die Menge S = {(x,y) : x 2 = y 2 +1,x R} wohl aussehen könnte. Die Antwort ist hier: Interessant ist auch y 2 = x 3 x:

Größe: px
Ab Seite anzeigen:

Download "die Menge S = {(x,y) : x 2 = y 2 +1,x R} wohl aussehen könnte. Die Antwort ist hier: Interessant ist auch y 2 = x 3 x:"

Transkript

1 die Menge S = {(x,y) : x 2 = y 2 +1,x R} wohl aussehen könnte. Die Antwort ist hier: Interessant ist auch y 2 = x 3 x: 40

2 Ganz wichtig für die Wirtschaftswissenschaft ist es, sich Ungleichungen klar zu machen und sie zu visualisieren. Das mit dem Visualisieren funktioniert natürlich nur, wenn in den Ungleichungen nur zwei Variablen x und y (evtl., wenn man dreidimensional denkt, x, y, z) vorkommen. Hier sind einige Beispiele, die wir in der Vorlesung ein wenig erläutern werden: Beispiel 1.7 Wir suchen alle Punkte (x,y) mit x + y 1 und 2x + 3y 1 sowie x,y 1: 41

3 Wenn wir hier die Bedingung y 1 weglassen, würden wir etwas Unbeschränktes erhalten: 42

4 Beispiel 1.8 Hier sind Beispiele, wo die Restriktionen (also die Ungleichungen) nicht linear sind: Zunächst {(x,y) : x 2 +2y 2 2}: Und jetzt ein kubisches Beispiel {(x,y) : y 2 x 3 x}: 43

5 Beispiel 1.9 Ein Unternehmen habe 20 Einheiten Arbeit zur Verfügung. Es kann zwei verschiedene Güter herstellen und die Produktion von x und y dieser Güter erfordern 4x 2 und 3y 2 Arbeitseinheiten. Angenommen Sie machen beim Verkauf des ersten Gutes pro Stück einen Gewinn von 3 (was auch immer), und bei der Produktion des zweiten Gutes einen Gewinn von 1. Dann versuchen Sie, 3x+y unter der Nebenbedingung 4x 2 +3y 2 20 zu lösen: In dem folgenden Bild ist blau der Bereich 4x 2 +3y 2 20, und die rote Gerade erfüllt 3x+y = 2. 44

6 Man muss die Gerade nun möglichst weit nach rechts verschieben, damit sie aber gerade noch den blauen Bereich berührt: Das scheint für 3x+y = 7.2 der Fall zu sein: 45

7 Eine Lösung ist ungefähr x 2.1 und y 0.9. Stellen Sie sich jetzt vor, es gibt staatliche Auflagen, dass von y mindestens doppelt so viel produziert werden muss wie von x. Dann können Sie Ihre schöne Lösung vergessen: Optimal ist jetzt der Punkt y = 2x mit 4x 2 + 3y 2 = 20, das ist x 1.12 und y Der Gewinn ist mit ungefähr 5.6 jetzt deutlich geringer! Mit diesem Beispiel möchte ich Sie für zwei Dinge sensibilisieren: In der Wirtschaftswissenschaft treten nicht nur Funktionsgraphen auf! Es treten nicht nur Gleichungen, sondern auch Ungleichungen auf. 46

8 In diesem Beispiel könnte man die Optimalwerte auch genau ausrechnen. Das ist aber oft gar nicht so wichtig: Bedenken Sie, dass wir ein Modell haben, das mit Unsicherheiten befrachtet ist: Der Gewinn wird nicht exakt 3 und 1 für die beiden Güter sein. Auch die Arbeitseinheiten, die zur Verfügung stehen, können schwanken (Urlaub, Krankheit). Und schlussendlich ist auch der Arbeitsaufwand pro produziertem Gut sicherlich nur eine mehr oder minder gute Schätzung. Es macht deshalb überhaupt keinen Sinn, das Ergebnis, selbst wenn man es algebraisch bis auf 100 Stellen nach dem Komma bestimmen kann, mit einer solchen Genauigkeit anzugeben! In diesem Beispiel konnten wir das Problem schön visualisieren. Das wird schon dann umständlicher, wenn die Firma drei Güter produziert, und es wird gänzlich unmöglich, wenn es mehr als drei Güter sind. Die wenigsten Probleme in dieser Welt lassen sich durch nur 1, 2 oder 3 Variablen beschreiben, man muss in beliebigen Dimensionen rechnen, auch wenn das keine geometrische Interpretation mehr hat. Lösen Sie sich bitte schon jetzt von der Vorstellung, dass Funktionen immer nur von einer Variablen abhängen! 47

9 1.5 Aussagen In der Mathematik geht es um Aussagen. Eine Aussage ist ein statement, das entweder wahr oder falsch sein kann. Beides geht nicht! Äußerungen, die nicht die Eigenschaft haben, wahr oder falsch zu sein, gelten nicht als Aussagen. Beispiel 1.10 Das Bruttosozialprodukt der Bundesrepublik Deutschland ist höher als das der USA ist eine offenbar falsche Aussage. Gute Nacht, Freunde ist keine Aussage. Häufig hängen Aussagen auch von variablen Parametern x ab. Wir sprechen dann von Aussageformen A(x). Beispiel 1.11 Für alle natürlichen Zahlen x gilt: x ist Primzahl ist eine offenbar falsche Aussage. Eine richtige Aussage wäre: Für alle natürlichen Zahlen x gilt, dass x nicht negativ ist. Ein anderes Beispiel einer Aussageform ist: Unter allen Gütern gibt es mindestens ein Gut x, dessen Preis sich verändert. Für Aussageformen führen wir folgende Bezeichnungen ein: 48

10 A(x) gilt für alle x: A(x) gilt für mindestens ein x: A(x) x A(x) x Interessant wird es, wenn man Aussagen A und B miteinander verknüpft. Der Wahrheitswert der verknüpften Aussage hängt vom Wahrheitswert von A und B ab. Wir wollen das am Beispiel erläutern: Beispiel 1.12 Die Aussage Franz studiert Wirtschaftswissenschaften oder Mathematik ist wahr, wenn Franz mindestens eines der beiden Fächer Wirtschaft oder Mathematik studiert, eventuell auch beide. Die Aussage ist eine Verknüpfung der beiden Aussagen Franz studiert Wirtschaftswissenschaften sowie Franz studiert Mathematik durch ein oder. Beachte: Die Aussage Franz studiert Wirtschaftswissenschaften oder Mathematik ist auch wahr, wenn Franz ganz fleißig ist und sowohl Wirtschaftswissenschaften als auch Mathematik studiert. Es handelt sich beim mathematischen oder nicht um ein entweder-oder. Konjunktion 49

