Neuronale. Netze. Henrik Voigt. Neuronale. Netze in der Biologie Aufbau Funktion. Neuronale. Aufbau Netzarten und Topologien

Größe: px
Ab Seite anzeigen:

Download "Neuronale. Netze. Henrik Voigt. Neuronale. Netze in der Biologie Aufbau Funktion. Neuronale. Aufbau Netzarten und Topologien"

Transkript

1 in der Seminar Literaturarbeit und Präsentation in der Was können leisten und was nicht? Entschlüsseln von Texten??? Bilderkennung??? in der in der Quelle: justetf.com Quelle: zeit.de

2 Spracherkennung??? Primzahltest??? in der in der Quelle: spiegel.de Quelle: spiegel.de Handschrifterkennung??? Inhalt in der Quelle: computerbase.de in der 1 in der 2 3

3 Neuronen Neuronennetze in der Neuron Ein Neuron bzw. eine Nervenzelle ist eine auf die Erregungsleitung und Erregungsübertragung spezialisierte Zelle. in der Komplexe Verschaltungen aus Neuronen Abbildung von alität und Information im Gehirn dynamischer Charakter Quelle: meinstein.ch Quelle: slideplayer.org Informationsverarbeitung an der Synapse Nervenimpulse I in der Synapse Eine Synapse ist die Übergangsstelle zwischen zwei Neuronen. Sie befindet sich meist an den Dendriten. Man unterscheidet zwischen chemischen und elektrischen Synapsen. in der Aktionspotential Ein Aktionspotential bzw. Spike ist eine kurzzeitige Abweichung des Membranpotentials einer Nervenzelle vom Ruhepotential. Quelle: europeanpharmaceuticalreview.com Quelle: David Kriesel -

4 Nervenimpulse II Neuronen zeitdiskret gewichtete Eingaben in der in der interne Verarbeitung durch Aktivierungsfunktion Quelle: ck12.org Quelle: Wikipedia.org Aktivierungsfunktionen Biasneuron in der Aktivierungsfunktion Die Aktivierungsfunktion berechnet abhängig vom Schwellenwert und von der ingabe, wie stark die Aktivierung eines Neurons ist. in der technischer Trick zur Modellierung von Schwellwerten über Verbindungsgewichte Schicht wird zusätzliches Neuron mit Output 1 hinzugefügt Schwellwert wird über Gewicht w ib eingestellt Abbildung: häufige Aktivierungsfunktionen Quelle: missinglink.ai

5 Netzarten Rückgekoppelte in der in der Definition: Rekurrente sind künstliche, in denen Neuronen gewichtete Verbindungen zur selben Schicht, zu vorrangegangenen Schichten oder zu sich selbst besitzen können. Quelle: Wikipedia.org Quelle: jaai.de unendliche Möglichkeiten...?! Vollständig verbundene Feedforward in der Definition: Vollständig verbundene erlauben Verbindungen zwischen allen Neuronen im Netzwerk. Die Verbindungen müssen symmetrisch sein. Direkte Rückkopplungen sind innerhalb dieser Anordnungen nicht erlaubt. Es existieren keine Schichten innerhalb dieser. in der Definition: Feedforward-n bestehen aus einer Eingabeschicht, n verdeckten Schichten und einer Ausgabeschicht. Ihre Besonderheit besteht darin, dass die Ausgaben der einen Schicht nur an die nächste, tieferliegende Schicht des Netzwerkes weitergegeben werden können. Quelle: neuronalesnetz.de Quelle: Wikipedia.org

6 Single-Layer-Perzeptron Multi-Layer-Perzeptron in der einzige Schicht ist die Ausgabeschicht sdatensatz muss linear separierbar sein Lernen mittels in der mindestens 3 Schichten - Input, Hidden, Output alle Nicht-Input-Neuronen nutzen nichtlineare Aktivierungsfunktionen Lernen mittels Quelle: Wikipedia.org Quelle: Wikipedia.org Beispiel Überwachtes Lernen mit NNs in der Quelle: python-programmieren.com in der Prinzipien smenge mit genauen Aktivierungen der Ausgabeneuronen existiert Erstellen des Fehlervektors Anpassen der Gewichte z.b. mittels - Algorithmus Beispiele Klassifikation Mustererkennung

7 Unüberwachtes Lernen mit NNs Inkrementelles Lernen vs. Stapellernen in der Prinzipien gegeben sind lediglich Eingabemuster, keine gelabelten Beispiele Erkennen ähnlicher Muster verarbeiten multidimensionaler Eingabemuster durch planare Strukturen Beispiele Self-Organizing-Feature-Maps Filtern von Rauschen Dimensionsreduktion in der Inkrementelles Lernen: Beim inkrementellen Lernen werden nach jedem gelernten Beispiel die Gewichte des n n s verändert. Stapellernen: Die sdaten werden im Stapeln (Batches) gleicher Größe gelernt und der Fehlervektor über den Stapel gemittelt. Erst danach werden die Gewichte angepasst. Vorraussetzung ist, dass die einzelnen Stapel repräsentativ für die Menge sind, das heißt stochastisch aufgeteilt wurden. I in der Lernregel für einschichtige Indizierung: Output-Neuron i, Inputneuron j w ij = η δ i a j w ij : Änderung des Gewichts von Neuron j zu Neuron i η: Lernrate a j : Aktivierung des Neurons j δ i : Differenz zwischen IST und SOLL am Output-Neuron (Fehler) in der Lernregel für mehrschichtige Rückpropagieren des Fehlers auf vorhergehende Schicht Minimierung der (möglicherweise hochdimensionalen) Fehlerfunktion Fehlerfunktion n E = 1 2 (t i o i ) 2 i=1 E: Fehler n: Anzahl der smuster o k : Ausgabe des Output-Neurons k t k : Soll-Ausgabe des Output-Neurons k

