1.3 Aussagen. Beispiel: Das Bruttosozialprodukt der Bundesrepublik Deutschland ist höher als das der USA ist eine offenbar falsche Aussage.

Größe: px
Ab Seite anzeigen:

Download "1.3 Aussagen. Beispiel: Das Bruttosozialprodukt der Bundesrepublik Deutschland ist höher als das der USA ist eine offenbar falsche Aussage."

Transkript

1 1.3 Aussagen In der Mathematik geht es um Aussagen. Eine Aussage ist ein statement, das entweder wahr oder falsch sein kann. Beides geht nicht! Äußerungen, die nicht die Eigenschaft haben, wahr oder falsch zu sein, gelten nicht als Aussagen. Beispiel: Das Bruttosozialprodukt der Bundesrepublik Deutschland ist höher als das der USA ist eine offenbar falsche Aussage. Gute Nacht, Freunde ist keine Aussage. 40

2 Häufig hängen Aussagen auch von variablen Parametern x ab. Beispiel Für alle natürlichen Zahlen x gilt: x ist Primzahl ist eine offenbar falsche Aussage. Eine richtige Aussage wäre: Es gibt eine natürliche Zahl x, so dass x eine Primzahl ist. 41

3 Interessant wird es, wenn man Aussagen A und B miteinander verknüpft. Der Wahrheitswert der verknüpften Aussage hängt vom Wahrheitswert von A und B ab. Beispiel Die Aussage Franz studiert Wirtschaftswissenschaften oder Mathematik ist wahr, wenn Franz mindestens eines der beiden Fächer Wirtschaft oder Mathematik studiert, eventuell auch beide. Die Aussage ist Verknüpfung der beiden Aussagen Franz studiert Wirtschaftswissenschaften sowie Franz studiert Mathematik durch ein oder. Die Aussage Franz studiert Wirtschaftswissenschaften und Mathematik ist wahr, nur wenn Franz sowohl Wirtschaftswissenschaften als auch Mathematik studiert. Diese Aussage ist Verknüpfung der beiden Aussagen Franz studiert Wirtschaftswissenschaften sowie Franz studiert Mathematik durch ein und. 42

4 Einige Bemerkungen zu mathematischen Beweisen In der Mathematik hat man es stets mit Aussagen zu tun, die wahr oder falsch sind. Beispielsweise gilt für alle reellen Zahlen (a + b) 2 = a 2 + 2ab + b 2. Woher weiß man das? Man kann doch nicht alle reellen Zahlen einsetzen und schauen, ob diese Gleichung immer richtig ist. Das ist auch nicht nötig, denn man kann einen mathematischen Beweis für diese Aussage angeben. Ein Beweis für eine Aussage A ist eine Folge logischer Schlüsse, beginnend mit einer wahren Aussage B, an deren Ende A steht. Das nächste Beispiel zeigt deutlich die Aufgabe eines mathematischen Beweises: Ein Beweis soll einen zweifelsfreien Grund angeben, warum eine Aussage richtig ist. 43

5 Beispiel 1.8 Wir wollen die folgende Behauptung beweisen: Wenn in einem Schachbrett die diagonal gegenüberliegenden Eckfelder entfernt werden, kann das so entstehende Brett nicht mit Dominosteinen überdeckt werden, wobei jeder Dominostein genau zwei Felder des Schachbrettes überdeckt. Beweis: Jeder Dominostein überdeckt genau ein weißes und ein schwarzes Feld. Aber das Schachbrett, bei dem die Eckfelder entfernt wurden, hat nicht die gleiche Zahl weißer und schwarzer Felder! 44

6 Manche Nicht-MathematikerInnen sind versucht, die Gültigkeit einer Aussageform A(x) zu beweisen, indem die Gültigkeit von A(x) für einige wenige Werte von x nachgerechnet wird. Das ist natürlich kein Beweis! Beispiel 1.9 Angenommen, jemand behauptet n 2 + n + 41 sei für alle natürlichen Zahlen n eine Primzahl. Wir setzen ein und erhalten, dass n 2 + n + 41 eine Primzahl für alle Zahlen n zwischen 0 und 39 ist. Ist das ein Beweis? Nein! Außerdem ist die Aussage, dass n 2 + n + 41 für alle natürlichen Zahlen eine Primzahl ist, falsch: Setzen Sie einfach n = 41 ein: (41) ist durch 41 teilbar! Wir haben somit ein Gegenbeispiel gefunden und die Behauptung, jede Zahl der Form n 2 + n + 41 sei ein Primzahl, widerlegen. 45

7 Etwas formaler. Wir hatten die Aufgabe zu entscheiden, ob eine Aussage A(x) für alle x gilt. Um zu beweisen, dass die Aussage stets gilt, benötigen wir einen Beweis. Wenn wir aber zeigen wollen, dass die Aussage nicht immer gilt, genügt es, ein x so anzugeben, dass A(x) falsch ist. Wir haben damit die Allgemeingültigkeit widerlegt. Halten wir fest: Die Gültigkeit einer Aussage A(x) kann man nicht beweisen, indem man die Gültigkeit für einige Werte von x überprüft. Man kann aber zeigen, dass die Aussage A(x) nicht allgemeingültig ist, wenn man nur ein Gegenbeispiel angibt, also ein x g, für das A(x g ) falsch ist. 46

8 1.4 Mengen Ein zentrales Konzept für die Mathematik ist der Begriff der Menge. Eine Menge ist eine Zusammenfassung bestimmter, wohlunterschiedener Objekte. Von jedem dieser Objekte muss eindeutig feststehen, ob das Objekt zur Menge gehört oder nicht. Die Objekte heißen Elemente der Menge Ist a ein Element der Menge M, schreiben wir auch andernfalls a M a / M 47

