Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN

Größe: px
Ab Seite anzeigen:

Download "Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN"

Transkript

1 Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Übungsleiter: Dr.-Ing. H.-D. Ribbecke Dipl.-Inf. T. Wagner Dipl.-Ing. B. Hensel Dipl.-Ing. T. L. Mai Bearbeitungszeitraum: Wintersemester 215/216 ALLGEMEINE BEMERKUNGEN Sollten Sie Verbesserungsvorschläge, Fragen oder Probleme haben, so diskutieren Sie diese am besten mit Ihren Kommilitonen und wenden sich persönlich an Ihren Übungsleiter oder schreiben ihm eine ({heinz-dieter.ribbecke, burkhard.hensel, tuan_linh.mai}@tu-dresden.de).

2 LERNZIELE VON ÜBUNG 5 In den Übungen 3 und 4 wurden die Ausgangssignale verschiedener Systeme bei einem Sprung-, Impuls- oder Rampensignal als Eingangssignal berechnet. Um für ein beliebiges Eingangssignal das zugehörige Ausgangssignal eines linearen, zeitinvarianten Systems zu berechnen, benötigt man die mathematische Operation der Faltung. Für zeitkontinuierliche Systeme verwendet man das Faltungsintegral und die Gewichtsfunktion, für zeitdiskrete Systeme die Faltungssumme und die Gewichtsfolge. In Übung 5 werden die (grafische) Lösung des Faltungsintegrals sowie die Berechnung der Faltungssumme anhand von Beispielen geübt. Außerdem wird die Gewichtsfunktion beziehungsweise Gewichtsfolge als das das Systemverhalten eindeutig beschreibende Merkmal näher untersucht. AUFGABE 5.1 GRUNDLAGEN DER (KONTINUIERLICHEN) FALTUNG Von einem zeitkontinuierlichen LTI-System (lineares, zeitinvariantes und kausales System) ist die Gewichtsfunktion g(t) bekannt (siehe Abbildung 23). g(t) 1,5 1,,5, Abbildung 23: Zeitlicher Verlauf der Gewichtsfunktion g(t) des Systems. a) Ermitteln Sie den zeitlichen Verlauf der Antwort y(t) des Systems, wenn am Eingang ein Einheitsimpuls anliegt. Stellen Sie diesen grafisch dar. Abbildung 24: Zeitlicher Verlauf des Einheitsimpuls. 2

3 b) Wie verändert sich der zeitliche Verlauf der Antwort y(t) des Systems, wenn statt des Einheitsimpulses (Impulshöhe + ) ein invertierter Einheitsimpuls (gleiche Fläche; Impulshöhe ; siehe Abb. 25) am Eingang anliegt? Stellen Sie diesen grafisch dar. Abbildung 25: Zeitlicher Verlauf des Eingangssignals invertierter Einheitsimpuls. c) Wie verändert sich der zeitliche Verlauf der Antwort y(t) des Systems, wenn statt des Einheitsimpulses (zum Zeitpunkt s) ein totzeitbehafteter Einheitsimpuls (gleiche Fläche; zum Zeitpunkt 1 s; siehe Abbildung 26) am Eingang anliegt? Stellen Sie diesen grafisch dar. Abbildung 26: Verlauf eines totzeitbehafteten Einheitsimpuls. 3

4 d) Ermitteln Sie schrittweise den zeitlichen Verlauf der Antwort y(t) des Systems, wenn am Eingang das aus totzeitbehafteten und invertierten Einheitsimpulsen entsprechend Teilaufgaben b) und c) bestehende und in Abbildung 27 dargestellte Signal anliegt. Stellen Sie diesen grafisch dar. Abbildung 27: Zeitlicher Verlauf des Eingangssignals totzeitbehaftete und invertierte Einheitsimpulse. e) Wie verändert sich der zeitliche Verlauf der Antwort y(t) des Systems auf das aus totzeitbehafteten und invertierten Einheitsimpulsen entsprechend Teilaufgaben c) und d) bestehende und in Abbildung 27 dargestellte Signal am Eingang, wenn sich die Gewichtsfunktion g(t) -- beispielsweise durch Alterung -- verändert (zeitlicher Verlauf siehe Abbildung 28)? Stellen Sie diesen grafisch dar. g*(t) 1,5 1,,5, -,5-1, Abbildung 28: Zeitlicher Verlauf der veränderten Gewichtsfunktion g*(t) des Systems 4

5 AUFGABE 5.2: BEDEUTUNG DER GEWICHTSFUNKTION Von einem zeitkontinuierlichen, linearen und zeitinvarianten System ist die Gewichtsfunktion g(t) bekannt (siehe Abbildung 29). g(t) Abbildung 29: Zeitlicher Verlauf der Gewichtsfunktion g(t) des Systems. a) Klassifizieren Sie den Signalverlauf aus Abbildung 29 im Zeit- und Wertebereich. b) Handelt es sich bei dem durch Abbildung 29 beschriebenen System um ein statische? Begründen Sie Ihre Entscheidung kurz. c) Handelt es sich bei dem durch Abbildung 29 beschriebenen System um ein kausales? Begründen Sie Ihre Entscheidung kurz. d) Welche Auswirkung hätte ein nichtkausales Systemverhalten auf die bisherigen Betrachtungen? e) Kann das durch die Gewichtsfunktion g(t) in Abbildung 29 beschriebene System (BIBO-)instabil werden? Begründen Sie Ihre Entscheidung kurz. f) Stellen Sie abschließend den zeitlichen Verlauf der Antwort y(t) des Systems auf einen am Eingang anliegenden Einheitssprung grafisch dar. Beschreiben Sie dabei kurz den zugrunde liegenden Lösungsansatz. 5