8 II III in der Ableitung der Fehlerfunktion E = E o j net j w o j ij net j w ij Partielle Ableitung I n E = 1 2 (t i o i ) 2 i=1 Partielle Ableitung II o j = ϕ(net j ) Partielle Ableitung III net j = n x i w ij i=1 in der Änderung des Gewichts w ij = η E w ij = ηδ j o i wobei: Verallgemeinerte Delta-Regel { ϕ (net j )(t j o j ) falls j Ausgabeneuron ist, δ j = ϕ (net j ) k δ kw jk falls j verdecktes Neuron ist. net j : ingabe an ein Neuron j ϕ: Aktivierungsfunktion von KNNs I in der 1. Entscheidung ob im Stapel oder inkrementell gelernt werden soll 2. sbeispiele mit gewünschter Ausgabe (Teaching Input) liegen vor 3. sdatensatz aufteilen in smenge und Testmenge 4. Reihenfolge der Musterpräsentation festlegen 5. Vergleichen der Ausgabe des s mit dem Teaching Input 6. Anpassen der Gewichte entsprechend des Lernalgorithmus Wann kann das beendet werden? in der Definition: beschreiben den zeitlichen Verlauf des Fehlers. Mit ihnen lässt sich darstellen, ob das Netz Fortschritte macht oder nicht. Wann hört man auf zu lernen? Verschiedene Initialisierungen testen und Endfehlerrate vergleichen Lernkurve auf sdaten UND Validierungsdaten anlegen Vergleich unterschiedlicher Lernraten z.b. via Kreuzvalidierung

9 II Was können nun leisten? in der in der Sind sie eher ein unterschätztes Allheilmittel oder eine überschätzte Spezialanwendungen? Quelle: slideplayer.org Entschlüsseln von Texten -NEIN! Bilderkennung - JA! in der in der Quelle: justetf.com Ziel einer Verschlüsselung ist es eine möglichst hohe Entropie zu erzeugen. Gute Verschlüsselungen sind so leistungsstark, dass keine Regel abzuleiten ist. Quelle: zeit.de Convolutional Neural Network Eingabe: Pixelvektor Ausgabe: diskret entweder binär oder multivariat

10 Spracherkennung - JA! Primzahltest - NEIN! in der in der Quelle: spiegel.de Recurrent Neural Network /LSTM NN Eingabe: Abfolge von Tonsequenzen Ausgabe: Wortvektor Quelle: spiegel.de lernen Muster in Daten. Die Primzahlen scheinen eine Menge von Zahlen zu sein, die keinem Muster/ folgen. Handschrifterkennung JA! Mächtigkeit und Grenzen von NNs in der Recurrent Neural Network /LSTM NN Eingabe: Abfolge von Zeichen/Worten in der Vorteile gute Ergebnisse bei sehr komplexen Problemen verhältnismäßig wenig Hyperparameter auf große Datenmengen und hohe Dimensionen anwendbar Nachteile Blackbox verhalten viele Beispiele und sdaten nötig nicht bekannt ob Lösung optimal ist Ausgabe: Vektor aus Zeichen/Worten

11 Literatur in der Kruse, R., Borgelt, C., Braune, C., Klawonn, F., Moewes, C., Steinbrecher, M. Computational Intelligence. Springer Vieweg, Wiesbaden, D. Kriesel Ein kleiner Überblick über. (German) David Kriesel, W. Ertel Grundkurs Intelligenz. (German) Springer Vieweg, S. Haykin Neural Networks and Learning Machines Prentice Hall International, in der Vielen Dank für Ihre Aufmerksamkeit!

Künstliche Neuronale Netze

Künstliche Neuronale Netze Inhalt (Biologische) Neuronale Netze Schwellenwertelemente Allgemein Neuronale Netze Mehrschichtiges Perzeptron Weitere Arten Neuronaler Netze 2 Neuronale Netze Bestehend aus vielen Neuronen(menschliches

Mehr

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs)

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) 6. Neuronale Netze Motivation Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) Abstrakt betrachtet sind alle diese

Mehr

BACKPROPAGATION & FEED-FORWARD DAS MULTILAYER PERZEPTRON

BACKPROPAGATION & FEED-FORWARD DAS MULTILAYER PERZEPTRON BACKPROPAGATION & FEED-FORWARD DAS MULTILAYER PERZEPTRON EINFÜHRUNG IN KÜNSTLICHE NEURONALE NETZE Modul Leitung Technischer Datenschutz und Mediensicherheit Nils Tekampe Vortrag Jasmin Sunitsch Abgabe

Mehr

Praktische Optimierung

Praktische Optimierung Wintersemester 27/8 Praktische Optimierung (Vorlesung) Prof. Dr. Günter Rudolph Fakultät für Informatik Lehrstuhl für Algorithm Engineering Metamodellierung Inhalt Multilayer-Perceptron (MLP) Radiale Basisfunktionsnetze

Mehr

Hannah Wester Juan Jose Gonzalez

Hannah Wester Juan Jose Gonzalez Neuronale Netze Supervised Learning Proseminar Kognitive Robotik (SS12) Hannah Wester Juan Jose Gonzalez Kurze Einführung Warum braucht man Neuronale Netze und insbesondere Supervised Learning? Das Perzeptron

Mehr

Konzepte der AI Neuronale Netze

Konzepte der AI Neuronale Netze Konzepte der AI Neuronale Netze Franz Wotawa Institut für Informationssysteme, Database and Artificial Intelligence Group, Technische Universität Wien Email: wotawa@dbai.tuwien.ac.at Was sind Neuronale

Mehr

Aufbau und Beschreibung Neuronaler Netzwerke

Aufbau und Beschreibung Neuronaler Netzwerke Aufbau und Beschreibung r 1 Inhalt Biologisches Vorbild Mathematisches Modell Grundmodelle 2 Biologisches Vorbild Das Neuron Grundkomponenten: Zellkörper (Soma) Zellkern (Nukleus) Dendriten Nervenfaser

Mehr

Neuronale Netze in der Phonetik: Feed-Forward Netze. Pfitzinger, Reichel IPSK, LMU München {hpt 14.