9 Die Elemente einer Menge sind immer alle verschieden. Es gibt unterschiedliche Möglichkeiten, Mengen zu beschreiben. Wir wollen die Menge M aller geraden ganzen Zahlen zwischen 2 und 15 beschreiben: 1. Aufzählung M = {2, 4, 6, 8, 10, 12, 14} 2. teilweise Aufzählung M = {2, 4, 6,..., 12, 14}. Hierbei muss man aufpassen, dass es nicht zu Missverständnissen kommt. 3. Beschreibung durch charakteristische Eigenschaften M = {x : x Z und x 2 und x 15 und x gerade}. 48

10 Die leere Menge ist die Menge, die kein Element enthält. Beispiel: {x : x ist ein Mensch, x wohnt in der Bundesrepublik Deutschland und x ist im Jahre 1700 geboren} = Die Mächtigkeit (oder Ordnung) einer Menge M ist die Anzahl der Elemente in der Menge. Schreibweise: M = Anzahl der Elemente in M. Die oben betrachtete Menge M = {2, 4, 6, 8, 10, 12, 14} hat also die Mächtigkeit 7, M = 7. Falls M unendlich viele Elemente hat, schreiben wir M = ( heißt unendlich). 49

11 Beziehungen zwischen Mengen Wir nennen A eine Teilmenge von B, wenn jedes Element aus A auch ein Element von B ist. Dabei darf auch A = B gelten. A B: A Teilmenge von B A B: A Teilmenge von B und A B Beachte, dass stets A A gilt. Ferner gilt für alle Mengen A. Beispiel 1.10 N Z Q R Die Menge aller Einwohner Magdeburgs ist eine Teilmenge der Menge aller Einwohner Deutschlands. 50

12 Verknüpfung von Mengen Wir können Mengen schneiden oder vereinigen: A B = {x : x A oder x B} Vereinigung A B = {x : x A und x B} Schnitt 51

13 Achtung: Es gilt nicht A B = A + B, sondern A B = A + B A B Zwei Mengen heißen disjunkt, wenn ihr Schnitt leer ist. Für disjunkte Mengen gilt A B = A + B 52

14 Manchmal wollen wir mehr als nur eine Menge vereinigen oder schneiden. Wir schreiben dann n A i = A 1 A 2... A n i=1 n A i = A 1 A 2... A n i=1 53

15 Die Differenz von Mengen ist wie folgt definiert: A \ B = {x : x A und x / B} Ist A eine Teilmenge von Ω, so schreiben wir statt Ω \ A auch A oder, genauer, A Ω = Ω \ A: 54

16 Beispiel 1.11 Wir betrachten die folgenden vier Mengen: A = {x : x R und 1 x 6} B = {x : x N und x < 6} C = {x : x N und x 2} D = {x : x R und x < 6} Dann gilt: A B = {1, 2, 3, 4, 5} A \ D = {6} A C = {2, 3, 4, 5, 6} C \ A = {x : x N und x > 6} 55

17 B C = {2, 3, 4, 5} B C = N A N = {1, 2, 3, 4, 5, 6} A R = {x : x R und (x < 1 oder x > 6)} B N = {6, 7, 8,...}. 56

18 Die wichtigsten Rechenregeln für die Verknüpfung von Mengen: Idempotenzgesetze A A = A A A = A Kommutativgesetze A B = B A A B = B A 57

19 Assoziativgesetze A (B C) = (A B) C A (B C) = (A B) C Distributivgesetze A (B C) = (A B) (A C) A (B C) = (A B) (A C) Inklusionsgesetze A A B A B A Man macht sich diese Regeln am besten anhand einiger Mengendiagramme (Venn-Diagramm) klar. 58

20 Die Potenzmenge einer Menge A ist die Menge aller Teilmengen von A. Bezeichnung: P(A). Ist A endlich, so gilt P(A) = 2 A. Beispiel: Sei A = {a, b}. 59

21 Seien a 1,... a n irgendwelche Elemente. Wir nennen (a 1, a 2,..., a n ) ein n-tupel. Die Elemente müssen nicht unbedingt verschieden sein. Die Menge aller n-tupel (a 1,..., a n ) mit a i A i heißt das kartesische Produkt von A 1,..., A n. Bezeichnung: A 1 A 2 A n Beispiel 1.12 Sei A = {1, 2} und B = {a, b}. Dann gilt: Dieses Beispiel zeigt, dass im allgemeinen A B B A. 60

22 1.5 Relationen und Abbildungen Die Definition einer Relation ist ganz einfach: Eine Relation R zwischen zwei Mengen X und Y ist eine Teilmenge R X Y. Gilt X = Y, so heißt R eine Relation auf X. Man schreibt x R y falls (x, y) R. Beispiel 1.13 X: Menge der MathematikerInnen. Y : Menge der WirtschaftswissenschaftlerInnen. Eine Relation zwischen X und Y wird z.b. durch Mathematiker x war Tutor von Wirtschaftswissenschaftler y erklärt. Sei X die Menge aller Frauen, Y die Menge aller Männer. Als Relation zwischen X und Y wählen wir verheiratet. 61

23 A = {1, 2}, B = {2, 3}. Dann ist A B = {(1, 2), (1, 3), (2, 2), (2, 3)}. Wir erhalten z.b. folgende Relationen: R 1 = {(a, b) A B : a = b} = {(2, 2)} R 2 = {(a, b) A B : a < b} = {(1, 2), (1, 3), (2, 3)} R 3 = {(a, b) A B : a b} = {(1, 2), (1, 3), (2, 3), (2, 2)} = A B R 4 = {(a, b) A B : a + b = 2} = 62