6 ZUSATZAUFGABE 5.3: FALTUNG UND DEREN UMKEHRUNG Von einem zeitkontinuierlichen LTI-System (lineares, zeitinvariantes und kausales System) ist die Gewichtsfunktion g(t) bekannt (siehe Abbildung 3). g(t) Abbildung 3: Zeitlicher Verlauf der Gewichtsfunktion g(t) des Systems. a) Welches Eingangssignal erzeugt die Gewichtsfunktion g(t)? b) Benennen Sie den zugrunde liegenden mathematischen Zusammenhang für die Ermittlung des Ausgangssignals y(t) aus dem Eingangssignal und der Gewichtsfunktion g(t). c) Geben Sie die Formel für den mathematischen Zusammenhang aus Teilaufgabe (b) an. (in mv) Abbildung 31: Zeitlicher Verlauf des Eingangssignals. d) Ermitteln Sie schrittweise den zeitlichen Verlauf der Antwort y(t) des Systems, wenn am Eingang das aus Einheitsimpulsen bestehende und in Abbildung 31 dargestellte Signal anliegt. 6

7 y*(t) (in mv) Abbildung 32: Zeitlicher Verlauf des Ausgangssignals y*(t). e) Wie muss der zeitliche Verlauf des Eingangssignals x*(t) aussehen, wenn am Ausgang y*(t) des Systems das in Abbildung 32 dargestellte Signal anliegt? f) Beschreiben Sie kurz Ihren Lösungsweg und stellen Sie den zeitlichen Verlauf des Eingangssignals x*(t) grafisch dar. Anmerkung: Diese Teilaufgabe war in der Klausur eine Zusatzaufgabe. ZUSATZAUFGABE 5.4: OPTIMALFILTER An einem unbekannten System eines zeitkontinuierlichen LTI-System (lineares, zeitinvariantes und kausales System) ist näherungsweise die Gewichtsfunktion g(t) gemessen worden (siehe Abbildung 32). g(t) t (in µs) Abbildung 32: Zeitlicher Verlauf der Gewichtsfunktion g(t) des Systems. 7

8 a) Ermitteln Sie schrittweise den zeitlichen Verlauf der Antwort y(t) des Systems, wenn am Eingang das aus Einheitsimpulsen bestehende und in Abbildung 33 dargestellte Signal anliegt (entspricht der an der Ordinate gespiegelten Stoßantwort) b) Wozu könnte man diese Systeme mit einem derartigen Ausgangssignalverhalten in der Praxis einsetzen? (in mv) t (in µs) Abbildung 33: Zeitlicher Verlauf des Eingangssignals. c) Wie könnte man ein derartiges System mit der Eigenschaft eines solchen Optimalfilters technisch realisieren? AUFGABE 5.5: BEDEUTUNG DER GEWICHTSFOLGE Von einem zeitdiskreten, linearen und zeitinvarianten System ist die Gewichtsfolge g(kt) bekannt: k < g ( kt ) = 3 k k 3. k > 3 Die Abtastperiode T beträgt 1 s und es gilt: k : = {, 2, 1,,1, 2, }. a) Stellen Sie den zeitlichen Verlauf der Gewichtsfolge g(kt) grafisch dar. b) Klassifizieren Sie den Signalverlauf aus Teilaufgabe a) im Zeit- und Wertebereich. 8

9 c) Handelt es sich bei dem hier beschriebenen System um ein statisches? Begründen Sie Ihre Entscheidung kurz. d) Handelt es sich bei dem hier beschriebenen System um ein kausales? Begründen Sie Ihre Entscheidung kurz. e) Kann das durch die Gewichtsfolge g(kt) beschriebene System (BIBO-)instabil werden? Begründen Sie Ihre Entscheidung kurz. AUFGABE 5.6: ZEITDISKRETE FALTUNG Von einem zeitdiskreten LTI-System (lineares, zeitinvariantes und kausales System) ist die Gewichtsfolge g(kt) bekannt (vergleiche auch Aufgabe 5.5: Bedeutung der Gewichtsfolge): k < g ( kt ) = 3 k k 3. k > 3 Die Abtastperiode T beträgt 1 s und es gilt: k : = {, 2, 1,,1, 2, }. a) Ermitteln Sie die Antwort y(kt) des Systems auf einen zeitdiskreten Einheitsimpuls am Eingang x ( kt ) δ ( kt ) k = =. 1 k = Verwenden Sie dazu die Definition der zeitdiskreten Faltung (Faltungssumme): ( ) = ( ) ( ) y kt g kt x kt = k k < (( ) ) ( ) g k j T x jt k j =. b) Stellen Sie den zeitlichen Verlauf des Ausgangssignals y(kt) grafisch dar. c) Ermitteln Sie die Antwortfolge y(kt) des Systems auf einen zeitdiskreten Einheitssprung am Eingang x ( kt ) σ ( kt ) k < = =. 1 k d) Ermitteln Sie das Ergebnis nach folgender Gleichung für k 5. ( ) h kt = k k < ( ) g jt k j =. e) Verwenden Sie dazu auch hier die Definition der zeitdiskreten Faltung. 9

