensionale Formulierungen 2.1 Ko- und kontravariante Tensoren... 39 2.1.1 Definitionen... 39 2.1.2 Rechenregeln... 43 2.1.3 Differentialoperatoren...

Mehr

10 Der Satz über implizite Funktionen und Umkehrfunktionen

10 Der Satz über implizite Funktionen und Umkehrfunktionen Vorlesung SS 9 Analsis Prof. Dr. Siegfried Echterhoff SATZ ÜBER IMPLIZITE FKT UND UMKEHRFKT Der Satz über implizite Funktionen und Umkehrfunktionen Motivation: Sei F : U R R eine differenzierbare Funktion

Mehr

Wir verallgemeinern jetzt den Begriff bilinear zu multilinear. Unser Ziel ist dabei insbesondere die Einführung der sogenannten Determinante.

Wir verallgemeinern jetzt den Begriff bilinear zu multilinear. Unser Ziel ist dabei insbesondere die Einführung der sogenannten Determinante. 118 36 Determinanten Wir verallgemeinern jetzt den Begriff bilinear zu multilinear Unser Ziel ist dabei insbesondere die Einführung der sogenannten Determinante 361 Definition (alternierend, symmetrisch,

Mehr

1 Die direkte Methode der Variationsrechnung

1 Die direkte Methode der Variationsrechnung Die direkte Methode der Variationsrechnung Betrachte inf I(u) = f(x, u(x), u(x)) dx : u u + W,p () wobei R n, u W,p mit I(u ) < und f : R R n R. (P) Um die Existenz eines Minimierers direkt zu zeigen,

Mehr

Mathematik 1 für Bauingenieurwesen

Mathematik 1 für Bauingenieurwesen Mathematik 1 für Bauingenieurwesen Name (bitte ausfüllen): Prüfung am 16.6.2017 Reinhard Winkler Matrikelnummer (bitte ausfüllen): Wichtige Hinweise bevor Sie beginnen: Die Prüfung besteht aus vier Aufgaben

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Auf diesem Übungsblatt verwenden wir die folgenden Notation:

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Auf diesem Übungsblatt verwenden wir die folgenden Notation: Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik) WS 12-13 Prof. Dr. Alexander Mirlin Blatt 8

Mehr

Nachklausur zur Analysis 2, SoSe 2017

Nachklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 18.9.17 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis 2, SoSe 217 Aufgabe

Mehr

Zweite Prüfung zur Vorlesung

Zweite Prüfung zur Vorlesung Prof O Scherzer P Elbau, L Mindrinos Numerische Mathematik Fakultät für Mathematik Universität Wien 4 Oktober 23 Zweite Prüfung zur Vorlesung Numerische Mathematik Erlaubte Hilfsmittel: Schriftliche Unterlagen

Mehr

Lösung 01 Klassische Theoretische Physik I WS 15/16

Lösung 01 Klassische Theoretische Physik I WS 15/16 Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu Lösung Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler

Mehr