24 Man kann Relationen auch durch Graphen verdeutlichen. Dazu malen wir die Menge A und die Menge B auf und verbinden zwei Elemente mit einem Pfeil genau dann, wenn sie in Relation miteinander stehen: Diese Beispiele zeigen, dass an jedem Punkt kein, ein oder mehrere Pfeile beginnen können. Genauso kann an jedem Punkt kein, ein oder mehrere Pfeile ankommen. 63

25 Solche Pfeildiagramme sind natürlich unhandlich, wenn die Mengen X und Y unendlich sind. Sind X und Y Zahlbereiche, können wir versuchen, die Menge der Punkte (x, y) R in einem Koordinatensystem zu skizzieren. 64

26 Abbildungen In den Wirtschaftswissenschaften haben wir es meistens mit Abbildungen zu tun. Eine Abbildung f aus X nach Y ist eine Relation zwischen X und Y, so dass es zu jedem x X höchstens ein y Y gibt, so dass x und y in Relation zueinander stehen. Bezeichnung: f : X Y. Das Element y wird mit f(x) bezeichnet. Die Menge X heißt die Menge der unabhängigen Variablen, die Menge Y bezeichnet die abhängigen Variablen, denn wenn wir x kennen, kennen wir auch f(x). In unserer Pfeildarstellung bedeutet dies, dass in jedem Element x X höchstens ein Pfeil beginnt. 65

27 Beachte, dass nicht jedem x X ein y Y zugeordnet werden muss. Wir benutzen hier manchmal folgende Sprechweise: Wenn jedem x X höchstens ein y zugeordnet wird, so sprechen wir von einer Abbildung aus X nach Y. Wird jedem x X genau ein f(x) zugeordnet, so wollen wir von einer Abbildung von X nach Y sprechen: 66

28 Das hat Vorteile, wenn man komplizierte Formel hat wie etwa f(x) = x x 5 + 3x 3 x 4, aufgefasst als Abbildung aus R nach R, weil man von vornherein gar nicht weiß, für welche x der Nenner 0 wird, wo die Abbildung also gar nicht definiert ist. Die Menge der x X, für die f(x) erklärt ist, nennen wir den Definitionsbereich von f und bezeichnen mit D(f). Der Definitionsbereich D(f) muss nicht ganz X sein, wie die obigen Beispiele zeigen. Beachten Sie bitte, dass der Definitionsbereich alle x X enthält, für die es ein f(x) gibt, er ist also in einem gewissen Sinne maximal. 67

29 Beispiel 1.14 Wir definieren f : R R durch f(x) = 1 x 2 1. Dieser Ausdruck ist natürlich nur erklärt, wenn x Also ist f eine Abbildung aus R nach R. Der Definitionsbereich ist R\{±1}. Beispiel 1.15 Wir betrachten f : R R definiert durch f(x) = lg x (dekadischer Logarithmus). Weil der Logarithmus nur für positive Zahlen erklärt ist, ist der Definitionsbereich also R + : x

30 Machen Sie sich bitte nicht zu viele Gedanken über die Frage, ob eine Abbildungen von oder aus einer Menge X erklärt ist. Wichtig ist nur, dass bei der Beschreibung einer Abbildung durch eine Vorschrift, wie z.b. lg x oder zu beachten ist, dass diese Vorschrift 1 x 2 1 für einige Werte von x möglicherweise nicht definiert ist. Oft liegt das daran, dass man nicht durch 0 dividieren darf. Andere Möglichkeiten: Logarithmen oder Wurzeln negativer Zahlen sind nicht definiert. Manche trigonometrische Funktionen haben Stellen, wo sie nicht definiert sind, z.b. tan(π/2) ist nicht definiert. Abbildungen werden oft auch Funktionen genannt. Meistens spricht man von Funktionen, wenn die Mengen X und Y Zahlbereiche sind. Wenn wir hier von Zahlbereichen sprechen, meinen wir nicht etwa nur R, sondern auch R R, R R R usw. Denken Sie daran: Ökonomische Daten hängen fast nie nur von einer Variablen ab. 69

31 Injektiv, Surjektiv, Bijektiv Eine Abbildung f : X Y heißt: injektiv wenn aus f(x 1 ) = f(x 2 ) stets x 1 = x 2 folgt; surjektiv, wenn es zu jedem y Y (mindestens) ein x X gibt mit f(x) = y; bijektiv, wenn sie injektiv und surjektiv ist und es zu jedem x X ein y gibt mit f(x) = y (f also insbesondere eine Abbildung von X nach Y ist). Für die Pfeildarstellung von Abbildungen bedeutet das folgendes: injektiv: in jedem y Y endet höchstens ein Pfeil surjektiv: in jedem y Y endet mindestens ein Pfeil bijektiv: in jedem y Y endet genau ein Pfeil und in jedem x X beginnt genau ein Pfeil. 70

32

33

34 Graphisch: Ist f eine injektive Abbildung, so definieren wir f 1 : Y X durch folgende Vorschrift: f 1 (y) = x, wobei x X durch die Eigenschaft f(x) = y bestimmt ist. Beachte, dass x wegen der Injektivität eindeutig bestimmt ist. In unseren Pfeilbildern bedeutet dies einfach, dass wir jeden Pfeil umdrehen. Die Abbildung f 1 : Y X heißt die zu f inverse Abbildung. Beachte, dass auch f 1 injektiv ist. Ferner ist f bijektiv genau dann wenn f injektiv und surjektiv ist und zusätzlich f 1 auch surjektiv ist. 71