10 f) Stellen Sie den zeitlichen Verlauf des Ausgangssignals y(kt) grafisch dar. g) Stellen Sie den zeitlichen Verlauf des Signals h(kt) grafisch dar. Vergleichen Sie Ihre Ergebnisse aus den Teilaufgaben. h) Welcher Filterklasse (FIR bzw. IIR) gehört das durch die Gewichtsfolge g(kt) beschriebene System an? Begründen Sie Ihre Entscheidung kurz. ZUSATZAUFGABE 5.7: RAUMHALL Der Nachhall eines Raums besteht aus einer Vielzahl von Echos (siehe Aufgabe 3.5). Jedes Echo entspricht einem der möglichen Wege des Schalls von der Klangquelle über verschiedene Reflexionen zum Hörer (analog zu den verschiedenen möglichen Wegen einer Billardkugel in dieselbe Tasche). Um die hohen Kosten und den hohen technischen Aufwand von Aufnahmen in großen Hallen mit guter Akustik zu umgehen, werden aktuelle Musikproduktionen in der Regel ohne Hall ( trocken ) im Tonstudio aufgezeichnet und der Nachhall anschließend computergestützt simuliert (außer bei klassischer Musik). Der sogenannte Faltungshall gilt als besonders realistisch. a) Wie können Sie vorgehen, um Ihr Wissen über die Faltung bei der Simulation von Raumhall zu nutzen? b) Wie lang darf die Gewichtsfunktion maximal sein, damit ein PC mit einer Taktfrequenz von 3 GHz den Hall in Echtzeit (live) berechnen kann? Gehen Sie zunächst von der starken Vereinfachung aus, dass genau ein Prozessorkern verwendet wird und dieser immer im Wechsel in einem Takt multipliziert und im nächsten addiert. c) Impulsantworten großer Hallen sind mehrere Sekunden lang. Wie lange dauert es unter den Annahmen von b), ein Musikstück von 4 Minuten Länge mit einer Gewichtsfunktion von 4 Sekunden Länge zu falten ( Rendering )? d) Welche in Teilaufgabe b) vernachlässigten Prozessoraktivitäten verringern die maximale Länge der Gewichtsfunktion für den Echtzeitbetrieb weiter bzw. verlängern die Berechnung beim Rendering? e) Nennen Sie Beispiele aus der Informatik, auf die sich die Überlegungen zum Nachhall übertragen lassen (Tipp: Schall besteht aus mechanischen Wellen, in der Informatik sind jedoch elektromagnetische Wellen interessanter). 1

Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN

Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN BEDEUTUNG DER GEWICHTSFUNKTION UND

Mehr

Übung 6 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-,SW-CODESIGN

Übung 6 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-,SW-CODESIGN Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 6 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-,SW-CODESIGN Übungsleiter: Dr.-Ing. Heinz-Dieter

Mehr

Übung 8 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN

Übung 8 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 8 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Übungsleiter: Dr.-Ing. H.-D. Ribbecke

Mehr

Übung 9 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN

Übung 9 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 9 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Übungsleiter: Dr.-Ing. H.-D. Ribbecke

Mehr

Zusatzmaterialien zu Übung 5 zur Vorlesung Informatik II für Verkehrsingenieurwesen: Systemeigenschaften und Gewichtsfunktion/folge

Zusatzmaterialien zu Übung 5 zur Vorlesung Informatik II für Verkehrsingenieurwesen: Systemeigenschaften und Gewichtsfunktion/folge Fakultät Informatik Institut für Angewandte Informatik, Professur für Technische Informationssysteme Zusatzmaterialien zu Übung 5 zur Vorlesung Informatik II für Verkehrsingenieurwesen: Systemeigenschaften

Mehr

ÜBUNG 2 ZUR VORLESUNG PROZESSSTEUERUNG (ERSATZLEHRVERANSTALTUNG FÜR SYSTEMORIENTIERTE INFORMATIK )

ÜBUNG 2 ZUR VORLESUNG PROZESSSTEUERUNG (ERSATZLEHRVERANSTALTUNG FÜR SYSTEMORIENTIERTE INFORMATIK ) Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme ÜBUNG 2 ZUR VORLESUNG PROZESSSTEUERUNG (ERSATZLEHRVERANSTALTUNG FÜR SYSTEMORIENTIERTE INFORMATIK ) Übungsleiter:

Mehr

Übung 11 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN

Übung 11 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 11 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Übungsleiter: Dr. Ing. H. D. Ribbecke

Mehr

Übung 1 zur Vorlesung GEBÄUDESYSTEMTECHNIK

Übung 1 zur Vorlesung GEBÄUDESYSTEMTECHNIK Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 1 zur Vorlesung GEBÄUDESYSTEMTECHNIK Übungsleiter: Dr.-Ing. H.-D. Ribbecke Bearbeitungszeitraum:

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systeme Vorlesung 6: Impulsantwort und Faltung Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Grundlegende Systemeigenschaften Beispiele führten zu linearen Differenzengleichungen

Mehr

Eigenschaften und Anwendung zeitdiskreter Systeme

Eigenschaften und Anwendung zeitdiskreter Systeme Fakultät Informatik Institut für Angewandte Informatik, Professur für Technische Informationssysteme Eigenschaften und Anwendung zeitdiskreter Systeme Dresden, den 3.8.2 Gliederung Vorbemerkungen Eigenschaften