11 Seien A und B zwei Aussagen. Dann ist die Aussage A und B, geschrieben A B, wahr, wenn beide Aussagen wahr sind. Die Aussage A und B ist falsch, wenn mindestens eine der beiden Aussagen A, B falsch ist. Man nennt dies auch die Konjunktion der Aussagen A und B. Disjunktion Seien A und B zwei Aussagen. Dann ist die Aussage A oder B, geschrieben A B, wahr, wenn mindestens eine der Aussagen A oder B wahr ist. Die Aussage A oder B ist falsch, wenn sowohl A als auch B falsch sind. Man nennt dies auch die Disjunktion der Aussagen A und B. Man stellt dies häufig auch durch sogenannte Wahrheitstafeln dar. Das ist eine Tabelle, in die wir die möglichen Wahrheitswerte von A und B eintragen (w für wahr und f für falsch) und dann die entsprechenden Wahrheitswerte der verknüpften Aussagen auswerten. Hier ist die Wahrheitstafel für die Konjunktion: 50

12 A B A B w w w w f f f w f f f f und hier die für die Disjunktion: A B A B w w w f f w f f Kehrt man eine Aussage in ihr Gegenteil um, erhält man die Negation der Aussage. Bezeichnung: A. Klar ist, dass eine negierte wahre Aussage falsch wird und umgekehrt. 51 w w w f

13 Beispiel 1.13 Wir wollen die Aussage A Deutschland ist Exportweltmeister und Fußballweltmeister negieren, d.h. wir suchen die Aussage, die wahr ist genau indenfällen,indenenafalschist.aistfalsch,wenneinederbeidenteilaussagen falsch ist, wenn also Deutschland nicht Exportweltmeister oder nicht Weltmeister ist. Dieses Beispiel zeigt, wie wir eine Konjunktion negieren: A B = A B Ähnlich sieht es mit der Negation der Disjunktion aus: A B = A B Das Gleichheitszeichen soll hier bedeuten, dass die Aussagen auf den beiden Seiten denselben Wahrheitswert haben (also wahr oder falsch sind), wenn für A und B auf beiden Seiten die selben Aussagen eingesetzt werden. Schwierigkeit bereitet manchmal die Negation einer für alle sowie es gibt ein Aussage: 52

14 A(x) = x x A(x) = x x A(x) A(x) Umgangssprachlich: Wenn eine Aussage A(x) nicht für alle x gilt, dann muss es ein x geben, für das diese Aussage nicht gilt. Und wenn es kein x gibt, für das eine Aussage A(x) wahr ist, dann ist A(x) für alle x eine falsche Aussage. Beispiel 1.14 Sei A(x) die Aussage Der Preis des Gutes x bleibt konstant. Wir wollen uns alle Aussagen anschauen, die wir mit A(x) mittels Negation sowie und bilden können: 53

15 (1.) x A(x) Die Preise aller Güter bleiben konstant. (2.) x A(x) Die Preise aller Güter verändern sich. (3.) x A(x) Nicht für alle Güter bleiben die Preise konstant. (4.) x A(x) Nicht für alle Güter verändern sich die Preise. (5.) x A(x) Der Preis mindestens eines Gutes bleibt konstant. (6.) x A(x) Der Preis mindestens eines Gutes verändert sich. (7.) x A(x) Der Preis keines Gutes bleibt konstant. (8.) x A(x) Der Preis keines Gutes verändert sich. 54

16 Beachten Sie, dass hier die erste und achte, die zweite und siebte, die dritte und sechste sowie die vierte und fünfte Aussage jeweils gleich sind. Implikation und Äquivalenz Die Implikation (geschrieben A B) ist falsch, wenn A wahr ist, B aber falsch. In allen anderen Fällen ist die Implikation wahr. Sprechweise: Wenn A, dann B. Wahrheitstabelle: A B A B w w w f f w f f Das ist etwas gewöhnungsbedürftig, weil A B wahr ist, wenn A falschist (Aus etwas Falschem darf man alles folgern). Wir nennen A eine hinreichende Bedingung für B und B eine notwendige Bedingung für A. 55 w f w w

17 Gilt A B und B A, so nennt man die beiden Aussagen äquivalent. Bezeichnung: A B. Die zugehörige Wahrheitstafel ist A B A B w w w f f w f f Zwei Aussagen heißen also äquivalent, wenn sie beide wahr oder beide falsch sind. Beispiel 1.15 Betrachte die Aussage Wenn die Inflation steigt, dann sinkt die Arbeitslosenquote. Wir überlegen uns, welche der folgenden Aussagen dazu äquivalent sind: 1. Damit die Arbeitslosenquote sinkt, muss die Inflation steigen. 2. Eine hinreichende Bedingung dafür, dass die Arbeitslosenquote sinkt, ist ein Anstieg der Inflation. 56 w f f w

18 3. Die Arbeitslosenquote kann nur fallen, wenn die Inflation steigt. 4. Wenn die Arbeitslosenquote nicht sinkt, dann steigt die Inflation nicht. 5. Die Inflation kann nur steigen, wenn die Arbeitslosenquote sinkt. Offensichtlich bestehen alle diese Aussagen aus zwei Teilaussagen und Die Arbeitslosenquote sinkt. (Aussage A) Die Inflation steigt. (Aussage B). Diese Aussagen sind unterschiedlich verknüpft. Wir wollen die Wahrheitstafeln für diese Verknüpfungen aufstellen. Die ursprüngliche Aussage lautet B A, und ihr Wahrheitswert wird zunächst bestimmt: A B B A (1) (2) (3) (4) (5) w w w w w w w w w f w f w f w w f w f w f w f f f f w w w w w w 57

19 Also sind die Aussagen (2), (4) und (5) äquivalent zur ursprünglichen Aussage. Wir wollen die Aussagen (1) bis (5) noch einmal analysieren: (1) A B (2) B A (3) A B (4) A B (5) B A Besonders interessant ist hier das vierte Statement. Es zeigt, dass die Aussagen B A und A B äquivalent sind. Wir wollen das noch einmal ganz deutlich herausstellen: (A B) ist äquivalent zu (B A) Einige Bemerkungen zu mathematischen Beweisen In der Mathematik hat man es stets mit Aussagen zu tun, die wahr oder falsch sind. Beispielsweise gilt für alle reellen Zahlen (a+b) 2 = a 2 +2ab+b 2. Woher 58