Neuronale Netze in der Phonetik: Feed-Forward Netze. Pfitzinger, Reichel IPSK, LMU München {hpt 14. Neuronale Netze in der Phonetik: Feed-Forward Netze Pfitzinger, Reichel IPSK, LMU München {hpt reichelu}@phonetik.uni-muenchen.de 14. Juli 2006 Inhalt Typisierung nach Aktivierungsfunktion Lernen in einschichtigen

Mehr

Neuronale Netze (Konnektionismus)

Neuronale Netze (Konnektionismus) Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Daniel Göhring Vorlesung (Konnektionismus) sind biologisch motiviert können diskrete, reell-wertige und Vektor-wertige Funktionen berechnen Informationsspeicherung

Mehr

Rekurrente / rückgekoppelte neuronale Netzwerke

Rekurrente / rückgekoppelte neuronale Netzwerke Rekurrente / rückgekoppelte neuronale Netzwerke Forschungsseminar Deep Learning 2018 Universität Leipzig 12.01.2018 Vortragender: Andreas Haselhuhn Neuronale Netzwerke Neuron besteht aus: Eingängen Summenfunktion

Mehr

Neuronale Netze (Konnektionismus) Einführung in die KI. Beispiel-Aufgabe: Schrifterkennung. Biologisches Vorbild. Neuronale Netze.

Neuronale Netze (Konnektionismus) Einführung in die KI. Beispiel-Aufgabe: Schrifterkennung. Biologisches Vorbild. Neuronale Netze. Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung (Konnektionismus) sind biologisch motiviert können diskrete, reell-wertige und Vektor-wertige Funktionen berechnen Informationsspeicherung

Mehr

Datenorientierte SA. Aufbau und Grundlagen. Aufbau und Grundlagen. Aufbau und Grundlagen. Was sind neuronale Netze?

Datenorientierte SA. Aufbau und Grundlagen. Aufbau und Grundlagen. Aufbau und Grundlagen. Was sind neuronale Netze? Datenorientierte SA Was sind neuronale Netze? Neuronale Netze: Grundlagen und Anwendungen Neuronale Netze bilden die Struktur eines Gehirns oder eines Nervensystems ab Andreas Rauscher 0651993 Damir Dudakovic

Mehr

Proseminar Machine Learning. Neuronale Netze: mehrschichtige Perzeptrone. Christina Schmiedl Betreuer: Christian Spieth, Andreas Dräger

Proseminar Machine Learning. Neuronale Netze: mehrschichtige Perzeptrone. Christina Schmiedl Betreuer: Christian Spieth, Andreas Dräger Proseminar Machine Learning Neuronale Netze: mehrschichtige Perzeptrone Christina Schmiedl Betreuer: Christian Spieth, Andreas Dräger 27.Mai 2006 Inhaltsverzeichnis 1 Biologische Motivation 2 2 Neuronale

Mehr

Neuronale Netze. Christian Böhm.

Neuronale Netze. Christian Böhm. Ludwig Maximilians Universität München Institut für Informatik Forschungsgruppe Data Mining in der Medizin Neuronale Netze Christian Böhm http://dmm.dbs.ifi.lmu.de/dbs 1 Lehrbuch zur Vorlesung Lehrbuch

Mehr

Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze Reinhard Eck 1

Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze Reinhard Eck 1 Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze 2.04.2006 Reinhard Eck Was reizt Informatiker an neuronalen Netzen? Wie funktionieren Gehirne höherer Lebewesen?

Mehr

Künstliche neuronale Netze

Künstliche neuronale Netze Künstliche neuronale Netze Eigenschaften neuronaler Netze: hohe Arbeitsgeschwindigkeit durch Parallelität, Funktionsfähigkeit auch nach Ausfall von Teilen des Netzes, Lernfähigkeit, Möglichkeit zur Generalisierung

Mehr

Künstliche Neuronale Netze

Künstliche Neuronale Netze Fakultät Informatik, Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Künstliche Neuronale Netze Hauptseminar Martin Knöfel Dresden, 16.11.2017 Gliederung

Mehr

6.2 Feed-Forward Netze

6.2 Feed-Forward Netze 6.2 Feed-Forward Netze Wir haben gesehen, dass wir mit neuronalen Netzen bestehend aus einer oder mehreren Schichten von Perzeptren beispielsweise logische Funktionen darstellen können Nun betrachten wir

Mehr

(hoffentlich kurze) Einführung: Neuronale Netze. Dipl.-Inform. Martin Lösch. (0721) Dipl.-Inform.