Mehr

Faltung, Bildbereich und Stabilität

Faltung, Bildbereich und Stabilität Fakultät Informatik Institut für Angewandte Informatik, Professur für Technische Informationssysteme Faltung, Bildbereich und Stabilität Dresden, den 03.08.2011 Gliederung Vorbemerkungen Faltung Bildbereich

Mehr

3. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

3. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 3. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: Systemeigenschaften, Superpositionsprinzip Systemklassen: DESS, DEVS,

Mehr

Prozessidentifikation mit Sprungantworten

Prozessidentifikation mit Sprungantworten Fakultät Informatik, Institut für angewandte Informatik, Professur für technische Informationssysteme Hauptseminar Technische Informationssysteme Dresden, 27. April 2012 Überblick 1. Motivation und Begriffe

Mehr

PRAKTIKUMSVERSUCH M/S 2

PRAKTIKUMSVERSUCH M/S 2 Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme PRAKTIKUMSVERSUCH M/S 2 Betreuer: Dipl.-Ing. Burkhard Hensel Dr.-Ing. Alexander Dementjev ALLGEMEINE BEMERKUNGEN

Mehr

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand:

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand: Fachhochschule Dortmund University of Applied Sciences and Arts Institut für Informationstechnik Software-Engineering Signalverarbeitung Regelungstechnik IfIT Übungen zu Transformationen im Bachelor ET

Mehr

Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 2005 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 3 Zeitkontinuierliche

Mehr

Systemtheorie für Informatiker

Systemtheorie für Informatiker Systemtheorie für Informatiker Dr. Ch. Grimm Professur Technische Informatik, Univ. Frankfurt/Main Vorlesung Systemtheorie Vorlesung: Übung: Veranstalter: Dr. Christoph Grimm Professur Technische Informatik

Mehr

Übung 1 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-,SW-CODESIGN

Übung 1 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-,SW-CODESIGN Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 1 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-,SW-CODESIGN Übungsleiter: Dr.-Ing. H.-D. Ribbecke

Mehr

Spektrum zeitdiskreter Signale

Spektrum zeitdiskreter Signale Spektrum zeitdiskreter Signale 1 Aufgabenstellung Mithilfe der Fouriertransformation können zeitkontinuierliche Signale in den Frequenzbereich transformiert werden, um die im Signal enthaltenen Frequenzanteile

Mehr

2. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

2. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 2. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: EA-System Eingabe: Ausgabe: u y t E/A-System 2. Vorlesung Systemtheorie

Mehr

Einführung in Signale und Systeme

Einführung in Signale und Systeme Fakultät Informatik Institut für Angewandte Informatik, Professur für Technische Informationssysteme Einführung in Signale und Systeme Dresden, den 03.08.2011 Gliederung Vorbemerkungen Motivation Prozess

Mehr

Systemtheorie. Vorlesung 6: Lösung linearer Differentialgleichungen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 6: Lösung linearer Differentialgleichungen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 6: Lösung linearer Differentialgleichungen Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Einführung Viele technischen Anwendungen lassen sich zumindest näherungsweise

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 3.7.8 Arbeitszeit: 5 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3

Mehr

x[n-1] x[n] x[n+1] y[n-1] y[n+1]

x[n-1] x[n] x[n+1] y[n-1] y[n+1] Systeme System Funtion f, die ein Eingangssignal x in ein Ausgangssignal y überführt. zeitdisretes System Ein- und Ausgangssignal sind nur für disrete Zeitpunte definiert y[n] = f (.., x[n-1], x[n], x[n+1],

Mehr

Übungen zu Signal- und Systemtheorie

Übungen zu Signal- und Systemtheorie Fachhochschule Dortmund University of Applied Sciences and Arts Übungen zu Signal- und Systemtheorie (Anteil: Prof. Felderhoff) Version 1.3 für das Wintersemester 016/017 Stand: 05.1.016 von: Prof. Dr.-Ing.

Mehr

Vorlesung Informatik II für Verkehrsingenieurwesen: Simulation von Systemen

Vorlesung Informatik II für Verkehrsingenieurwesen: Simulation von Systemen Fakultät Informatik Institut für Angewandte Informatik, Professur für Technische Informationssysteme Vorlesung Informatik II für Verkehrsingenieurwesen: Simulation von Systemen Dresden, den 26.05.2011

Mehr

Grundlagen der Nachrichtentechnik

Grundlagen der Nachrichtentechnik Universität Bremen Arbeitsbereich Nachrichtentechnik Prof. Dr.-Ing. K.D. Kammeyer Schriftliche Prüfung im Fach Grundlagen der Nachrichtentechnik Name: Vorname: Mat.-Nr.: Zeit: Ort: Umfang: 05. April 2005,

Mehr

Zeitfunktionen. Kapitel Elementarfunktionen

Zeitfunktionen. Kapitel Elementarfunktionen Kapitel Zeitfunktionen Systeme werden durch Eingangsgrößen (Ursache, Eingangssignal, Erregung) angeregt und man interessiert sich für die Ausgangsgrößen (Wirkung, Ausgangssignal, Antwort). Die praktisch

Mehr

MusterModulprüfung. Anteil Transformationen

MusterModulprüfung. Anteil Transformationen MusterModulprüfung Anteil Transformationen Studiengang: Elektrotechnik oder Energiewirtschaft Datum: Prüfer: heute Prof. Dr. Felderhoff Version:.0 (vom 30.1.014) Name: Vorname: Matr.-Nr.: 1 Aufgabe 1 Fourier-Transformation