20

21 weiß man das? Man kann doch nicht alle reellen Zahlen einsetzen und schauen, ob diese Gleichung immer richtig ist. Das ist auch nicht nötig, denn man kann einen mathematischen Beweis für diese Aussage angeben. Ein Beweis für eine Aussage A ist eine Folge logischer Schlüsse, beginnend mit einer wahren Aussage B, an deren Ende A steht. Sie zeigen also die Gültigkeit der Aussage B A, wobei B aber eine wahre Aussage sein muss. Das nächste Beispiel zeigt deutlich die Aufgabe eines mathematischen Beweises: Ein Beweis soll einen zweifelsfreien Grund angeben, warum eine Aussage richtig ist. Beispiel 1.16 Wir wollen die folgende Behauptung beweisen: Wenn in einem Schachbrett die diagonal gegenüberliegenden Eckfelder entfernt werden, kann das so entstehende Brett nicht mit Dominosteinen überdeckt werden, wobei jeder Dominostein genau zwei Felder des Schachbrettes überdeckt. 59

22 Der Beweis ist ganz einfach: Jeder Dominostein überdeckt genau ein weißes und ein schwarzes Feld. Aber das Schachbrett, bei dem die Eckfelder entfernt wurden, hat nicht die gleiche Zahl weißer und schwarzer Felder! Manche Nicht-MathematikerInnen sind versucht, die Gültigkeit einer Aussageform A(x) zu beweisen, indem die Gültigkeit von A(x) für einige wenige Werte von x nachgerechnet wird. Das ist natürlich kein Beweis! Beispiel 1.17 Angenommen, jemand behauptet n 2 +n+41 sei für alle natürlichen Zahlen n eine Primzahl. Wir setzen ein und erhalten, dass n 2 +n+41 eine PrimzahlfüralleZahlennzwischen0und39ist.IstdaseinBeweis?Nein! Außerdem ist die Aussage, dass n 2 +n+41 für alle natürlichen Zahlen eine Primzahl ist, falsch: Setzen Sie einfach n = 40 ein! Wir haben somit ein Gegenbeispiel gefunden. Etwas formaler. Wir hatten die Aufgabe zu entscheiden, ob eine Aussage A(x) für alle x gilt. Um zu beweisen, dass die Aussage stets gilt, benötigen wir einen Beweis. Wenn wir aber zeigen wollen, dass die Aussage nicht immer gilt, genügt es, ein x so anzugeben, dass A(x) falsch ist. Wir haben damit die Allgemeingültigkeit widerlegt. Im obigen Beispiel können wir die Behauptung, jede Zahl der Form n 2 +n+41 sei ein Primzahl, widerlegen, denn für n = 40 ist n 2 +n+41 offen- 60

23 sichtlich keine Primzahl! Halten wir fest: Die Gültigkeit einer Aussage A(x) kann man nicht beweisen, indem man die Gültigkeit für einige Werte von x überprüft. Man kann aber zeigen, dass die Aussage A(x) nicht allgemeingültig ist, wenn man nur ein Gegenbeispiel angibt, also ein x g, für das A(x g ) falsch ist. 1.6 Mengen Ein zentrales Konzept für die Mathematik ist der Begriff der Menge. Eine Menge ist eine Zusammenfassung bestimmter, wohlunterschiedener Objekte. Von jedem dieser Objekte muss eindeutig feststehen, ob das Objekt zur Menge gehört oder nicht. Die Objekte heißen Elemente der Menge Ist a ein Element der Menge M, schreiben wir auch a M 61

24 andernfalls a / M. Die Elemente einer Menge sind immer alle verschieden. Es gibt unterschiedliche Möglichkeiten, Mengen zu beschreiben. Wir wollen die Menge M aller geraden ganzen Zahlen zwischen 2 und 15 beschreiben: 1. Aufzählung M = {2,4,6,8,10,12,14}. 62

25 2. teilweise Aufzählung M = {2,4,6,...,12,14}. Hierbei muss man aufpassen, dass es nicht zu Missverständnissen kommt. 3. Beschreibung durch charakteristische Eigenschaften M := {x : x Z und x 2 und x 15 und x gerade}. Die leere Menge ist die Menge, die kein Element enthält. Beispiel 1.18 = {x : x wohnt in der Bundesrepublik Deutschland und x ist im Jahre 1700 geboren} Die Mächtigkeit oder Ordnung einer Menge ist die Anzahl der Elemente in der Menge. Unsere oben betrachtete Menge M = {2,4,6,8,10,12,14} hat also die Mächtigkeit 7. Schreibweise: M = Anzahl der Elemente in M. Falls M unendlich viele Elemente hat, schreiben wir M = ( : unendlich). Intervalle 63

26 Seien a, b R mit a < b. Dann unterscheiden wir die folgenden Typen von Intervallen [a,b] = {x R : a x b} abgeschlossenes Intervall, (a,b) = {x R : a < x < b} offenes Intervall, [a,b) = {x R : a x < b} (a,b] = {x R : a < x b} Intervalle der Form [a, ) = {x R : x a} (,b] = {x R : x b} (a, ) = {x R : x > a} (,b) = {x R : x < b} halboffene Intervalle. werden uneigentliche Intervalle genannt, die ersten beiden sind abgeschlossene, die letzten beiden offene Intervalle. Beziehungen zwischen Mengen WirnennenAeineTeilmengevonB,wennjedesElementausAaucheinElement von B ist. Dabei darf auch A = B gelten. 64

27 A B: A Teilmenge von B A B: A Teilmenge von B und A B Beachte, dass stets A A gilt. Ferner gilt für alle Mengen A. Beispiel 1.19 N Z Q R Die Menge aller Einwohner Magdeburgs ist eine Teilmenge der Menge aller Einwohner Deutschlands. Verknüpfung von Mengen Wir können Mengen schneiden oder vereinigen: A B = {x : x A oder x B} Vereinigung A B = {x : x A und x B} Schnitt A B A B 65

Summen- und Produktzeichen

Summen- und Produktzeichen Summen- und Produktzeichen Ein großer Vorteil der sehr formalen mathematischen Sprache ist es, komplizierte Zusammenhänge einfach und klar ausdrücken zu können. Gerade auch diese Eigenschaft der Mathematik

Mehr

1 Grundlagen. 1.1 Aussagen

1 Grundlagen. 1.1 Aussagen 1 Grundlagen 1.1 Aussagen In der Mathematik geht es um Aussagen. Eine Aussage ist ein statement, das entweder wahr oder falsch sein kann. Beides geht nicht! Äußerungen, die nicht die Eigenschaft haben,

Mehr

1.3 Aussagen. Beispiel: Das Bruttosozialprodukt der Bundesrepublik Deutschland ist höher als das der USA ist eine offenbar falsche Aussage.