(hoffentlich kurze) Einführung: Neuronale Netze. Dipl.-Inform. Martin Lösch. (0721) Dipl.-Inform. (hoffentlich kurze) Einführung: martin.loesch@kit.edu (0721) 608 45944 Überblick Einführung Perzeptron Multi-layer Feedforward Neural Network MLNN in der Anwendung 2 EINFÜHRUNG 3 Gehirn des Menschen Vorbild

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Aufgaben der letzten Stunde Übersicht Neuronale Netze Motivation Perzeptron Multilayer

Mehr

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20 Gliederung / Künstliche Neuronale Netze Perzeptron Einschränkungen Netze von Perzeptonen Perzeptron-Lernen Perzeptron Künstliche Neuronale Netze Perzeptron 3 / Der Psychologe und Informatiker Frank Rosenblatt

Mehr

Klassifikationsverfahren und Neuronale Netze

Klassifikationsverfahren und Neuronale Netze Klassifikationsverfahren und Neuronale Netze Hauptseminar - Methoden der experimentellen Teilchenphysik Thomas Keck 9.12.2011 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Neuronale Netze. Anna Wallner. 15. Mai 2007

Neuronale Netze. Anna Wallner. 15. Mai 2007 5. Mai 2007 Inhalt : Motivation Grundlagen Beispiel: XOR Netze mit einer verdeckten Schicht Anpassung des Netzes mit Backpropagation Probleme Beispiel: Klassifikation handgeschriebener Ziffern Rekurrente

Mehr

11. Neuronale Netze 1

11. Neuronale Netze 1 11. Neuronale Netze 1 Einführung (1) Ein künstliches neuronales Netz ist vom Konzept her eine Realisierung von miteinander verschalteten Grundbausteinen, sogenannter Neuronen, welche in rudimentärer Form

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Neuronale Netze WS 2014/2015 Vera Demberg Neuronale Netze Was ist das? Einer der größten Fortschritte in der Sprachverarbeitung und Bildverarbeitung der letzten Jahre:

Mehr

Neuroinformatik. Übung 1

Neuroinformatik. Übung 1 Neuroinformatik Übung 1 Fabian Bürger Raum: BC419, Tel.: 0203-379 - 3124, E-Mail: fabian.buerger@uni-due.de Fabian Bürger (fabian.buerger@uni-due.de) Neuroinformatik: Übung 1 1 / 27 Organisatorisches Neuroinformatik:

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Neuronale Netze Motivation Perzeptron Übersicht Multilayer Neural Networks Grundlagen

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Deep Learning Nico Piatkowski und Uwe Ligges Informatik Künstliche Intelligenz 20.07.2017 1 von 11 Überblick Künstliche Neuronale Netze Motivation Formales Modell Aktivierungsfunktionen

Mehr

Perzeptronen. Katrin Dust, Felix Oppermann Universität Oldenburg, FK II - Department für Informatik Vortrag im Rahmen des Proseminars 2004

Perzeptronen. Katrin Dust, Felix Oppermann Universität Oldenburg, FK II - Department für Informatik Vortrag im Rahmen des Proseminars 2004 Perzeptronen Katrin Dust, Felix Oppermann Universität Oldenburg, FK II - Department für Informatik Vortrag im Rahmen des Proseminars 2004 1/25 Gliederung Vorbilder Neuron McCulloch-Pitts-Netze Perzeptron

Mehr

Was sind Neuronale Netze?

Was sind Neuronale Netze? Neuronale Netze Universität zu Köln SS 2010 Seminar: Künstliche Intelligenz II Dozent: Stephan Schwiebert Referenten: Aida Moradi, Anne Fleischer Datum: 23. 06. 2010 Was sind Neuronale Netze? ein Netzwerk

Mehr

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs)

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) 6. Neuronale Netze Motivation Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) Abstrakt betrachtet sind alle diese

Mehr

Grundlagen zu neuronalen Netzen. Kristina Tesch

Grundlagen zu neuronalen Netzen. Kristina Tesch Grundlagen zu neuronalen Netzen Kristina Tesch 03.05.2018 Gliederung 1. Funktionsprinzip von neuronalen Netzen 2. Das XOR-Beispiel 3. Training des neuronalen Netzes 4. Weitere Aspekte Kristina Tesch Grundlagen

Mehr

DEEP LEARNING MACHINE LEARNING WITH DEEP NEURAL NETWORKS 8. NOVEMBER 2016, SEBASTIAN LEMBCKE

DEEP LEARNING MACHINE LEARNING WITH DEEP NEURAL NETWORKS 8. NOVEMBER 2016, SEBASTIAN LEMBCKE DEEP LEARNING MACHINE LEARNING WITH DEEP NEURAL NETWORKS 8. NOVEMBER 2016, SEBASTIAN LEMBCKE INHALT Einführung Künstliche neuronale Netze Die Natur als Vorbild Mathematisches Modell Optimierung Deep Learning

Mehr

Neuro-Info Notizen. Markus Klemm.net WS 2016/2017. Inhaltsverzeichnis. 1 Hebbsche Lernregel. 1 Hebbsche Lernregel Fälle Lernrate...

Neuro-Info Notizen. Markus Klemm.net WS 2016/2017. Inhaltsverzeichnis. 1 Hebbsche Lernregel. 1 Hebbsche Lernregel Fälle Lernrate... Neuro-Info Notizen Marus Klemm.net WS 6/7 Inhaltsverzeichnis Hebbsche Lernregel. Fälle........................................ Lernrate..................................... Neural Gas. Algorithmus.....................................