Mehr

Aufgabe 1: Kontinuierliche und diskrete Signale

Aufgabe 1: Kontinuierliche und diskrete Signale ufgabe (5 Punkte) ufgabe : Kontinuierliche und diskrete Signale. Zeichnen Sie jeweils den geraden und den ungeraden nteil des Signals in bb..!. Sind Sie folgenden Signale periodisch? Falls ja, bestimmen

Mehr

Abschlussprüfung Nachrichtentechnik 03. August 2015

Abschlussprüfung Nachrichtentechnik 03. August 2015 Abschlussprüfung Nachrichtentechnik 03. August 2015 Name:... Vorname:... Matrikelnr.:... Studiengang:... Aufgabe 1 2 3 4 Summe Note Punkte Hinweis: Die Teilaufgaben (a), (b) und (c) können unabhängig voneinander

Mehr

Zusammenfassung der 2. Vorlesung

Zusammenfassung der 2. Vorlesung Zusammenfassung der 2. Vorlesung Fourier-Transformation versus Laplace-Transformation Spektrum kontinuierlicher Signale Das Spektrum gibt an, welche Frequenzen in einem Signal vorkommen und welches Gewicht

Mehr

Aufgabe 1 - Pegelrechnung und LTI-Systeme

Aufgabe 1 - Pegelrechnung und LTI-Systeme KLAUSUR Nachrichtentechnik 06.08.0 Prof. Dr.-Ing. Dr. h.c. G. Fettweis Dauer: 0 min. Aufgabe 3 4 Punkte 5 0 4 50 Aufgabe - Pegelrechnung und LTI-Systeme Hinweis: Die Teilaufgaben (a), (b) und (c) können

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München WiSe 2017 / 2018 Institut für Informatik Univ-Prof Dr Hans-Joachim Bungartz Michael Obersteiner Philipp Samfass Numerisches Programmieren, Übungen 5 Übungsblatt: Diskrete

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München WiSe 2016 / 2017 Institut für Informatik Prof Dr Daniel Cremers Dr Frank Schmidt Nikola Tchipev Michael Rippl Numerisches Programmieren, Übungen 7 Übungsblatt: Diskrete Fourier-Transformation,

Mehr

Musterklausur 2 zu Signal- und Systemtheorie I 5. Januar 2013

Musterklausur 2 zu Signal- und Systemtheorie I 5. Januar 2013 Institut für Kommunikationstechnik Prof. Dr. Helmut Bölcskei Musterklausur 2 zu Signal- und Systemtheorie I 5. Januar 2013 Bitte beachten Sie: Prüfungsdauer: 180 Minuten Erreichbare Punkte: 100 Als Hilfsmittel

Mehr

Klausur zu Signal- und Systemtheorie I 26. Januar 2016

Klausur zu Signal- und Systemtheorie I 26. Januar 2016 Institut für Kommunikationstechnik Prof. Dr. Helmut Bölcskei Klausur zu Signal- und Systemtheorie I 26. Januar 2016 Bitte beachten Sie: Prüfungsdauer: 180 Minuten Erreichbare Punkte: 100 Als Hilfsmittel

Mehr

Klausur im Lehrgebiet. Signale und Systeme. - Prof. Dr.-Ing. Thomas Sikora - Name:... Bachelor ET Master TI Vorname:... Diplom KW Magister...

Klausur im Lehrgebiet. Signale und Systeme. - Prof. Dr.-Ing. Thomas Sikora - Name:... Bachelor ET Master TI Vorname:... Diplom KW Magister... Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Bachelor ET Master TI Vorname:......................... Diplom KW Magister.............. Matr.Nr:..........................

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Systemtheorie Teil A - Zeitkontinuierliche Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 6 Musterlösungen Spektrum von Signalen 6. Approximation eines periodischen Signals

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 1. Teilprüfung 389.0 B Signale und Systeme 2 Institute of Telecommunications

Mehr

Gegeben sei folgendes lineare zeitinvariante Zustandsraummodell mit der Eingangsgröße u und dem Zustandsvektor x: dx

Gegeben sei folgendes lineare zeitinvariante Zustandsraummodell mit der Eingangsgröße u und dem Zustandsvektor x: dx 1 Teilklausur WS 15/16 Aufgabe 1 (6 Punkte) Gegeben sei folgendes lineare zeitinvariante Zustandsraummodell mit der Eingangsgröße u und dem Zustandsvektor x: [ ] [ ] 2 1 3 = Ax + bu = x + u dt 0 1 1 a)

Mehr

Schriftliche Prüfung aus Control Systems 1 am

Schriftliche Prüfung aus Control Systems 1 am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Control Systems 1 am 24.11.2014 Name / Vorname(n): Kennzahl / Matrikel-Nummer: Prüfungsmodus: O VO+UE (TM) O VO (BM)

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am.. Arbeitszeit: min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 1. Teilprüfung 389.055 A Signale und Systeme 2 Institute of Telecommunications

Mehr

6Si 6. Signal-und Bildfilterung sowie. H. Burkhardt, Institut für Informatik, Universität Freiburg DBV-I 1

6Si 6. Signal-und Bildfilterung sowie. H. Burkhardt, Institut für Informatik, Universität Freiburg DBV-I 1 6Si 6. Signal-und Bildfilterung sowie Korrelation H. Burkhardt, Institut für Informatik, Universität Freiburg DBV-I Bildfilterung und Korrelation Die lineare Bildfilterung wird zur Rauschunterdrückung

Mehr

Vorstellung des Großen Belegs: Entwurf eines modellbasierten Regelungssystems für einen totzeitbehafteten Prozess

Vorstellung des Großen Belegs: Entwurf eines modellbasierten Regelungssystems für einen totzeitbehafteten Prozess Fakultät Informatik Institut für angewandte Informatik- Professur Technische Informationssysteme Vorstellung des Großen Belegs: Entwurf eines modellbasierten Regelungssystems für einen totzeitbehafteten

Mehr

Abschlussprüfung Digitale Signalverarbeitung. Aufgaben, die mit einem * gekennzeichnet sind, lassen sich unabhängig von anderen Teilaufgaben lösen.