1.3 Aussagen. Beispiel: Das Bruttosozialprodukt der Bundesrepublik Deutschland ist höher als das der USA ist eine offenbar falsche Aussage. 1.3 Aussagen In der Mathematik geht es um Aussagen. Eine Aussage ist ein statement, das entweder wahr oder falsch sein kann. Beides geht nicht! Äußerungen, die nicht die Eigenschaft haben, wahr oder falsch

Mehr

Beispiel 1.10 Das Bruttosozialprodukt der Bundesrepublik Deutschland ist höher als das der USA ist eine offenbar falsche Aussage.

Beispiel 1.10 Das Bruttosozialprodukt der Bundesrepublik Deutschland ist höher als das der USA ist eine offenbar falsche Aussage. 1.5 Aussagen In der Mathematik geht es um Aussagen. Eine Aussage ist ein statement, das entweder wahr oder falsch sein kann. Beides geht nicht! Äußerungen, die nicht die Eigenschaft haben, wahr oder falsch

Mehr

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um:

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: 1 Grundlagen 1.1 Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen 1, 2, 3, 4, 5,... Z: ganze Zahlen..., 3, 2, 1, 0, 1, 2, 3,... Q: rationale Zahlen:

Mehr

1.4 Mengen. Wirtschaftswissenschaften häufig nicht so klar formulierbar.

1.4 Mengen. Wirtschaftswissenschaften häufig nicht so klar formulierbar. Wirtschaftswissenschaften häufig nicht so klar formulierbar. Viel häufiger tritt das Phänomen auf, dass man Aussagen widerlegt! Kehren wir zurück zu unserem Beispiel 1.13 über den Zusammenhang zwischen

Mehr

Kapitel 1: Grundbegriffe

Kapitel 1: Grundbegriffe Kapitel 1: Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) 1 / 20 Gliederung 1 Logik Ein ganz kurzer Ausflug in die Kombinatorik Stefan Ruzika (KO) 2

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau 2. Vorlesung Roland Gunesch Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 1 / 21 Themen heute 1

Mehr

Logik. III Logik. Propädeutikum Holger Wuschke. 19. September 2018

Logik. III Logik. Propädeutikum Holger Wuschke. 19. September 2018 III Propädeutikum 2018 19. September 2018 III λoγóς="das Wort" (math.) befasst sich mit Denition Aussage Eine Aussage p ist ein sinnvolles sprachliche Gebilde mit der Eigenschaft, entweder wahr oder falsch

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 01.12.2017 (Teil 1) 22. November 2017 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler 22. November 2017

Mehr

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: zweier ganzer Zahlen p und q schreiben kann.

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: zweier ganzer Zahlen p und q schreiben kann. Kapitel 1. Grundlagen 1.1 Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen 1, 2,3, 4, 5,... Z: ganze Zahlen..., 3, 2, 1, 0,1, 2,3,... Q: rationale

Mehr

Rudolf Brinkmann Seite

Rudolf Brinkmann Seite Rudolf Brinkmann Seite 1 30.04.2008 Aussagen und Mengentheoretische Begriffe Aussagen und Aussageformen In der Mathematik spricht man von Aussagen, wenn für einen Sachverhalt entschieden werden kann, ob

Mehr

Aussagenlogik. Aussagen und Aussagenverknüpfungen

Aussagenlogik. Aussagen und Aussagenverknüpfungen Aussagenlogik Aussagen und Aussagenverknüpfungen Aussagen sind Sätze, von denen sich sinnvollerweise sagen läßt, sie seien wahr oder falsch. Jede Aussage besitzt also einen von zwei möglichen Wahrheitswerten,

Mehr

Thema: Logik: 2. Teil. Übersicht logische Operationen Name in der Logik. Negation (Verneinung) Nicht

Thema: Logik: 2. Teil. Übersicht logische Operationen Name in der Logik. Negation (Verneinung) Nicht Thema: Logik: 2. Teil Übersicht logische Operationen Name in der Logik Symbol Umgangssprachlicher Name Negation (Verneinung) Nicht Konjunktion ^ Und Disjunktion v Oder Subjunktion (Implikation) Bijunktion

Mehr

Vorlesung 3: Logik und Mengenlehre

Vorlesung 3: Logik und Mengenlehre 28102013 Erinnerung: Zeilen-Stufen-Form (ZSF) eines LGS 0 0 1 c 1 0 0 0 1 0 0 1 c r 0 0 0 c r+1 0 0 0 0 0 0 0 0 0 c m Erinnerung: Information der Zeilen-Stufen-Form Aus der ZSF liest man ab: Folgerung

Mehr

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um:

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: 1 Grundlagen 1.1 Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen 1,2,3,4,5,... Z: ganze Zahlen..., 3, 2, 1,0,1,2,3,... Q: rationale Zahlen: das

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 15. Oktober 2015 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage veröffentlicht

Mehr

mathe plus Aussagenlogik Seite 1

mathe plus Aussagenlogik Seite 1 mathe plus Aussagenlogik Seite 1 1 Aussagenlogik 1.1 Grundbegriffe Def 1 Aussage Eine Aussage ist ein beschriebener Sachverhalt, dem eindeutig einer der Wahrheitswerte entweder wahr oder falsch zugeordnet

Mehr

Vorkurs Mathematik 2016

Vorkurs Mathematik 2016 Vorkurs Mathematik 2016 WWU Münster, Fachbereich Mathematik und Informatik PD Dr. K. Halupczok Skript VK3 vom 15.9.2016 VK3: Elementare Mengenlehre Der grundlegendste Begri, mit dem Objekte und Strukturen