Mehr

6.4 Neuronale Netze zur Verarbeitung von Zeitreihen

6.4 Neuronale Netze zur Verarbeitung von Zeitreihen 6.4 Neuronale Netze zur Verarbeitung von Zeitreihen Aufgabe: Erlernen einer Zeitreihe x(t + 1) = f(x(t), x(t 1), x(t 2),...) Idee: Verzögerungskette am Eingang eines neuronalen Netzwerks, z.b. eines m-h-1

Mehr

Proseminar Neuronale Netze Frühjahr 2004

Proseminar Neuronale Netze Frühjahr 2004 Proseminar Neuronale Netze Frühjahr 2004 Titel: Perzeptron Autor: Julia Grebneva, jg7@informatik.uni-ulm.de Einleitung In vielen Gebieten der Wirtschaft und Forschung, stellen sich oftmals Probleme, die

Mehr

Intelligente Algorithmen Einführung in die Technologie

Intelligente Algorithmen Einführung in die Technologie Intelligente Algorithmen Einführung in die Technologie Dr. KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Natürlich sprachliche

Mehr

Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik. 8. Aufgabenblatt

Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik. 8. Aufgabenblatt Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Albayrak, Fricke (AOT) Oer, Thiel (KI) Wintersemester 2014 / 2015 8. Aufgabenblatt

Mehr

Adaptive Resonance Theory

Adaptive Resonance Theory Adaptive Resonance Theory Jonas Jacobi, Felix J. Oppermann C.v.O. Universität Oldenburg Adaptive Resonance Theory p.1/27 Gliederung 1. Neuronale Netze 2. Stabilität - Plastizität 3. ART-1 4. ART-2 5. ARTMAP

Mehr

MULTILAYER-PERZEPTRON

MULTILAYER-PERZEPTRON Einleitung MULTILAYER-PERZEPTRON Die Ausarbeitung befasst sich mit den Grundlagen von Multilayer-Perzeptronen, gibt ein Beispiel für deren Anwendung und zeigt eine Möglichkeit auf, sie zu trainieren. Dabei

Mehr

Selbstorganisierende Karten

Selbstorganisierende Karten Selbstorganisierende Karten Proseminar Ausgewählte Themen über Agentensysteme 11.07.2017 Institut für Informatik Selbstorganisierende Karten 1 Übersicht Motivation Selbstorganisierende Karten Aufbau &

Mehr

Künstliche Neuronale Netze

Künstliche Neuronale Netze Künstliche Neuronale Netze als Möglichkeit, einer Maschine das Lesen beizubringen Anja Bachmann 18.12.2008 Gliederung 1. Motivation 2. Grundlagen 2.1 Biologischer Hintergrund 2.2 Künstliche neuronale Netze

Mehr

Neural Networks: Architectures and Applications for NLP

Neural Networks: Architectures and Applications for NLP Neural Networks: Architectures and Applications for NLP Session 02 Julia Kreutzer 8. November 2016 Institut für Computerlinguistik, Heidelberg 1 Overview 1. Recap 2. Backpropagation 3. Ausblick 2 Recap

Mehr

10. Neuronale Netze 1

10. Neuronale Netze 1 10. Neuronale Netze 1 Einführung (1) Ein künstliches neuronales Netz ist vom Konzept her eine Realisierung von miteinander verschalteten Grundbausteinen, sogenannter Neuronen, welche in rudimentärer Form

Mehr

Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider

Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Versuch: Training eines Künstlich Neuronalen Netzes (KNN) zur Approximation einer Kennlinie in JavaNNS 28.01.2008

Mehr

Seminar K nowledge Engineering und L ernen in Spielen

Seminar K nowledge Engineering und L ernen in Spielen K nowledge Engineering und Lernen in Spielen Neural Networks Seminar K nowledge Engineering und L ernen in Spielen Stefan Heinje 1 Inhalt Neuronale Netze im Gehirn Umsetzung Lernen durch Backpropagation

Mehr

Thema 3: Radiale Basisfunktionen und RBF- Netze

Thema 3: Radiale Basisfunktionen und RBF- Netze Proseminar: Machine Learning 10 Juli 2006 Thema 3: Radiale Basisfunktionen und RBF- Netze Barbara Rakitsch Zusammenfassung: Aufgabe dieses Vortrags war es, die Grundlagen der RBF-Netze darzustellen 1 Einführung

Mehr

Der Sprung in die Zukunft! Einführung in neuronale Netzwerke

Der Sprung in die Zukunft! Einführung in neuronale Netzwerke Der Sprung in die Zukunft! Einführung in neuronale Netzwerke Inhalt 1. Warum auf einmal doch? 2. Welche Einsatzgebiete gibt es? 3. Was sind neuronale Netze und wie funktionieren sie? 4. Wie lernen neuronale

Mehr

2.4.4 Die Fraktale Dimension

2.4.4 Die Fraktale Dimension 2.4.4 Die Fraktale Dimension Ausgehend vom euklidischen Dimensionsbegriff (Punkt = 0, Linie = 1, Fläche = 2...) lässt sich einem fraktalen Gebilde eine fraktale Dimension d f zuordnen. Wir verwenden die

Mehr

Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation

Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation Neuronale Netze Einführung in die Wissensverarbeitung 2 VO 708.560+ 1 UE 442.072 SS 2012 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at Institut für

Mehr

Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation

Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation Neuronale Netze Einführung in die Wissensverarbeitung 2 VO 708.560+ 1 UE 442.072 SS 2013 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at Institut für

Mehr

Lernverfahren von Künstlichen Neuronalen Netzwerken

Lernverfahren von Künstlichen Neuronalen Netzwerken Lernverfahren von Künstlichen Neuronalen Netzwerken Untersuchung und Vergleich der bekanntesten Lernverfahren und eine Übersicht über Anwendung und Forschung im Bereich der künstlichen neuronalen Netzen.