Abschlussprüfung Digitale Signalverarbeitung. Aufgaben, die mit einem * gekennzeichnet sind, lassen sich unabhängig von anderen Teilaufgaben lösen. Name: Abschlussprüfung Digitale Signalverarbeitung Studiengang: Elektrotechnik IK, E/ME Wahlfach SS2015 Prüfungstermin: Prüfer: Hilfsmittel: 3.7.2015 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing.

Mehr

Aufgabe 1 (Klassifizierung von Systemen)

Aufgabe 1 (Klassifizierung von Systemen) Prof. L. Guzzella Prof. R. D Andrea 151-0591-00 Regelungstechnik I (HS 07) Musterlösung Übung 3 Systemklassifizierung, Systeme 1. Ordnung im Zeitbereich, Stabilitätsanalyse moritz.oetiker@imrt.mavt.ethz.ch,

Mehr

Definition Anwendungen. z-transformation. Fakultät Grundlagen. Juli 2010

Definition Anwendungen. z-transformation. Fakultät Grundlagen. Juli 2010 z-transformation Fakultät Grundlagen Juli 2010 Fakultät Grundlagen z-transformation Übersicht 1 2 Fakultät Grundlagen z-transformation Folie: 2 Abtastung Abtastung: Umwandlung einer stetigen (zeitkontinuierlichen)

Mehr

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,

Mehr

3. Informationsverarbeitung in Objekten

3. Informationsverarbeitung in Objekten 3. Informationsverarbeitung in Objekten 1 3.1. Abtastung von Signalen an der Schnittstelle 2 Falls System an einen Rechner angeschlossen ist wert- und zeit-diskrete Signale x * (t k ) = abstrakte Zahlen

Mehr

Digitale Signalverarbeitung, Vorlesung 3: Laplace- und z-transformation

Digitale Signalverarbeitung, Vorlesung 3: Laplace- und z-transformation Digitale Signalverarbeitung, Vorlesung 3: Laplace- und z-transformation 7. November 2016 1 Laplacetransformation 2 z-transformation Ziel: Reverse-Engineering für Digitale Filter Einführung der z-transformation

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 1. Teilprüfung 389.055 A Signale und Systeme 2 Institute of Telecommunications

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 1. Teilprüfung 389.055 B Signale und Systeme 2 Institute of Telecommunications

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12 Die Lösungshinweise dienen

Mehr

UNIVERSITÄT DUISBURG - ESSEN Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau, Professur für Steuerung, Regelung und Systemdynamik

UNIVERSITÄT DUISBURG - ESSEN Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau, Professur für Steuerung, Regelung und Systemdynamik Regelungstechnik I (PO95), Regelungstechnik (PO02 Schiffstechnik), Regelungstechnik (Bachelor Wi.-Ing.) (180 Minuten) Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Erläutern Sie anhand eines

Mehr

Zentrale Klausur am Ende der Einführungsphase Mathematik

Zentrale Klausur am Ende der Einführungsphase Mathematik Seite von 5 Zentrale Klausur am Ende der Einführungsphase Aufgabenstellung 0 Mathematik Aufgabe : Untersuchung ganzrationaler Funktionen Gegeben ist die Funktion f mit der Gleichung: 3 f( x) = x 3 x. 4

Mehr

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 2 Zeitkontinuierliche

Mehr

Digitale Signalverarbeitung, Vorlesung 3: Laplace- und z-transformation

Digitale Signalverarbeitung, Vorlesung 3: Laplace- und z-transformation Digitale Signalverarbeitung, Vorlesung 3: Laplace- und 29. Oktober 2018 1 / 45 1 Moodle-Test 2 Definition Konvergenz Anwendungen 3 Ziel: Reverse-Engineering für Digitale Filter Einführung der 4 2 / 45

Mehr

Klausur zu Signal- und Systemtheorie I 5. August 2015

Klausur zu Signal- und Systemtheorie I 5. August 2015 Institut für Kommunikationstechnik Prof. Dr. Helmut Bölcskei Klausur zu Signal- und Systemtheorie I 5. August 2015 Bitte beachten Sie: Prüfungsdauer: 180 Minuten Erreichbare Punkte: 100 Als Hilfsmittel

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 5.0.005 Uhrzeit: 09:00

Mehr

Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen)

Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen) Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen) TU Bergakademie Freiberg Institut für Automatisierungstechnik Prof. Dr.-Ing. Andreas Rehkopf 27. Januar 2014 Übung 1 - Vorbereitung zum Praktikum

Mehr

Signale. und. Systeme. SoSe Übung 01. Charakterisierung. von Signalen

Signale. und. Systeme. SoSe Übung 01. Charakterisierung. von Signalen Signale und Systeme SoSe 9 Übung Charakterisierung von Signalen Aufgabe Zeichnen Siedie folgenden Signale und diskutieren Sie deren Eigenschaften: (a) Impulsfolgen: δ( k), δ( k 4) (b) Sprungfolgen: ε(