Mehr

Diskrete Strukturen WS 2018/19. Gerhard Hiß RWTH Aachen

Diskrete Strukturen WS 2018/19. Gerhard Hiß RWTH Aachen Diskrete Strukturen WS 2018/19 Gerhard Hiß RWTH Aachen Erster Teil: Grundlagen Kapitel 1, Mathematische Grundbegriffe 1.1 Aussagen Begriff (Aussage) Sprachlicher Ausdruck, welcher entweder wahr oder falsch

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

Elementare Mengenlehre

Elementare Mengenlehre Vorkurs Mathematik, PD Dr. K. Halupczok WWU Münster Fachbereich Mathematik und Informatik 5.9.2013 Ÿ2 Elementare Mengenlehre Der grundlegendste Begri, mit dem Objekte und Strukturen der Mathematik (Zahlen,

Mehr

Grundbegriffe aus Logik und Mengenlehre

Grundbegriffe aus Logik und Mengenlehre Prof. Dr. B. Niethammer Dr. C. Seis, R. Schubert Institut fr Angewandte Mathematik Universitt Bonn Grundbegriffe aus Logik und Mengenlehre Wir wollen im Folgenden eine kurze Einführung in die Grundbegriffe

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Jens Struckmeier Fachbereich Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2010/11 Jens Struckmeier (Mathematik,

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Sommersemester 2018 Ronja Düffel 14. März 2018 Theoretische Informatik Wieso, weshalb, warum??!? 1 Modellieren und Formalisieren von Problemen und Lösungen 2 Verifikation (Beweis

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 1 Kapitel 1: Aussagen, Mengen

Mehr

Vorkurs Mathematik. Prof. Udo Hebisch WS 2017/18

Vorkurs Mathematik. Prof. Udo Hebisch WS 2017/18 Vorkurs Mathematik Prof. Udo Hebisch WS 2017/18 1 1 Logik 2 1 Logik Unter einer Aussage versteht man in der Mathematik einen in einer natürlichen oder formalen Sprache formulierten Satz, für den eindeutig

Mehr

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10 Fakultät für Mathematik Fachgebiet Mathematische Informatik Anhang Lineare Algebra I Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA Wintersemester 2009/10 A Relationen Definition A.1. Seien X, Y beliebige

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel. Grundlagen. Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen,,3, 4, 5,... Z: ganze Zahlen..., 3,,, 0,,,3,... Q: rationale Zahlen: das sind

Mehr

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: zweier ganzer Zahlen p und q schreiben kann.

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: zweier ganzer Zahlen p und q schreiben kann. Kapitel 1. Grundlagen 1.1 Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen 1, 2,3, 4, 5,... Z: ganze Zahlen..., 3, 2, 1, 0,1, 2,3,... Q: rationale

Mehr

Brückenkurs Mathematik 2015

Brückenkurs Mathematik 2015 Technische Universität Dresden Fachrichtung Mathematik, Institut für Analysis Dr.rer.nat.habil. Norbert Koksch Brückenkurs Mathematik 2015 1. Vorlesung Logik, Mengen und Funktionen Ich behaupte aber, dass

Mehr

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016 HM I Tutorium 1 Lucas Kunz 27. Oktober 2016 Inhaltsverzeichnis 1 Theorie 2 1.1 Logische Verknüpfungen............................ 2 1.2 Quantoren.................................... 3 1.3 Mengen und ihre

Mehr

1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen

1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen 1. Grundlagen Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen Peter Buchholz 2016 MafI 2 Grundlagen 7 1.1 Was ist Analysis? Analysis ist

Mehr

1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen

1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen . Grundlagen Gliederung. Was ist Analysis?.2 Aussagen und Mengen.3 Natürliche Zahlen.4 Ganze Zahlen, rationale Zahlen. Was ist Analysis? Analysis ist neben der linearen Algebra ein Grundpfeiler der Mathematik!

Mehr

Grundlegendes der Mathematik

Grundlegendes der Mathematik Kapitel 2 Grundlegendes der Mathematik (Prof. Udo Hebisch) 2.1 Logik Unter einer Aussage versteht man in der Mathematik einen in einer natürlichen oder formalen Sprache formulierten Satz, für den eindeutig

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011.

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011. Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen 21. März 2011 Tanja Geib Inhaltsverzeichnis 1 Aussagen 1 2 Mengenlehre 3 2.1 Grundlegende Definitionen

Mehr

b. Lehre des vernünftigen Schlussfolgerns (1. System von Regeln von Aristoteles ( v. Chr.); sprachliche Argumente

b. Lehre des vernünftigen Schlussfolgerns (1. System von Regeln von Aristoteles ( v. Chr.); sprachliche Argumente II. Zur Logik 1. Bemerkungen zur Logik a. Logisches Gebäude der Mathematik: wenige Axiome (sich nicht widersprechende Aussagen) bilden die Grundlage; darauf aufbauend Lehrsätze unter Berücksichtigung der

Mehr

Elemente der Analysis I Kapitel 3: Einführung III, Summen, Logik, Mengen, Beweise

Elemente der Analysis I Kapitel 3: Einführung III, Summen, Logik, Mengen, Beweise Elemente der Analysis I Kapitel 3: Einführung III, Summen, Logik, Mengen, Beweise Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 15. November 2010 http://www.mathematik.uni-trier.de/

Mehr

Grundbegriffe Mengenlehre und Logik

Grundbegriffe Mengenlehre und Logik Grundbegriffe Mengenlehre und Logik Analysis für Informatiker und Lehramt Mathematik MS/GS/FS WS 2016/2017 Agnes Radl Mengen Georg Cantor (1895) Unter einer Menge verstehen wir jede Zusammenfassung M von

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 19. Oktober 2017 1/27 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Grundlagen der Mathematik Lösungsskizzen 2 Präsenzaufgaben (P2) Wir betrachten drei Teilmengen der natürlichen Zahlen: - A = {n

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Ronja Düffel WS2018/19 01. Oktober 2018 Theoretische Informatik Wieso, weshalb, warum??!? 1 Modellieren und Formalisieren von Problemen und Lösungen 2 Verifikation (Beweis der

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 1. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 1. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 2008/09 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

Zusatzmaterial zur Mathematik I für E-Techniker Übung 1

Zusatzmaterial zur Mathematik I für E-Techniker Übung 1 Mathematik I für E-Techniker C. Erdmann WS 011/1, Universität Rostock, 1. Vorlesungswoche Zusatzmaterial zur Mathematik I für E-Techniker Übung 1 Wiederholung - Theorie: Mengen Der grundlegende Begriff