35 Bei einer bijektiven Abbildung geht von jedem Punkt in X genau ein Pfeil aus und in jedem Punkt aus Y endet genau ein Pfeil. Das heißt insbesondere, dass X und Y gleich viele Elemente haben. 72

36 Verknüpfung von Abbildungen Seien f : X Y und g : Y Z zwei Abbildungen. Wir definieren die Abbildung g f : X Z wie folgt: (g f)(x) = g ( f(x) ). (Also: Wir wenden erst f auf x an, dann auf den Wert f(x) die Abbildung g.) Wichtig ist es, sich zu merken, dass g f bedeutet, erst f und dann g anzuwenden. 73

1 Grundlagen. 1.1 Aussagen

1 Grundlagen. 1.1 Aussagen 1 Grundlagen 1.1 Aussagen In der Mathematik geht es um Aussagen. Eine Aussage ist ein statement, das entweder wahr oder falsch sein kann. Beides geht nicht! Äußerungen, die nicht die Eigenschaft haben,

Mehr

1.4 Mengen. Wirtschaftswissenschaften häufig nicht so klar formulierbar.

1.4 Mengen. Wirtschaftswissenschaften häufig nicht so klar formulierbar. Wirtschaftswissenschaften häufig nicht so klar formulierbar. Viel häufiger tritt das Phänomen auf, dass man Aussagen widerlegt! Kehren wir zurück zu unserem Beispiel 1.13 über den Zusammenhang zwischen

Mehr

Beispiel 1.10 Das Bruttosozialprodukt der Bundesrepublik Deutschland ist höher als das der USA ist eine offenbar falsche Aussage.

Beispiel 1.10 Das Bruttosozialprodukt der Bundesrepublik Deutschland ist höher als das der USA ist eine offenbar falsche Aussage. 1.5 Aussagen In der Mathematik geht es um Aussagen. Eine Aussage ist ein statement, das entweder wahr oder falsch sein kann. Beides geht nicht! Äußerungen, die nicht die Eigenschaft haben, wahr oder falsch

Mehr

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um:

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: 1 Grundlagen 1.1 Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen 1, 2, 3, 4, 5,... Z: ganze Zahlen..., 3, 2, 1, 0, 1, 2, 3,... Q: rationale Zahlen:

Mehr

Summen- und Produktzeichen

Summen- und Produktzeichen Summen- und Produktzeichen Ein großer Vorteil der sehr formalen mathematischen Sprache ist es, komplizierte Zusammenhänge einfach und klar ausdrücken zu können. Gerade auch diese Eigenschaft der Mathematik

Mehr

die Menge S = {(x,y) : x 2 = y 2 +1,x R} wohl aussehen könnte. Die Antwort ist hier: Interessant ist auch y 2 = x 3 x:

die Menge S = {(x,y) : x 2 = y 2 +1,x R} wohl aussehen könnte. Die Antwort ist hier: Interessant ist auch y 2 = x 3 x: die Menge S = {(x,y) : x 2 = y 2 +1,x R} wohl aussehen könnte. Die Antwort ist hier: Interessant ist auch y 2 = x 3 x: 40 Ganz wichtig für die Wirtschaftswissenschaft ist es, sich Ungleichungen klar zu

Mehr

Beispiel 1.20 Wir betrachten die folgenden vier Mengen: A = {x : x R und 1 x 6} B = {x : x N und x < 6} C = {x : x N und x 2} D = {x : x R und x < 6}

Beispiel 1.20 Wir betrachten die folgenden vier Mengen: A = {x : x R und 1 x 6} B = {x : x N und x < 6} C = {x : x N und x 2} D = {x : x R und x < 6} Ω A A Beispiel 1.20 Wir betrachten die folgenden vier Mengen: A = {x : x R und 1 x 6} B = {x : x N und x < 6} C = {x : x N und x 2} D = {x : x R und x < 6} 52 Dann gilt: Mengenalgebra A B = {1,2,3,4,5}

Mehr

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: zweier ganzer Zahlen p und q schreiben kann.

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: zweier ganzer Zahlen p und q schreiben kann. Kapitel 1. Grundlagen 1.1 Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen 1, 2,3, 4, 5,... Z: ganze Zahlen..., 3, 2, 1, 0,1, 2,3,... Q: rationale

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel. Grundlagen. Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen,,3, 4, 5,... Z: ganze Zahlen..., 3,,, 0,,,3,... Q: rationale Zahlen: das sind

Mehr

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: zweier ganzer Zahlen p und q schreiben kann.

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: zweier ganzer Zahlen p und q schreiben kann. Kapitel 1. Grundlagen 1.1 Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen 1, 2,3, 4, 5,... Z: ganze Zahlen..., 3, 2, 1, 0,1, 2,3,... Q: rationale

Mehr

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um:

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: 1 Grundlagen 1.1 Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen 1,2,3,4,5,... Z: ganze Zahlen..., 3, 2, 1,0,1,2,3,... Q: rationale Zahlen: das

Mehr

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um:

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: 1 Grundlagen 1.1 Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen 1, 2, 3, 4, 5,... Z: ganze Zahlen..., 3, 2, 1, 0, 1, 2, 3,... Q: rationale Zahlen:

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011.