Mehr

Gliederung. Biologische Motivation Künstliche neuronale Netzwerke. Anwendungsbeispiele Zusammenfassung. Das Perzeptron

Gliederung. Biologische Motivation Künstliche neuronale Netzwerke. Anwendungsbeispiele Zusammenfassung. Das Perzeptron Neuronale Netzwerke Gliederung Biologische Motivation Künstliche neuronale Netzwerke Das Perzeptron Aufbau Lernen und Verallgemeinern Anwendung Testergebnis Anwendungsbeispiele Zusammenfassung Biologische

Mehr

auch: Konnektionismus; subsymbolische Wissensverarbeitung

auch: Konnektionismus; subsymbolische Wissensverarbeitung 10. Künstliche Neuronale Netze auch: Konnektionismus; subsymbolische Wissensverarbeitung informationsverarbeitende Systeme, bestehen aus meist großer Zahl einfacher Einheiten (Neuronen, Zellen) einfache

Mehr

Einführung in Neuronale Netze

Einführung in Neuronale Netze Wintersemester 2005/2006 VO 181.138 Einführung in die Artificial Intelligence Einführung in Neuronale Netze Oliver Frölich Abteilung für Datenbanken und Artificial Intelligence Institut für Informationssysteme

Mehr

Ausarbeitung zum Hauptseminar Machine Learning

Ausarbeitung zum Hauptseminar Machine Learning Ausarbeitung zum Hauptseminar Machine Learning Matthias Seidl 8. Januar 2004 Zusammenfassung single-layer networks, linear separability, least-squares techniques Inhaltsverzeichnis 1 Einführung 2 1.1 Anwendungen

Mehr

Neuronale Netze. Maschinelles Lernen. Michael Baumann. Universität Paderborn. Forschungsgruppe Wissensbasierte Systeme Prof. Dr.

Neuronale Netze. Maschinelles Lernen. Michael Baumann. Universität Paderborn. Forschungsgruppe Wissensbasierte Systeme Prof. Dr. Neuronale Netze Maschinelles Lernen Michael Baumann Universität Paderborn Forschungsgruppe Wissensbasierte Systeme Prof. Dr. Kleine Büning WS 2011/2012 Was ist ein neuronales Netz? eigentlich: künstliches

Mehr

Einführung in neuronale Netze

Einführung in neuronale Netze Einführung in neuronale Netze Florian Wenzel Neurorobotik Institut für Informatik Humboldt-Universität zu Berlin 1. Mai 2012 1 / 20 Überblick 1 Motivation 2 Das Neuron 3 Aufbau des Netzes 4 Neuronale Netze

Mehr

Einige überwachte Lernverfahren. Perzeptron, Mehrschicht-Perzeptronen und die Backpropagation-Lernregel

Einige überwachte Lernverfahren. Perzeptron, Mehrschicht-Perzeptronen und die Backpropagation-Lernregel Einige überwachte Lernverfahren Perzeptron, Mehrschicht-Perzeptronen und die Backpropagation-Lernregel Funktionsweise eines künstlichen Neurons x w k Neuron k x 2 w 2k net k f y k x n- w n-,k x n w n,k

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn Adrian Neumann 16. Januar 2014 Übersicht Biologische Inspiration Stand der Kunst in Objekterkennung auf Bildern Künstliche Neuronale

Mehr

Kohonennetze Selbstorganisierende Karten

Kohonennetze Selbstorganisierende Karten Kohonennetze Selbstorganisierende Karten Julian Rith, Simon Regnet, Falk Kniffka Seminar: Umgebungsexploration und Wegeplanung mit Robotern Kohonennetze: Neuronale Netze In Dendriten werden die ankommenden

Mehr

Multi-Layer Neural Networks and Learning Algorithms

Multi-Layer Neural Networks and Learning Algorithms Multi-Layer Neural Networks and Learning Algorithms Alexander Perzylo 22. Dezember 2003 Ausarbeitung für das Hauptseminar Machine Learning (2003) mit L A TEX gesetzt Diese Ausarbeitung ist eine Weiterführung

Mehr

Universität Klagenfurt

Universität Klagenfurt Universität Klagenfurt Neuronale Netze Carmen Hafner Elisabeth Stefan Raphael Wigoutschnigg Seminar in Intelligent Management Models in Transportation und Logistics 623.900, WS 05 Univ.-Prof. Dr.-Ing.

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Deep Learning (II) Nico Piatkowski und Uwe Ligges Informatik Künstliche Intelligenz 25.07.2017 1 von 14 Überblick Faltungsnetze Dropout Autoencoder Generative Adversarial

Mehr

Grundlagen neuronaler Netzwerke

Grundlagen neuronaler Netzwerke AUFBAU DES NEURONALEN NETZWERKS Enrico Biermann enrico@cs.tu-berlin.de) WS 00/03 Timo Glaser timog@cs.tu-berlin.de) 0.. 003 Marco Kunze makunze@cs.tu-berlin.de) Sebastian Nowozin nowozin@cs.tu-berlin.de)

Mehr

Neuronale Netze. Prof. Dr. Rudolf Kruse

Neuronale Netze. Prof. Dr. Rudolf Kruse Neuronale Netze Prof. Dr. Rudolf Kruse Computational Intelligence Institut für Intelligente Kooperierende Systeme Fakultät für Informatik rudolf.kruse@ovgu.de Rudolf Kruse Neuronale Netze 1 Rekurrente

Mehr

5. Lernregeln für neuronale Netze

5. Lernregeln für neuronale Netze 5. Lernregeln für neuronale Netze 1. Allgemeine Lokale Lernregeln 2. Lernregeln aus Zielfunktionen: Optimierung durch Gradientenverfahren 3. Beispiel: Überwachtes Lernen im Einschicht-Netz Schwenker NI1

Mehr

Ein selbstmodellierendes System für die Wasserwirtschaft

Ein selbstmodellierendes System für die Wasserwirtschaft Ein selbstmodellierendes System für die Wasserwirtschaft Dipl.-Ing. Dr. ANDRADE-LEAL Wien, im Juli 2001 1 Einleitung, Motivation und Voraussetzungen Künstliche Intelligenz Neuronale Netze Experte Systeme