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 3..7 Arbeitszeit: 5 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3

Mehr

Signale und Systeme Reaktion linearer Systeme auf stationäre stochastische Signale

Signale und Systeme Reaktion linearer Systeme auf stationäre stochastische Signale Signale und Systeme Reaktion linearer Systeme auf stationäre stochastische Signale Gerhard Schmidt Christian-Albrechts-Universität zu Kiel Technische Faculty of Engineering Fakultät Elektrotechnik Institute

Mehr

Digitale Signalverarbeitung, Vorlesung 3: Laplace- und z-transformation

Digitale Signalverarbeitung, Vorlesung 3: Laplace- und z-transformation Digitale Signalverarbeitung, Vorlesung 3: Laplace- und z-transformation 30. Oktober 2017 1 Moodle-Test 2 Laplacetransformation 3 z-transformation Ziel: Reverse-Engineering für Digitale Filter Einführung

Mehr

A. Die Laplace-Transformation

A. Die Laplace-Transformation A. Die Laplace-Transformation Die Laplace-Transformation ist eine im Wesentlichen eineindeutige Zuordnung von Funktionen der Zeit t zu Funktionen einer komplexen Variablen s. Im Rahmen der einseitigen)

Mehr

Systemtheorie. Vorlesung 5: Eigenschaften zeitkontinuierlicher Systeme. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 5: Eigenschaften zeitkontinuierlicher Systeme. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 5: Eigenschaften zeitkontinuierlicher Systeme Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Einführung Systemtheorie beschäftigt sich mit der Analyse und Synthese

Mehr

Zusammenfassung der 4. Vorlesung

Zusammenfassung der 4. Vorlesung Zusammenfassung der 4. Vorlesung Lösung von Regelungsaufgaben Modellbildung dynamischer Systeme Experimentell und analytisch Modellierung im Zeit- und Bildbereich Lineare Systeme Lineare Systeme Superpositionsprinzip

Mehr

Probeklausur Signale + Systeme Kurs TIT09ITA

Probeklausur Signale + Systeme Kurs TIT09ITA Probeklausur Signale + Systeme Kurs TIT09ITA Dipl.-Ing. Andreas Ströder 13. Oktober 2010 Zugelassene Hilfsmittel: Alle außer Laptop/PC Die besten 4 Aufgaben werden gewertet. Dauer: 120 min 1 Aufgabe 1

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.6.13 Arbeitszeit: 1 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Klassifikation durch direkten Vergleich (Matching)

Klassifikation durch direkten Vergleich (Matching) Klassifikation durch direkten Vergleich (Matching) Eine triviale Lösung für die Klassifikation ergibt sich durch direkten Vergleich des unbekannten Musters in allen Erscheinungsformen der Äquivalenzklasse

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.00 Uhrzeit: 09:00

Mehr

Klausur zu Signal- und Systemtheorie I 20. Januar 2015

Klausur zu Signal- und Systemtheorie I 20. Januar 2015 Institut für Kommunikationstechnik Prof. Dr. Helmut Bölcskei Klausur zu Signal- und Systemtheorie I 20. Januar 2015 Bitte beachten Sie: Prüfungsdauer: 180 Minuten Erreichbare Punkte: 100 Als Hilfsmittel

Mehr

Die Beschreibung von Signalen und Systemen kann in verschiedenen Bereichen erfolgen:

Die Beschreibung von Signalen und Systemen kann in verschiedenen Bereichen erfolgen: 1 Grundlegende Begriffe 1.1 Signale und Systeme ein Signal: ein System: ist ein Satz von Daten setzt Signale in Beziehung Darstellung: Die Beschreibung von Signalen und Systemen kann in verschiedenen Bereichen

Mehr

Signale und Systeme II

Signale und Systeme II TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme II Modulklausur WS 207/208 Prüfer: Prof. Dr.-Ing. Gerhard Schmidt Datum:

Mehr

Einführung in die digitale Signalverarbeitung

Einführung in die digitale Signalverarbeitung Einführung in die digitale Signalverarbeitung Prof. Dr. Stefan Weinzierl 1. Aufgabenblatt 1. Eigenschaften diskreter Systeme a. Erläutern Sie die Begriffe Linearität Zeitinvarianz Speicherfreiheit Kausalität

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.5.5 Arbeitszeit: min Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3 4

Mehr

Einführung in die Systemtheorie

Einführung in die Systemtheorie Bernd Girod, Rudolf Rabenstein, Alexander Stenger Einführung in die Systemtheorie Signale und Systeme in der Elektrotechnik und Informationstechnik 4., durchgesehene und aktualisierte Auflage Mit 388 Abbildungen

Mehr

6. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

6. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 6. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: Letzte Woche: 1.) Erweiterung von Fourier- zu Laplace-Transformation

Mehr

Johannes Kepler Universität Linz Institut für Regelungstechnik und Prozessautomatisierung

Johannes Kepler Universität Linz Institut für Regelungstechnik und Prozessautomatisierung Johannes Kepler Universität Linz Institut für Regelungstechnik und Prozessautomatisierung Schriftliche Prüfung aus Automatisierungstechnik Vorlesung, am 6. März 08 Name: Vorname(n): Matr.Nr.: SKZ: Aufgabe

Mehr

2. Übung zur Vorlesung Steuer- und Regelungstechnik

2. Übung zur Vorlesung Steuer- und Regelungstechnik 2. Übung zur Vorlesung Steuer- und Regelungstechnik Aufstellen von DGL s, lineare und nichtlineare Systeme Felix Goßmann M.Sc. Institut für Steuer- und Regelungstechnik Fakultät für Luft- und Raumfahrttechnik

Mehr

Praxiswerkstatt Algorithmen der Signalcodierung

Praxiswerkstatt Algorithmen der Signalcodierung Praxiswerkstatt Algorithmen der Signalcodierung 2. Termin Themen heute: Abtastung Lineare Zeitinvariante Systeme Seite 1 Abtastung letztes Mal haben wir gesehen: 3,9 khz kaum noch hörbar bei 8 khz Abtastrate.