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011. Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen 21. März 2011 Tanja Geib Inhaltsverzeichnis 1 Aussagen 1 2 Mengenlehre 3 2.1 Grundlegende Definitionen

Mehr

Vorlesung 3: Logik und Mengenlehre

Vorlesung 3: Logik und Mengenlehre 28102013 Erinnerung: Zeilen-Stufen-Form (ZSF) eines LGS 0 0 1 c 1 0 0 0 1 0 0 1 c r 0 0 0 c r+1 0 0 0 0 0 0 0 0 0 c m Erinnerung: Information der Zeilen-Stufen-Form Aus der ZSF liest man ab: Folgerung

Mehr

Kapitel 1. Mengen und Abbildungen. 1.1 Mengen

Kapitel 1. Mengen und Abbildungen. 1.1 Mengen Kapitel 1 Mengen und Abbildungen 1.1 Mengen Die Objekte der modernen Mathematik sind die Mengen. Obwohl die Logik einen axiomatischen Zugang zur Mengenlehre bietet, wollen wir uns in dieser Vorlesung auf

Mehr

Elementare Mengenlehre

Elementare Mengenlehre Vorkurs Mathematik, PD Dr. K. Halupczok WWU Münster Fachbereich Mathematik und Informatik 5.9.2013 Ÿ2 Elementare Mengenlehre Der grundlegendste Begri, mit dem Objekte und Strukturen der Mathematik (Zahlen,

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 15. Oktober 2015 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage veröffentlicht

Mehr

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016 HM I Tutorium 1 Lucas Kunz 27. Oktober 2016 Inhaltsverzeichnis 1 Theorie 2 1.1 Logische Verknüpfungen............................ 2 1.2 Quantoren.................................... 3 1.3 Mengen und ihre

Mehr

B Grundbegriffe zu Mengen und Abbildungen

B Grundbegriffe zu Mengen und Abbildungen B Grundbegriffe zu Mengen und Abbildungen Die Sprache der Mengen und Abbildungen hat sich als Basissprache in der modernen Mathematik durchgesetzt. Da sie sehr praktisch ist, wird sie auch in diesem Buch

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 19. Oktober 2017 1/27 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage

Mehr

Vorkurs Mathematik 2016

Vorkurs Mathematik 2016 Vorkurs Mathematik 2016 WWU Münster, Fachbereich Mathematik und Informatik PD Dr. K. Halupczok Skript VK3 vom 15.9.2016 VK3: Elementare Mengenlehre Der grundlegendste Begri, mit dem Objekte und Strukturen

Mehr

Elemente der Analysis I Kapitel 3: Einführung III, Summen, Logik, Mengen, Beweise

Elemente der Analysis I Kapitel 3: Einführung III, Summen, Logik, Mengen, Beweise Elemente der Analysis I Kapitel 3: Einführung III, Summen, Logik, Mengen, Beweise Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 15. November 2010 http://www.mathematik.uni-trier.de/

Mehr

Brückenkurs Mathematik 2015

Brückenkurs Mathematik 2015 Technische Universität Dresden Fachrichtung Mathematik, Institut für Analysis Dr.rer.nat.habil. Norbert Koksch Brückenkurs Mathematik 2015 1. Vorlesung Logik, Mengen und Funktionen Ich behaupte aber, dass

Mehr

Mathematik für Ökonomen 1

Mathematik für Ökonomen 1 Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Mengen, Funktionen und Logik

Mengen, Funktionen und Logik Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um:

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: Grundlagen. Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen,2,3,4,5,... Z: ganze Zahlen..., 3, 2,,0,,2,3,... Q: rationale Zahlen: das sind die

Mehr

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um:

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: 1 Grundlagen 1.1 Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen 1,,3,4,5,... Z: ganze Zahlen..., 3,, 1,0,1,,3,... Q: rationale Zahlen: das sind

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 Mengen und Abbildungen 3.2 Induktion und Rekursion 3.3 Ausdrücke 3 Mathematische Grundlagen Einf. Progr. (WS 08/09) 102 Überblick 3.

Mehr

Grundbegriffe Mengenlehre und Logik

Grundbegriffe Mengenlehre und Logik Grundbegriffe Mengenlehre und Logik Analysis für Informatiker und Lehramt Mathematik MS/GS/FS WS 2016/2017 Agnes Radl Mengen Georg Cantor (1895) Unter einer Menge verstehen wir jede Zusammenfassung M von

Mehr

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7 Warum Mathe? IG/StV-Mathematik der KFU-Graz März 2011 Inhalt 1 Mengen 1 1.1 Mengenoperationen.............................. 2 1.2 Rechenregeln.................................. 3 2 Übungsbeispiele zum

Mehr

Kapitel 1: Grundbegriffe

Kapitel 1: Grundbegriffe Kapitel 1: Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) 1 / 20 Gliederung 1 Logik Ein ganz kurzer Ausflug in die Kombinatorik Stefan Ruzika (KO) 2

Mehr

Die Mengenlehre ist ein Grundelement der Sprache der Mathematik und geht als

Die Mengenlehre ist ein Grundelement der Sprache der Mathematik und geht als Kapitel 1 Naive Mengenlehre 1.1 Mengen (Mengenalgebra; kartesisches Produkt) Die Mengenlehre ist ein Grundelement der Sprache der Mathematik und geht als naive Mengenlehre (im Gegensatz zur strengen Axiomatik)

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

2 Mengen, Abbildungen und Relationen

2 Mengen, Abbildungen und Relationen Vorlesung WS 08 09 Analysis 1 Dr. Siegfried Echterhoff 2 Mengen, Abbildungen und Relationen Definition 2.1 (Mengen von Cantor, 1845 1918) Eine Menge M ist eine Zusammenfassung von wohlbestimmten und wohl

Mehr

Vorlesung 2. Tilman Bauer. 6. September 2007

Vorlesung 2. Tilman Bauer. 6. September 2007 Vorlesung 2 Universität Münster 6. September 2007 Organisatorisches Meine Koordinaten: Sprechstunden: Di 13:30-14:30 Do 9:00-10:00 tbauer@uni-muenster.de Zimmer 504, Einsteinstr. 62 (Hochhaus) für alle