Mehr

ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise

ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise MAA.01011UB MAA.01011PH Vorlesung mit Übung im WS 2016/17 Christoph GRUBER Günter LETTL Institut für Mathematik und wissenschaftliches

Mehr

Kapitel 1. Aussagenlogik

Kapitel 1. Aussagenlogik Kapitel 1 Aussagenlogik Einführung Mathematische Logik (WS 2012/13) Kapitel 1: Aussagenlogik 1/17 Übersicht Teil I: Syntax und Semantik der Aussagenlogik (1.0) Junktoren und Wahrheitsfunktionen (1.1) Syntax

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung

Mehr

Aussagenlogik. 1 Einführung. Inhaltsverzeichnis. Zusammenfassung

Aussagenlogik. 1 Einführung. Inhaltsverzeichnis. Zusammenfassung Tobias Krähling email: Homepage: 13.10.2012 Version 1.2 Zusammenfassung Die Aussagenlogik ist sicherlich ein grundlegendes mathematisches Gerüst für weitere

Mehr

Grundlegendes: Mengen und Aussagen

Grundlegendes: Mengen und Aussagen Kapitel 1 Grundlegendes: Mengen und Aussagen Wie jedes Fachgebiet hat auch die Mathematik eine eigene Fachsprache Ohne ihre Kenntnis wird man ein mathematisches Buch, selbst wenn es für Anwender geschrieben

Mehr

Vorkurs Mathematik Logik und Beweismethoden 1

Vorkurs Mathematik Logik und Beweismethoden 1 Vorkurs Mathematik Logik und Beweismethoden 1 Saskia Klaus 05. Oktober 2016 Dieser Vortrag wird schon seit vielen Jahren im Vorkurs gehalten und basiert auf der Arbeit vieler verschiedener Menschen, deren

Mehr

Einleitung. R 2 = R R := { (x, y) ; x, y R }

Einleitung. R 2 = R R := { (x, y) ; x, y R } Einleitung Zunächst wiederholen wir einige Bezeichnungen, die Sie hoffentlich schon aus der Schule kennen. Insbesondere benutzen wir die Abkürzungen N := {1, 2, 3, 4,... } Menge der natürlichen Zahlen

Mehr

Mengenlehre. Aufgaben mit Lösungen

Mengenlehre. Aufgaben mit Lösungen Mengenlehre Aufgaben mit Lösungen Inhaltsverzeichnis 1 Hilfsmittel 1 1. Zahlenmengen........................................ 1 2. Symbole........................................... 1 3. Intervalle: Schreibweise...................................

Mehr

Mengenlehre und vollständige Induktion

Mengenlehre und vollständige Induktion Fachschaft MathPhys Heidelberg Mengenlehre und vollständige Induktion Vladislav Olkhovskiy Vorkurs 018 Inhaltsverzeichnis 1 Motivation 1 Mengen.1 Grundbegriffe.................................. Kostruktionen

Mehr

Vorkurs Mathematik im Sommersemester 2018

Vorkurs Mathematik im Sommersemester 2018 Vorkurs Mathematik im Sommersemester 2018 Dr. Regula Krapf Lösungen Übungsblatt 1 Aufgabe 1. Gegeben seien folgende Aussagen: A: Es ist kalt. B: Es schneit. Drücken Sie die nachfolgenden Sätze als aussagenlogische

Mehr

Vorkurs Mathematik 2016

Vorkurs Mathematik 2016 Vorkurs Mathematik 2016 WWU Münster, Fachbereich Mathematik und Informatik PD Dr. K. Halupczok Skript VK1 vom 8.9.2016 VK1: Logik Die Kunst des Schlussfolgerns Denition 1: Eine Aussage ist ein sprachliches

Mehr

Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge zum 1. Übungsblatt

Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge zum 1. Übungsblatt Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. Dirk Hundertmark Dipl.-Math. Matthias Uhl WS 2011/12 Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr

Mathematische Grundlagen I Logik und Algebra

Mathematische Grundlagen I Logik und Algebra Logik und Algebra Dr. Tim Haga 21. Oktober 2016 1 Aussagenlogik Erste Begriffe Logische Operatoren Disjunktive und Konjunktive Normalformen Logisches Schließen Dr. Tim Haga 1 / 21 Präliminarien Letzte

Mehr

Aufgabe 1. n b i i i i i 1 i 1. log( a ) b log a, a 0. n b b b b. log( a ) log a a... a. i 1 2 n. i 1 2 n. log( a ) log a log a...

Aufgabe 1. n b i i i i i 1 i 1. log( a ) b log a, a 0. n b b b b. log( a ) log a a... a. i 1 2 n. i 1 2 n. log( a ) log a log a... Augabe 1 n n b i i i i i 1 i 1 i log( a ) b log a, a 0 n i 1 b b b b i 1 n log( a ) log a a... a n i 1 n b b b b i 1 n log( a ) log a log a... log a i 1 n i 1 n i log( a ) b log a b log a... b log a i

Mehr

6 Polynomielle Gleichungen und Polynomfunktionen

6 Polynomielle Gleichungen und Polynomfunktionen 6 Polynomielle Gleichungen und Polynomfunktionen Lineare Gleichungen Eine lineare Gleichung in einer Variablen ist eine Gleichung der Form ax + b = cx + d mit festen Zahlen a und c mit a c. Dies kann man

Mehr

Musterlösung Grundbegriffe der Mathematik Frühlingssemester 2016, Aufgabenblatt 1

Musterlösung Grundbegriffe der Mathematik Frühlingssemester 2016, Aufgabenblatt 1 Musterlösung Grundbegriffe der Mathematik Frühlingssemester 01, Aufgabenblatt 1 Aufgabenblatt 1 0 Punkte Aufgabe 1 Welche der folgenden Ausdrücke sind Aussagen, welche sind Aussageformen und welche sind

Mehr

Teil 1 Gleichungen und Ungleichungen

Teil 1 Gleichungen und Ungleichungen Teil 1 Gleichungen und Ungleichungen Gleichungen Eine mathematische Gleichung ist eine logische Aussage über die Gleichheit von Termen. Das, was links vom Gleichheitszeichen (=) steht, hat den gleichen

Mehr

Einführung in die Mathematik (Vorkurs 1 )