Mehr

Regelungstechnik I. Heinz Unbehauen. Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme

Regelungstechnik I. Heinz Unbehauen. Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme Heinz Unbehauen Regelungstechnik I Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme 7., überarbeitete und erweiterte Auflage Mit 192 Bildern und 28 TabeUen vieweg INHALT

Mehr

Regelungstechnik I. Heinz JUnbehauen. Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme. 3., durchgesehene Auflage

Regelungstechnik I. Heinz JUnbehauen. Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme. 3., durchgesehene Auflage Heinz JUnbehauen Regelungstechnik I Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme 3., durchgesehene Auflage Mit 192 Bildern V] Friedr. Vieweg & Sohn Braunschweig/Wiesbaden

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Quantisiertes Signal Zeitdiskretes Signal Digitales Signal Auflösung der A/D- Umsetzer der MicroAutoBox

Mehr

Jahrgang: 8 Themenkreise 1/5. Operieren führen Rechnungen mit dem eingeführten Taschenrechner aus und bewerten die Ergebnisse

Jahrgang: 8 Themenkreise 1/5. Operieren führen Rechnungen mit dem eingeführten Taschenrechner aus und bewerten die Ergebnisse Terme und Auflösen einer Klammer Subtrahieren einer Klammer Ausklammern Binomische Formeln Faktorisieren Mischungsaufgaben mit Parametern Typ T 1 T 2 = 0 7 46 10 16 17 18 19 21 22 27 28 33 34 37 38 40

Mehr

Signale und Systeme I

Signale und Systeme I TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme I Modulklausur SS 2017 Prüfer: Prof. Dr.-Ing. Gerhard Schmidt Datum:

Mehr

1. Übung zur Vorlesung Steuer- und Regelungstechnik

1. Übung zur Vorlesung Steuer- und Regelungstechnik 1. Übung zur Vorlesung Steuer- und Regelungstechnik Aufstellen von DGL s, lineare und nichtlineare Systeme Felix Goßmann M.Sc. Institut für Steuer- und Regelungstechnik Fakultät für Luft- und Raumfahrttechnik

Mehr

Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008

Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008 Beispiel-Klausuraufgaben Digitale Signalverarbeitung Herbst 8 Zeitdauer: Hilfsmittel: Stunden Formelsammlung Taschenrechner (nicht programmiert) eine DIN A4-Seite mit beliebigem Text oder Formeln (beidseitig)

Mehr

x 1 + u y 2 = 2 0 x 2 + 4u 2.

x 1 + u y 2 = 2 0 x 2 + 4u 2. 3. Übung: Regelkreis Aufgabe 3.1. Gegeben sind die beiden linearen zeitkontinuierlichen Systeme 3 2 2 ẋ 1 = 6 5 x 1 + 1 u 1 6 2 3 [ ] y 1 = 2 x 1 (3.1a) (3.1b) und [ ] [ ] 8 15 1 ẋ 2 = x 2 + 6 1 4 [ ]

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

Digitale Signalverarbeitung Übungsaufgaben

Digitale Signalverarbeitung Übungsaufgaben Kapitel : Einleitung -: Analoger Tiefpass Dieser Tiefpass mit den Werten R = Ω, L =.5mH R L und C =.5µF ist wie folgt zu analysieren: U e C R. Es springe U e bei t =.5ms auf 5V und bei t = ms wieder auf.

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am 26.2.21 Name: Vorname(n): Matrikelnummer: Note: Aufgabe 1 2 3 4 erreichbare

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 0.08.007 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Skriptum zur 2. Laborübung. Transiente Vorgänge und Frequenzverhalten

Skriptum zur 2. Laborübung. Transiente Vorgänge und Frequenzverhalten Elektrotechnische Grundlagen (LU 182.692) Skriptum zur 2. Laborübung Transiente Vorgänge und Frequenzverhalten Martin Delvai Wolfgang Huber Andreas Steininger Thomas Handl Bernhard Huber Christof Pitter

Mehr

Übung 1: Charakterisierung von Signalen

Übung 1: Charakterisierung von Signalen Übung Signale und Systeme Sommersemester Übung : Charakterisierung von Signalen 5.April Übung : Charakterisierung von Signalen. Zeichnen Sie die folgenden Signale und diskutieren Sie deren Eigenschaften:

Mehr

Gleichstromtechnik. Vorlesung 16: Einführung Operationsverstärker. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Gleichstromtechnik. Vorlesung 16: Einführung Operationsverstärker. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Gleichstromtechnik Vorlesung 6: Einführung Operationsverstärker Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Einführung Elektronische Verstärker wurde dem Verhalten eines Elektronenröhrenverstärkers

Mehr