Index. Chien-Suche, 220 CIRC, 234 Code, 2, 9 äquidistanter, 81

Größe: px
Ab Seite anzeigen:

Download "Index. Chien-Suche, 220 CIRC, 234 Code, 2, 9 äquidistanter, 81"

Transkript

1 Index Abelsche Gruppe, 140 Abgeschlossenheit, 47, 140, 143 Abhängigkeit lineare, 53 Abtastfolge, 226 ACS-Operation, 279 Addition, 46, 163 Alphabet, 1 ARQ, 6, 174 Assoziativität, 47, 52, 140, 143 Audio-CD, 78, 234 Ausgabefunktion, 248 Auslöschung, 223 Automat endlicher, 248 Automatic Repeat Request, 6, 174 Basisvektor, 68 BCH-Code, 202 im engeren Sinne, 202 primitiver, 203 BCH-Schranke, 199 Berlekamp-Massey-Algorithmus, 217 Binomial-Verteilung, 83 Blockcode, 9 linearer, 54 Boolesche Funktion, 116 Bose, 199 BSC, 15 Chien-Suche, 220 CIRC, 234 Code, 2, 9 äquidistanter, 81 äquivalenter, 59, 100 äußerer, 235 dualer, 71, 180 erweiterter, 91 innerer, 235 optimaler, 78 orthogonaler, 72 perfekter, 79 punktierter, 90 selbst-dualer, 73 systematischer, 62 systematischer zyklischer, 173, 186 unsystematischer zyklischer, 171 verketteter, 225 verkürzter, 89 verlängerter, 90 verschachtelter, 93, 235 zyklischer, 139, 164 Codeerweiterung, 91 Codekonstruktion, 88 Codepunktierung, 89, 269, 270 Coderate, 17, 54, 240 Coderaum, 21 Codesymbol, 74 Codeverkürzung, 89 Codeverlängerung, 90 Codeverschachtelung, 93, 234 Codewort, 2, 7, 58 Codewortlänge, 2 Codezeichen, 2 Codierung, 2 im Spektralbereich, 232 CRC-Code, 173,

2 292 Index Cross Interleaving, 235 Decodieralgorithmus algebraischer, 204, 219 Peterson-Gorenstein- Zierler-, 211 Decodierregel, 36 MAP-, 36 MED-, 36 MLD-, 37, 275 Demodulation, 3 DFT, 226 Differenzengleichung, 217 Differenzvektor, 56 Dimension, 54, 72 Distanz freie, 258 Distanzfunktion, 258 Distributivität, 52, 143 Distributivitätsgesetz, 47 Division mit Rest, 144 Drehfaktor, 226 Einheitswurzel primitive, 164, 191, 228 Einselement, 47, 143 Element inverses, 47, 140, 143 primitives, 142, 155 Empfänger, 3 Empfangswort, 8, 74 Entscheidungsgebiet, 33 Error Trapping, 190 Erweiterungskörper, 151, 163 Euklidscher Algorithmus, 146 erweiterter, 147, 218 Eulersche φ-funktion, 144 Exponentendarstellung, 157 Faktorring, 149, 165 Faltungscode, 239 linearer, 245 optimaler, 258 systematischer, 246 unsystematischer, 246 Faltungscodierer, 240 katastrophaler, 264 Fehler detektierbarer, 30 korrigierbarer, 31 Fehlerauswertungspolynom, 215 Fehlerbündel, 93, 179, 235 Fehlerereignis, 284 Fehlererkennung, 4 6 Fehlerkorrektur, 4 6 Fehlerlokator, 206 Fehlerlokatorpolynom, 208 Fehlermodell, 274 Fehlerposition, 206 Fehlersymbol, 74 Fehlerwert, 206 Fehlerwort, 74 Fehlerwortpolynom, 179, 188, 205 FFT, 234 Filter FIR-, 240 Finite State Machine, 248 Folgenschätzung, 276 Forney-Formel, 215 Fourier-Transformation diskrete, 226 schnelle, 234 FSM, 248 Fundamentallemma, 145 der Algebra, 191 Galois-Körper, 47, 163 GF(2), 47 GF(3), 50 GF(p), 51 GF(p l ), 51, 151 GF(q), 51 Gedächtnislänge, 241 Generatormatrix, 59, 245, 255, 256 systematische, 63 Generatorpolynom, 168