Einführung in die Mathematik (Vorkurs 1 ) Einführung in die Mathematik (Vorkurs 1 ) Wintersemester 2008/09 Dr. J. Jordan Institut für Mathematik Universität Würzburg Germany 1 Modulbezeichnung 10-M-VKM 1 Inhaltsverzeichnis 1 Aussagen und Beweise

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 24.11.2016 (Teil 2) 23. November 2016 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler 23. November 2016

Mehr

Für unseren Gebrauch ist eine Menge bestimmt durch die in ihr enthaltenen Elemente. Ist M eine Menge, so ist ein beliebiges Objekt m wieder so ein

Für unseren Gebrauch ist eine Menge bestimmt durch die in ihr enthaltenen Elemente. Ist M eine Menge, so ist ein beliebiges Objekt m wieder so ein Mengen 1.2 9 1.2 Mengen 7 Der Begriff der Menge wurde am Ende des 19. Jahrhunderts von Georg Cantor wie folgt eingeführt. Definition (Cantor 1895) Eine Menge ist eine Zusammenfassung M von bestimmten,

Mehr

Übersichtsblatt Hertrampf/Bahrdt. 1 Mathematische Aussagen. Theoretische Informatik I WS2018/19

Übersichtsblatt Hertrampf/Bahrdt. 1 Mathematische Aussagen. Theoretische Informatik I WS2018/19 Theoretische Informatik I WS2018/19 Übersichtsblatt Hertrampf/Bahrdt Institut für Formale Methoden der Informatik Theoretische Informatik Universität Stuttgart 1 Mathematische Aussagen Um mathematische

Mehr

Allgemeingültige Aussagen

Allgemeingültige Aussagen Allgemeingültige Aussagen Definition 19 Eine (aussagenlogische) Formel p heißt allgemeingültig (oder auch eine Tautologie), falls p unter jeder Belegung wahr ist. Eine (aussagenlogische) Formel p heißt

Mehr

1. Gruppen. 1. Gruppen 7

1. Gruppen. 1. Gruppen 7 1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.

Mehr

1. Gruppen. 1. Gruppen 7

1. Gruppen. 1. Gruppen 7 1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.

Mehr

Logic in a Nutshell. Christian Liguda

Logic in a Nutshell. Christian Liguda Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 2018/2019 18.10.2018 Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum

Mehr

Zusammenfassung: Beweisverfahren

Zusammenfassung: Beweisverfahren LGÖ Ks VMa 11 Schuljahr 217/218 Zusammenfassung: Beweisverfahren Inhaltsverzeichnis Teilbarkeitslehre... 1 Mathematische Sätze... 1 Bedingungen für Extremstellen und Wendestellen... 2 Beweisverfahren...

Mehr

Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten:

Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: Aussagen Aussagen Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: verbale Aussage formale Aussage Wahrheitswert 1) 201 ist teilbar durch 3 3 201 wahre Aussage (w.a.) 2)

Mehr

b liegt zwischen a und c.

b liegt zwischen a und c. 2 DIE ANORDNUNGSAXIOME 5 (2.4) a, b, c R : (a < b 0 < c) ac < bc Monotoniegesetz der Multiplikation Bezeichnungen a > b : b < a (> wird gelesen: größer als ) a b : a < b oder a = b a b : a > b oder a =

Mehr

FORMULIEREN VON AUSSAGEN KONSTANTEN VARIABLEN MENGEN DEFINITIONEN SÄTZEN BEWEISEN LOGIK VERSTEHE, WIE ES FUNKTIONIERT

FORMULIEREN VON AUSSAGEN KONSTANTEN VARIABLEN MENGEN DEFINITIONEN SÄTZEN BEWEISEN LOGIK VERSTEHE, WIE ES FUNKTIONIERT FORMULIEREN VON AUSSAGEN KONSTANTEN VARIABLEN MENGEN DEFINITIONEN SÄTZEN BEWEISEN LOGIK VERSTEHE, WIE ES FUNKTIONIERT Dirix Workbooks, Seefeld am Pilsensee Autor: Martin Dirix ISBN 978-3-7347-7405-8 1.

Mehr

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um:

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: Grundlagen. Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen,2,3,4,5,... Z: ganze Zahlen..., 3, 2,,0,,2,3,... Q: rationale Zahlen: das sind die

Mehr

Aussagen. Mathematik und Logik 2011W. Was ist Logik? Elementare Zahlentheorie. Logik. Aussagenlogik. Prädikatenlogik. Datentypen.

Aussagen. Mathematik und Logik 2011W. Was ist Logik? Elementare Zahlentheorie. Logik. Aussagenlogik. Prädikatenlogik. Datentypen. Aussagen Die mathematische verwendet mathematische Methoden, um das logische Denken formal zu beschreiben. Populäre Definition: Eine Aussage ist ein Satz, der entweder falsch oder wahr ist. Problem: Wie

Mehr

Zusammenfassung: Beweisverfahren

Zusammenfassung: Beweisverfahren LGÖ Ks VMa 11 Schuljahr 216/217 Zusammenfassung: Beweisverfahren Inhaltsverzeichnis Teilbarkeitslehre... 1 Mathematische Sätze... 1 Bedingungen für innere Extremstellen... 3 Beweisverfahren... 3 Für Experten...

Mehr

Tilman Bauer. 4. September 2007

Tilman Bauer. 4. September 2007 Universität Münster 4. September 2007 und Sätze nlogik von Organisatorisches Meine Koordinaten: Sprechstunden: Di 13:30-14:30 Do 9:00-10:00 tbauer@uni-muenster.de Zimmer 504, Einsteinstr. 62 (Hochhaus)

Mehr

Logik (Teschl/Teschl 1.1 und 1.3)

Logik (Teschl/Teschl 1.1 und 1.3) Logik (Teschl/Teschl 1.1 und 1.3) Eine Aussage ist ein Satz, von dem man eindeutig entscheiden kann, ob er wahr (true, = 1) oder falsch (false, = 0) ist. Beispiele a: 1 + 1 = 2 b: Darmstadt liegt in Bayern.

Mehr

11. Beschreiben Sie die disjunktive und die konjunktive Normalform eines logischen Ausdrucks!

11. Beschreiben Sie die disjunktive und die konjunktive Normalform eines logischen Ausdrucks! Kapitel 3 Logik Verständnisfragen Sachfragen 1. Was ist eine logische Aussage? 2. Wie ist die Konjunktion und die Disjunktion definiert? 3. Beschreiben Sie das Exklusive Oder, die Implikation und die Äquivalenz!