Mehr

C1/4 - Modellierung und Simulation von Neuronen

C1/4 - Modellierung und Simulation von Neuronen C 1 /4 - Modellierung und Simulation von Neuronen April 25, 2013 Motivation Worum geht es? Motivation Worum geht es? Um Neuronen. Motivation Worum geht es? Um Neuronen. Da ist u.a. euer Gehirn draus Motivation

Mehr

Grundlagen Neuronaler Netze

Grundlagen Neuronaler Netze Grundlagen Neuronaler Netze Neuronen, Aktivierung, Output, Netzstruktur, Lernziele, Training, Grundstruktur Der Begriff neuronales Netz(-werk) steht immer für künstliche neuronale Netzwerke, wenn nicht

Mehr

Phonemerkennung mittels Time Delay Neural Networks

Phonemerkennung mittels Time Delay Neural Networks Phonemerkennung mittels Time Delay Neural Networks Abteilung Neuroinformatik Fakultät für Informatik Universität Ulm Benedikt Delker Zusammenfassung Time Delay Neural Networks sind neuronale Netzwerke,

Mehr

Neuronale Netze in der Phonetik: Grundlagen. Pfitzinger, Reichel IPSK, LMU München {hpt 24.

Neuronale Netze in der Phonetik: Grundlagen. Pfitzinger, Reichel IPSK, LMU München {hpt 24. Neuronale Netze in der Phonetik: Grundlagen Pfitzinger, Reichel IPSK, LMU München {hpt reichelu}@phonetik.uni-muenchen.de 24. Mai 2006 Inhalt Einführung Maschinelles Lernen Lernparadigmen Maschinelles

Mehr

Teil III: Wissensrepräsentation und Inferenz. Kap.5: Neuronale Netze

Teil III: Wissensrepräsentation und Inferenz. Kap.5: Neuronale Netze Vorlesung Künstliche Intelligenz Wintersemester 2008/09 Teil III: Wissensrepräsentation und Inferenz Kap.5: Neuronale Netze Dieses Kapitel basiert auf Material von Andreas Hotho Mehr Details sind in der

Mehr

Klassifikation von Multidimensionale Zeitreihen mit Hilfe von Deep Learning

Klassifikation von Multidimensionale Zeitreihen mit Hilfe von Deep Learning Master Informatik - Grundseminar Klassifikation von Multidimensionale Zeitreihen mit Hilfe von Deep Learning Manuel Meyer Master Grundseminar WS 2014 / 2015 Betreuender Professor: Prof. Dr.-Ing. Andreas

Mehr

Facharbeit. Ratsgymnasium Bielefeld Schuljahr 2004/2005. aus dem Fach Biologie. Thema: Künstliche neuronale Netze

Facharbeit. Ratsgymnasium Bielefeld Schuljahr 2004/2005. aus dem Fach Biologie. Thema: Künstliche neuronale Netze Ratsgymnasium Bielefeld Schuljahr 2004/2005 Facharbeit aus dem Fach Biologie Thema: Künstliche neuronale Netze Verfasser: Joa Ebert Leistungskurs: Biologie Kursleiter: Herr Bökamp Abgabetermin: 25.02.2005

Mehr

7. Vorlesung Neuronale Netze

7. Vorlesung Neuronale Netze Soft Control (AT 3, RMA) 7. Vorlesung Neuronale Netze Grundlagen 7. Vorlesung im Aufbau der Vorlesung 1. Einführung Soft Control: Definition und Abgrenzung, Grundlagen "intelligenter" Systeme 2. Wissensrepräsentation

Mehr

Universität Hamburg. Grundlagen und Funktionsweise von Künstlichen Neuronalen Netzen. Fachbereich Wirtschaftswissenschaften

Universität Hamburg. Grundlagen und Funktionsweise von Künstlichen Neuronalen Netzen. Fachbereich Wirtschaftswissenschaften Universität Hamburg Fachbereich Wirtschaftswissenschaften Institut für Wirtschaftsinformatik Hausarbeit zum Thema 0 Grundlagen und Funktionsweise von Künstlichen Neuronalen Netzen Prof. Dr. D. B. Preßmar

Mehr

Einfaches Framework für Neuronale Netze

Einfaches Framework für Neuronale Netze Einfaches Framework für Neuronale Netze Christian Silberbauer, IW7, 2007-01-23 Inhaltsverzeichnis 1. Einführung...1 2. Funktionsumfang...1 3. Implementierung...2 4. Erweiterbarkeit des Frameworks...2 5.

Mehr

Neuronale Netze. Seminar aus Algorithmik Stefan Craß,

Neuronale Netze. Seminar aus Algorithmik Stefan Craß, Neuronale Netze Seminar aus Algorithmik Stefan Craß, 325656 Inhalt Theoretisches Modell Grundlagen Lernansätze Hopfield-Netze Kohonen-Netze Zusammenfassung 2 Inhalt Theoretisches Modell Grundlagen Lernansätze

Mehr

Einführung in die Neuroinformatik Lösungen zum 5. Aufgabenblatt

Einführung in die Neuroinformatik Lösungen zum 5. Aufgabenblatt Einführung in die Neuroinformatik Lösungen zum 5. Aufgabenblatt 7. Aufgabe : Summe {} Man sieht leicht ein, dass ein einzelnes Perzeptron mit Gewichten c, c 2, c 3 und Schwelle θ das Problem nicht lösen

Mehr

Linear nichtseparable Probleme

Linear nichtseparable Probleme Linear nichtseparable Probleme Mustererkennung und Klassifikation, Vorlesung No. 10 1 M. O. Franz 20.12.2007 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Duda et al., 2001. Übersicht

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn 16. Januar 2014, überarbeitet am 20. Januar 2017 Übersicht Stand der Kunst: Bilderverstehen, Go spielen Was ist ein Bild in Rohform?