Mehr

3 Werkzeuge der Mathematik

3 Werkzeuge der Mathematik 3.1 Mengen (18.11.2011) Definition 3.1 Die Menge heißt leere Menge. :=»x M x x Definition 3.2 Es seien N und M Mengen. Wir definieren: und analog M N : (x M x N). N M : (x N x M). Wir sagen M ist Teilmenge

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

Mengen und Abbildungen

Mengen und Abbildungen 1 Mengen und bbildungen sind Hilfsmittel ( Sprache ) zur Formulierung von Sachverhalten; naive Vorstellung gemäß Georg Cantor (1845-1918) (Begründer der Mengenlehre). Definition 1.1 Eine Menge M ist eine

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016 MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/17 MARK HAMILTON LMU MÜNCHEN 1.1. Grundbegriffe zu Mengen. 1. 17. OKTOBER 2016 Definition 1.1 (Mengen und Elemente). Eine Menge ist die Zusammenfassung

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 3.2 Induktion und Rekursion 3.3 Boolsche Algebra Peer Kröger (LMU München) Einführung in die Programmierung WS 14/15 48 / 155 Überblick

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

Grundbegriffe der Informatik Kapitel 3: Mengen, Alphabete, Abbildungen

Grundbegriffe der Informatik Kapitel 3: Mengen, Alphabete, Abbildungen Grundbegriffe der Informatik Kapitel 3: Mengen, Alphabete, Abbildungen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für

Mehr

Anmerkungen zu Mengen und Abbildungen

Anmerkungen zu Mengen und Abbildungen Anmerkungen zu Mengen und Abbildungen Kartesisches Produkt von n Mengen und n-stellige Relationen Sind M 1, M,, M n nichtleere Mengen, so ist ihr kartesisches Produkt erklärt als Menge aller geordneter

Mehr

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um:

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: Grundlagen. Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen,2,3,4,5,... Z: ganze Zahlen..., 3, 2,,0,,2,3,... Q: rationale Zahlen: das sind die

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 2. Oktober 2015 Vorsemesterkurs Informatik Inhalt 1 Relationen 2 Funktionen 3 Beweistechniken Motivation Direkter Beweis Beweis

Mehr

Zusatzmaterial zur Mathematik I für E-Techniker Übung 1

Zusatzmaterial zur Mathematik I für E-Techniker Übung 1 Mathematik I für E-Techniker C. Erdmann WS 011/1, Universität Rostock, 1. Vorlesungswoche Zusatzmaterial zur Mathematik I für E-Techniker Übung 1 Wiederholung - Theorie: Mengen Der grundlegende Begriff

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

1.1 Mengen und Abbildungen

1.1 Mengen und Abbildungen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 3 1.1 Mengen und Abbildungen In diesem Abschnitt stellen wir die grundlegende mathematische Sprache und Notation zusammen, die für jede Art von heutiger Mathematik

Mehr

2 ZAHLEN UND VARIABLE

2 ZAHLEN UND VARIABLE Zahlen und Variable 2 ZAHLEN UND VARIABLE 2.1 Grundlagen der Mengenlehre Unter einer Menge versteht man die Zusammenfassung von unterscheidbaren Objekten zu einem Ganzen. Diese Objekte bezeichnet man als

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 01.12.2017 (Teil 1) 22. November 2017 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler 22. November 2017

Mehr

Analyis I - Grundlagen

Analyis I - Grundlagen Elementare Aussagenlogik October 23, 2008 Elementare Aussagenlogik Definition Eine Aussage im Sinne der Aussagenlogik ist eine sprachliche Aussage, bei der klar entschieden werden kann, ob sie wahr oder

Mehr

0 Mengen und Abbildungen, Gruppen und Körper

0 Mengen und Abbildungen, Gruppen und Körper 0 Mengen und Abbildungen, Gruppen und Körper In diesem Paragrafen behandeln wir einige für die Lineare Algebra und für die Analysis wichtige Grundbegriffe. Wir beginnen mit dem Begriff der Menge. Auf Cantor

Mehr

, 5;8 7,6 8;15;21 4/2,3/1,4 2; 4 3;15 7;7 3,2;3; 32 5,6,7 ; 8,2,1

, 5;8 7,6 8;15;21 4/2,3/1,4 2; 4 3;15 7;7 3,2;3; 32 5,6,7 ; 8,2,1 Mathematik (BG27) 2 3 { Objekt} { Menge } { Element } { } Reihenfolge spielt keine Rolle Unterscheidbarkeit der Objekte (redundanzfrei) 4 Objekt, 58 7,6 Beschreibung 81521 4/2,3/1,4 2 4 315 77 3,23 32

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Lösungen zur Übungsserie 1

Lösungen zur Übungsserie 1 Analysis 1 Herbstsemester 2018 Prof. Peter Jossen Montag, 24. September Lösungen zur Übungsserie 1 Aufgaben 1, 3, 4, 5, 6, 8 Aufgabe 1. Sei X eine endliche Menge mit n Elementen, und sei Y eine endliche

Mehr

2 Mengen und Abbildungen

2 Mengen und Abbildungen 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:

Mehr

: das Bild von ) unter der Funktion ist gegeben durch

: das Bild von ) unter der Funktion ist gegeben durch % 1.3 Funktionen Seien und Mengen nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. Bezeichnungen: : Definitionsbereich : Bildbereich (Zielmenge) von Der Graph einer Funktion: graph!