Mehr

( ) ( ) für x = 9 gilt:

( ) ( ) für x = 9 gilt: R. Brinkmann http://brinkmann-du.de Seite 1 05.10.2008 Verknüpfung von Aussagen Werden Aussagen miteinander verknüpft, so entstehen zusammengesetzte Aussagen, deren Wahrheitsgehalt in der angegebenen Verbindung

Mehr

Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge zum 1. Übungsblatt

Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge zum 1. Übungsblatt Karlsruhe Institut für Technologie (KIT) Institut für Analysis Prof. Dr. W. Reichel Dr. S.Wugalter WS 2017/18 Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge

Mehr

2.1 Definitionen Sätze und Beweise Erklärungen zu den Definitionen... 15

2.1 Definitionen Sätze und Beweise Erklärungen zu den Definitionen... 15 Mengen Übersicht.1 Definitionen................................................. 11. Sätze und Beweise............................................ 14.3 Erklärungen zu den Definitionen...............................

Mehr

definieren eine Aussage A als einen Satz, der entweder wahr (w) oder falsch (f) (also insbesondere nicht beides zugleich) ist 1. Beispiel 1.1.

definieren eine Aussage A als einen Satz, der entweder wahr (w) oder falsch (f) (also insbesondere nicht beides zugleich) ist 1. Beispiel 1.1. 22 Kapitel 1 Aussagen und Mengen 1.1 Aussagen Wir definieren eine Aussage A als einen Satz, der entweder wahr w) oder falsch f) also insbesondere nicht beides zugleich) ist 1. Beispiel 1.1. 2 ist eine

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Kapitel 1.0 Aussagenlogik: Einführung Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Ziele der Aussagenlogik In der Aussagenlogik analysiert man die Wahrheitswerte zusammengesetzter

Mehr

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen Rückblick Erweiterte b-adische Darstellung von Kommazahlen 7,1875 dargestellt mit l = 4 und m = 4 Bits 66 Rückblick Gleitkommazahlen (IEEE Floating Point Standard 754) lassen das Komma bei der Darstellung

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Lineare Algebra Analytische Geometrie I* Übungsaufgaben, Blatt Musterlösungen Aufgabe. Es seien A, B, C Teilmengen einer Menge X. Zeige: i A B C =

Mehr

Zusammenfassung: Stichworte: Stellen Sie Ihre optimale Schriftgröße ein: Größere Schriftzeichen. 2x + 3 = 7. (1)

Zusammenfassung: Stichworte: Stellen Sie Ihre optimale Schriftgröße ein: Größere Schriftzeichen. 2x + 3 = 7. (1) 1 von 5 21.05.2015 14:30 Zusammenfassung: Eine Ungleichung ist die "Behauptung", dass ein Term kleiner, größer, kleiner-gleich oder größer-gleich einem andereren Term ist. Beim Auffinden der Lösungsmenge

Mehr

Mathematisch für Anfänger

Mathematisch für Anfänger Mathematisch für Anfänger Beiträge zum Studienbeginn von Matroids Matheplanet Bearbeitet von Martin Wohlgemuth 1. Auflage 2011. Taschenbuch. xvi, 320 S. Paperback ISBN 978 3 8274 2852 3 Format (B x L):

Mehr

2 Der Beweis. Themen: Satz und Beweis Indirekter Beweis Kritik des indirekten Beweises

2 Der Beweis. Themen: Satz und Beweis Indirekter Beweis Kritik des indirekten Beweises 2 Der Beweis Themen: Satz und Beweis Indirekter Beweis Kritik des indirekten Beweises Satz und Beweis Ein mathematischer Satz besteht aus einer Voraussetzung und einer Behauptung. Satz und Beweis Ein mathematischer

Mehr

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen Rückblick Erweiterte b-adische Darstellung von Kommazahlen 7,1875 dargestellt mit l = 4 und m = 4 Bits 66 Rückblick Gleitkommazahlen (IEEE Floating Point Standard 754) lassen das Komma bei der Darstellung

Mehr

Mathematische Grundlagen der Computerlinguistik I. Mengen und Mengenoperationen (Teil 1)

Mathematische Grundlagen der Computerlinguistik I. Mengen und Mengenoperationen (Teil 1) Mathematische Grundlagen der Computerlinguistik I Mengen und Mengenoperationen (Teil 1) Exzerpt aus dem Skript von Prof. Dr. Klaus U. Schulz Michaela Geierhos M.A. Centrum für Informations- und Sprachverarbeitung

Mehr

Mengenlehre. ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich Name: Vorname:

Mengenlehre. ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich  Name: Vorname: Mengenlehre ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 21. August 2016 Inhaltsverzeichnis 1 Mengenlehre 1 1.1 Die Menge im mathematischen

Mehr

Mengen, Logik. Jörn Loviscach. Versionsstand: 17. Oktober 2009, 17:42

Mengen, Logik. Jörn Loviscach. Versionsstand: 17. Oktober 2009, 17:42 Mengen, Logik Jörn Loviscach Versionsstand: 17. Oktober 2009, 17:42 1 Naive Mengenlehre Mengen sind die Grundlage fast aller mathematischen Objekte. Ob die Zahl 7, ein Kreis in der Ebene, die Relation

Mehr

Für ist Element von und ist nicht Element von schreibt man: 2

Für ist Element von und ist nicht Element von schreibt man: 2 3 Mengen, Logik Jörn Loviscach Versionsstand: 2. Dezember 2011, 16:25 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu: http://www.j3l7h.de/videos.html This work

Mehr

Vorkurs Mathematik 2016 VK1: Logik-Die Kunst des Schlussfolgerns

Vorkurs Mathematik 2016 VK1: Logik-Die Kunst des Schlussfolgerns Vorkurs Mathematik 2016 VK1: Logik-Die Kunst des Schlussfolgerns WWU Münster, Fachbereich Mathematik und Informatik PD Dr. K. Halupczok / Dr. Frank Wübbeling Aussagenlogik Definition 1: Eine Aussage ist

Mehr

Aussagenverknüpfungen in der Sprache (1)

Aussagenverknüpfungen in der Sprache (1) Aussagenverknüpfungen in der Sprache (1) Betrachten Sie die Aussage S := «Thomas und Sara gehen in den Park.» Wir definieren die beiden Aussagen P := «Thomas geht in den Park.» und Q := «Sara geht in den

Mehr