Mehr

Überwachtes Lernen II: Netze und Support-Vektor-Maschinen

Überwachtes Lernen II: Netze und Support-Vektor-Maschinen Überwachtes Lernen II: Klassifikation und Regression - Neuronale Netze und Support-Vektor-Maschinen Praktikum: Data Warehousing und Data Mining Praktikum Data Warehousing und Mining, Sommersemester 2009

Mehr

Weitere Untersuchungen hinsichtlich der Anwendung von KNN für Solvency 2. Tom Schelthoff

Weitere Untersuchungen hinsichtlich der Anwendung von KNN für Solvency 2. Tom Schelthoff Weitere Untersuchungen hinsichtlich der Anwendung von KNN für Solvency 2 Tom Schelthoff 30.11.2018 Inhaltsverzeichnis Deep Learning Seed-Stabilität Regularisierung Early Stopping Dropout Batch Normalization

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Übersicht Neuronale Netze Motivation Perzeptron Grundlagen für praktische Übungen

Mehr

10. Neuronale Netze 1

10. Neuronale Netze 1 10. Neuronale Netze 1 Einführung (1) Ein künstliches neuronales Netz ist vom Konzept her eine Realisierung von miteinander verschalteten Grundbausteinen, sogenannter Neuronen, welche in rudimentärer Form

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn 16. Januar 2014, überarbeitet am 20. Januar 2017 Übersicht Stand der Kunst: Bilderverstehen, Go spielen Was ist ein Bild in Rohform?

Mehr

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor)

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) 29 Neuronale Netze Gehirn: ca. 10 11 Neuronen stark vernetzt Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) Mustererkennung in 0.1s 100 Schritte Regel 30 Was ist ein künstl. neuronales Netz? Ein

Mehr

Kapitel LF: IV. IV. Neuronale Netze

Kapitel LF: IV. IV. Neuronale Netze Kapitel LF: IV IV. Neuronale Netze Perzeptron-Lernalgorithmus Gradientenabstiegmethode Multilayer-Perzeptrons und ackpropagation Self-Organizing Feature Maps Neuronales Gas LF: IV-39 Machine Learning c

Mehr

Vorlesung Digitale Bildverarbeitung Sommersemester 2013

Vorlesung Digitale Bildverarbeitung Sommersemester 2013 Vorlesung Digitale Bildverarbeitung Sommersemester 2013 Sebastian Houben (Marc Schlipsing) Institut für Neuroinformatik Inhalt Crash-Course in Machine Learning Klassifikationsverfahren Grundsätzliches

Mehr

Wissensbasierte Systeme

Wissensbasierte Systeme Analytisch lösbare Optimierungsaufgaben Das Chaos-Spiel gründet auf der folgenden Vorschrift: Man startet von einem beliebigen Punkt aus geht auf einer Verbindung mit einem von drei zufällig gewählten

Mehr

Implementationsaspekte

Implementationsaspekte Implementationsaspekte Überlegungen zur Programmierung Neuronaler Netzwerke Implementationsprinzipien Trennung der Aspekte: Datenhaltung numerische Eigenschaften der Objekte Funktionalität Methoden der

Mehr

Intelligente Systeme. Einführung. Christian Moewes

Intelligente Systeme. Einführung. Christian Moewes Intelligente Systeme Einführung Prof. Dr. Rudolf Kruse Christian Moewes Georg Ruß {kruse,russ,cmoewes}@iws.cs.uni-magdeburg.de Arbeitsgruppe Computational Intelligence Institut für Wissens- und Sprachverarbeitung

Mehr

Rekurrente Neuronale Netze

Rekurrente Neuronale Netze Rekurrente Neuronale Netze Gregor Mitscha-Baude May 9, 2016 Motivation Standard neuronales Netz: Fixe Dimensionen von Input und Output! Motivation In viele Anwendungen variable Input/Output-Länge. Spracherkennung

Mehr

Strukturen für neuronale Netze in der Tageslicht-/ Kunstlichtregelung. 1 Vom biologischen zum künstlichen neuronalen Netz

Strukturen für neuronale Netze in der Tageslicht-/ Kunstlichtregelung. 1 Vom biologischen zum künstlichen neuronalen Netz Strukturen für neuronale Netze in der Tageslicht-/ Kunstlichtregelung - zur Veröffentlichung bei LuxJunior 2003 - Krzyzanowski, J., Rosemann, A., Kaase, H. Technische Universität Berlin Fachgebiet Lichttechnik,

Mehr

Objekt Attributwerte Klassifizierung X Y

Objekt Attributwerte Klassifizierung X Y AUFGABE : Entscheidungsbäume Betrachten Sie das folgende Klassifizierungsproblem: bjekt Attributwerte Klassifizierung X Y A 3 B 2 3 + C 2 D 3 3 + E 2 2 + F 3 G H 4 3 + I 3 2 J 4 K 2 L 4 2 ) Bestimmen Sie

Mehr

Universität Leipzig. Fakultät für Mathematik und Informatik. Forschungsseminar Deep Learning. Prof. Dr. Erhard Rahm. Wintersemester 2017/18

Universität Leipzig. Fakultät für Mathematik und Informatik. Forschungsseminar Deep Learning. Prof. Dr. Erhard Rahm. Wintersemester 2017/18 Universität Leipzig Fakultät für Mathematik und Informatik Forschungsseminar Deep Learning Prof. Dr. Erhard Rahm Wintersemester 2017/18 Rekurrente / rückgekoppelte neuronale Netze Hausarbeit Vorgelegt

Mehr