Mehr

Abbildungen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Abbildungen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Abbildungen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Abbildungen Die wichtigsten Relationen sind die Abbildungen: Eine Abbildung (A,B,f ) von A nach

Mehr

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe Kapitel 5 Abbildungen 5.1 Definition: (Abbildung) Eine Abbildung zwischen zwei Mengen M und N ist eine Vorschrift f : M N, die jedem Element x M ein Element f(x) N zuordnet. Schreibweise: x f(x) 5. Beispiel:

Mehr

Kapitel 1 Mengen. Kapitel 1 Mengen. Mathematischer Vorkurs TU Dortmund Seite 1 / 25

Kapitel 1 Mengen. Kapitel 1 Mengen. Mathematischer Vorkurs TU Dortmund Seite 1 / 25 Kapitel 1 Mengen Kapitel 1 Mengen Mathematischer Vorkurs TU Dortmund Seite 1 / 25 Kapitel 1 Mengen Definition 1.1 (Menge) Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen.

Mehr

Kapitel 2. Mathematische Grundlagen. Skript zur Vorlesung Einführung in die Programmierung

Kapitel 2. Mathematische Grundlagen. Skript zur Vorlesung Einführung in die Programmierung LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Kapitel 2 Mathematische Grundlagen Skript zur Vorlesung Einführung in die Programmierung im Wintersemester 2012/13 Ludwig-Maximilians-Universität

Mehr

Grundbegriffe aus Logik und Mengenlehre

Grundbegriffe aus Logik und Mengenlehre Prof. Dr. B. Niethammer Dr. C. Seis, R. Schubert Institut fr Angewandte Mathematik Universitt Bonn Grundbegriffe aus Logik und Mengenlehre Wir wollen im Folgenden eine kurze Einführung in die Grundbegriffe

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 1 Kapitel 1: Aussagen, Mengen

Mehr

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Einführung in die Logik - 6 mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Modelltheoretische / Denotationelle Semantik der Prdikatenlogik Ein Modell ist ein künstlich geschaffenes

Mehr

Mengenlehre und vollständige Induktion

Mengenlehre und vollständige Induktion Fachschaft MathPhys Heidelberg Mengenlehre und vollständige Induktion Vladislav Olkhovskiy Vorkurs 018 Inhaltsverzeichnis 1 Motivation 1 Mengen.1 Grundbegriffe.................................. Kostruktionen

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung

Mehr

Übersichtsblatt Hertrampf/Bahrdt. 1 Mathematische Aussagen. Theoretische Informatik I WS2018/19

Übersichtsblatt Hertrampf/Bahrdt. 1 Mathematische Aussagen. Theoretische Informatik I WS2018/19 Theoretische Informatik I WS2018/19 Übersichtsblatt Hertrampf/Bahrdt Institut für Formale Methoden der Informatik Theoretische Informatik Universität Stuttgart 1 Mathematische Aussagen Um mathematische

Mehr

1.1 Mengen und Abbildungen

1.1 Mengen und Abbildungen Lineare Algebra 2005-2013 c Rudolf Scharlau 3 1.1 Mengen und Abbildungen In diesem Abschnitt stellen wir die grundlegende mathematische Sprache und Notation zusammen, die für jede Art von heutiger Mathematik

Mehr

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } }

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } } Mengen Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung aller Elemente: { 1,

Mehr

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4 Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark 08.11.2018 Dr. Markus Lange Analysis 1 Aufgabenzettel 4 Abgabe bis 14. November 2018, 19:00 Uhr Erinnerung: Die Anmeldung für den Übungsschein

Mehr

Für unseren Gebrauch ist eine Menge bestimmt durch die in ihr enthaltenen Elemente. Ist M eine Menge, so ist ein beliebiges Objekt m wieder so ein

Für unseren Gebrauch ist eine Menge bestimmt durch die in ihr enthaltenen Elemente. Ist M eine Menge, so ist ein beliebiges Objekt m wieder so ein Mengen 1.2 9 1.2 Mengen 7 Der Begriff der Menge wurde am Ende des 19. Jahrhunderts von Georg Cantor wie folgt eingeführt. Definition (Cantor 1895) Eine Menge ist eine Zusammenfassung M von bestimmten,

Mehr

Grundlegendes: Mengen und Aussagen

Grundlegendes: Mengen und Aussagen Kapitel 1 Grundlegendes: Mengen und Aussagen Wie jedes Fachgebiet hat auch die Mathematik eine eigene Fachsprache Ohne ihre Kenntnis wird man ein mathematisches Buch, selbst wenn es für Anwender geschrieben

Mehr

Mengenlehre. Aufgaben mit Lösungen

Mengenlehre. Aufgaben mit Lösungen Mengenlehre Aufgaben mit Lösungen Inhaltsverzeichnis 1 Hilfsmittel 1 1. Zahlenmengen........................................ 1 2. Symbole........................................... 1 3. Intervalle: Schreibweise...................................

Mehr

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Elizaveta Kovalevskaya WS 2017/18 6. Oktober 2017 Vorkurs Informatik - WS 2017/18 1/44 Vorsemesterkurs Informatik Übersicht 1 Relationen 2 Funktionen

Mehr

Mengenlehre. Mengenlehre. Vorkurs Informatik WS 2013/ September Vorkurs Informatik - WS2013/14

Mengenlehre. Mengenlehre. Vorkurs Informatik WS 2013/ September Vorkurs Informatik - WS2013/14 Mengenlehre Mengenlehre Vorkurs Informatik WS 2013/14 30. September 2013 Mengen Mengen Definition (Menge) Unter einer Menge verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten

Mehr

1.3 Relationen und Funktionen

1.3 Relationen und Funktionen 1.3. RELATIONEN UND FUNKTIONEN 1 1.3 Relationen und Funktionen Es gibt eine Konstruktion (Übungsaufgabe!) einer Klasse (a, b) mit der Eigenschaft (a, b) = (c, d) a = c b = d. Diese Klasse (a, b) heißt

Mehr

Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen.

Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen. Kapitel 1 - Mathematische Grundlagen Seite 1 1 - Mengen Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen. Definition 1.1 (G. Cantor.

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 23. November 2017 1/40 Satz 4.27 (Multinomialsatz) Seien r, n N 0. Dann gilt für

Mehr

Ein geordnetes Paar (oder: ein 2-Tupel) enthält immer zwei Elemente, deren Reihenfolge festgelegt ist. Mehrfachnennungen sind nicht erlaubt!

Ein geordnetes Paar (oder: ein 2-Tupel) enthält immer zwei Elemente, deren Reihenfolge festgelegt ist. Mehrfachnennungen sind nicht erlaubt! Relationen, Funktionen und Partitionen 1. Geordnetes Paar Ein geordnetes Paar (oder: ein 2-Tupel) enthält immer zwei Elemente, deren Reihenfolge festgelegt ist. Mehrfachnennungen

Mehr

Brückenkurs Mathematik 2018

Brückenkurs Mathematik 2018 Mathematik 2018 1. Vorlesung Logik, Mengen und Funktionen Prof. Dr. 24. September 2018 Ich behaupte aber, dass in jeder besonderen Naturlehre nur so viel eigentliche Wissenschaft angetroffen werden könne,

Mehr

Aufgabenblatt 1: Abgabe am vor der Vorlesung

Aufgabenblatt 1: Abgabe am vor der Vorlesung Aufgabenblatt 1: Abgabe am 17.09.09 vor der Vorlesung Aufgabe 1. a.) (1P) Geben Sie die Lösungsmenge der folgenden Gleichung an: 6x + y = 10. Zeichnen Sie die Lösungsmenge in ein Koordinatensystem. b.)

Mehr

Grundbegriffe der Mengenlehre

Grundbegriffe der Mengenlehre Grundbegriffe der Mengenlehre Krzysztof P. Rybakowski Universität Rostock Fachbereich Mathematik 2003 11 07 1 Vorbemerkungen Ohne die Sprache der Mengenlehre lässt sich Mathematik nicht verstehen. Die

Mehr

Grundlagen der Mengenlehre

Grundlagen der Mengenlehre mathe plus Grundlagen der Mengenlehre Seite 1 1 Grundbegriffe Grundlagen der Mengenlehre Def 1 Mengenbegriff nach Georg Cantor (1845-1918) Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener

Mehr

Mengen und Relationen

Mengen und Relationen KAPITEL 1 Mengen und Relationen 1.1. Mengenlehre Georg Cantor (3.3.1845 6.1.1918: Cantor ist der Vater der modernen Mengenlehre, er definierte 1895: DEFINITION 1.1.1. Unter einer Menge verstehen wir jede

Mehr

Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert werden durch

Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert werden durch 1.2 Mengenlehre Grundlagen der Mathematik 1 1.2 Mengenlehre Definition: Menge, Element, Variablenraum Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert

Mehr

Mengenlehre. ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich Name: Vorname:

Mengenlehre. ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich  Name: Vorname: Mengenlehre ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 21. August 2016 Inhaltsverzeichnis 1 Mengenlehre 1 1.1 Die Menge im mathematischen

Mehr

Mengenlehre Zahlbereiche. II Mengenlehre. Propädeutikum Holger Wuschke. 18. September 2018

Mengenlehre Zahlbereiche. II Mengenlehre. Propädeutikum Holger Wuschke. 18. September 2018 Propädeutikum 2018 18. September 2018 in der Mengenlehre Denition einer Menge (Georg Cantor, 1869) Unter einer Menge verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objecten m unsrer

Mehr

Analysis I - Notizen 1. Daniel Lenz Jena - Wintersemester 2016

Analysis I - Notizen 1. Daniel Lenz Jena - Wintersemester 2016 Analysis I - Notizen 1 Daniel Lenz Jena - Wintersemester 2016 1 Es handelt sich nicht um ein Skriptum zur Vorlesung. Besten Dank an alle, die zu Verbesserungen früherer Notizen zur Analysis I beigetragen

Mehr

(1.18) Def.: Eine Abbildung f : M N heißt

(1.18) Def.: Eine Abbildung f : M N heißt Zurück zur Mengenlehre: Abbildungen zwischen Mengen (1.17) Def.: Es seien M, N Mengen. Eine Abbildung f : M N von M nach N ist eine Vorschrift, die jedem x M genau ein Element f(x) N zuordnet. a) M = N

Mehr

Relationen und Funktionen

Relationen und Funktionen Relationen und Funktionen Relationen und Funktionen Vorkurs Informatik Theoretischer Teil WS 2013/14 2. Oktober 2013 Vorkurs Informatik WS 2013/14 1/27 Relationen und Funktionen > Relationen Relationen

Mehr

Grundlagen. Kapitel Mengen

Grundlagen. Kapitel Mengen Kapitel 1 Grundlagen 1.1 Mengen Grundobjekte mathematischer Theorien sind Mengen. Zwar stellt man sich darunter Gesamtheiten von gewissen Dingen (den Elementen der Menge) vor, doch führt die uneingeschränkte

Mehr

4. Mathematische und notationelle Grundlagen. Beispiel Mengen. Bezeichnungen:

4. Mathematische und notationelle Grundlagen. Beispiel Mengen. Bezeichnungen: 4. Mathematische und notationelle Grundlagen 4.1 Mengen Beispiel 3 A 1 = {2, 4, 6, 8}; A 2 = {0, 2, 4, 6,...} = {n N 0 ; n gerade} Bezeichnungen: x A A x x A B A B A { } x Element A x nicht Element A B

Mehr