3 Index 293 Gewicht, 18 Gewichtsverteilung, 24 Gewichtsverteilungsfunktion, 258 Gilbert-Varshamov-Schranke, 82 Griesmer-Schranke, 82 Gruppe, 140 endliche, 142 zyklische, 142 Hadamard-Matrix, 107 Hamming, 100 Hamming-Code (7, 4)-, 10 (n, k)-, 100 erweiterter, 102 zyklischer binärer, 199, 203 zyklischer q-närer, 197 Hamming-Distanz, 19, 257 minimale, 19, 257 Hamming-Schranke, 78 Hauptsatz der elementaren Zahlentheorie, 145 Heller-Schranke, 272 Hocquenghem, 199 Identitätselement, 140 Information, 1 Informationswort, 2, 8, 59 Informationszeichen, 1, 240 ISBN, 12 Isomorphie, 148, 151 Kanal, 3 binärer symmetrischer, 15, 37, 275 diskreter gedächtnisloser, 13, 273 q-närer symmetrischer, 15, 43 Kanalbitfehlerwahrscheinlichkeit, 15 Kanalcode, 9 Kanalcodierer, 8 Kanalcodierung, 3 Kanaldecodierer, 8 Kanaldecodierung, 3 Kanalkapazität, 4 Kanalmatrix, 14 Kanalsymbolfehlerwahrscheinlichkeit, 16 Kardinalität, 18 Kommutativität, 47, 52, 143 Kommutator, 242 Komponentendarstellung, 152, 157 Kongruenzrechnung, 144 Körper, 47 endlicher, 51 Korrigierkugel, 30, 79 Kreisteilungsklasse, 161, 164, 191 Kugelpackungsschranke, 78, 79 Laurent-Reihe formale, 254 LFSR, 182 Linearfaktor, 160 MacWilliams-Identität, 73 Majority Logic Decoding, 122 Matrix stochastische, 14 MDS-Code, 78, 225 Mealy-Automat, 248 Meggitt-Decodierer, 189 Mehrheitsentscheidung, 6, 122 Metrik, 276 Minimalgewicht, 56, 257 Minimalpolynom, 162, 164, 191 MLD-Folgenschätzung, 279 Modularpolynom, 150 Modulation, 3 Modulator, 4 Multiplikation, 46, 163 Matrix-Vektor-, 227 Nachricht, 1 Nachrichtenquelle, 3 Nachrichtensenke, 3 Nebenklasse, 76 Netzdiagramm, 250 Newton-Identitäten

4 294 Index verallgemeinerte, 209 NP-hart, 77 Nullelement, 47, 143 Nullstelle, 154 Ordnung, 142, 155, 164 orthogonal, 71 Parität gerade, 55 Paritätsbedingung, 98 Paritätsbit, 10, 55 Paritätsfrequenz, 232 Paritätsprüfcode, 9, 10, 98 Pfad, 279 überlebender, 279 Pfadmetrik, 277 Pit, 238 Plotkin-Schranke, 80 Polynom, 148 elementarsymmetrisches, 208 inverses, 150 irreduzibles, 150 Mattson-Solomon-, 229 primitives, 155 Polynomdivision mit Rest, 149 Polynomring, 148, 163, 166, 174 Primzahl, 144 Produkt skalares, 52 Prüfgruppe, 10 Prüfmatrix, 66 Prüfpolynom, 175 Prüfwort, 64 Punktierungsmatrix, 270 qsc, 15 Quelle, 3 Quellencodierung, 3 Quellendecodierung, 3 Rate, 240 Raum linearer, 52 Ray-Chaudhuri, 199 Redundanzprüfung zyklische, 173, 178 Reed-Muller-Code, 112 Reed-Solomon-Code, 224 Regel von Bayes, 35, 36 Reihe binomische, 23 Repetition-Code, 97 Restklassenring, 144, 163 Ring, 143 kommutativer, 143 Satz Eulerscher, 145 Kleiner Fermatscher, 145 Schieberegister lineares nicht rückgekoppeltes, 246 lineares rückgekoppeltes, 182 Schlüsselgleichung, 209 Sender, 3 Senke, 3 Sequenzschätzung, 276 Shannon, C.E., 4 Signal, 4 Signalflussgraph, 260 Signaltheorie, 226 Simplexcode, 105 Singleton-Schranke, 78 Singularität, 210 Skalarmultiplikation, 52 Spektralbereich, 226 Spektralfolge diskrete, 226 Spektralpolynom, 229 Störung, 4 Superpositionsgesetz, 245 Survivor, 279 Symbol, 1 Symbolfehlerwahrscheinlichkeit, 32 Syndrom, 74, 188, 205 Syndromlogik, 190

5 Index 295 Syndrompolynom, 215 Teiler, 144 größter gemeinsamer, 146 Terminierung, 269 Tiefe, 93 Trellisdiagramm, 250 Triple-Repetition-Code, 6 Übergangswahrscheinlichkeit, 13 Übertragung, 1 Unabhängigkeit lineare, 53 Untervektorraum, 53 Vandermonde-Matrix, 202 Vektoraddition, 52 Vektorraum, 52 Verschiebung zyklische, 165 Verzögerung, 254 Viterbi-Algorithmus, 277 Wahrscheinlichkeit a posteriori, 36 a priori, 37 Walsh-Hadamard-Transformation diskrete, 138 Wiederholungscode, 6, 97 Dreifach-, 6, 97 Wortfehlerwahrscheinlichkeit, 32 Wurzel, 154 konjugierte, 160, 191 Zahlentheorie, 143 Zeichen, 1 redundante, 4 Zeichenvorrat, 1 Zustand, 247 Zustandsdiagramm, 249 Zustandsüberführungsfunktion, 248 Zweigmetrik, 277

Codierung zur Fehlerkorrektur und Fehlererkennung

Codierung zur Fehlerkorrektur und Fehlererkennung Codierung zur Fehlerkorrektur und Fehlererkennung von Dr.-techn. Joachim Swoboda Mit 39 Bildern und 24 Tafeln R. OLDENBOURG VERLAG MÜNCHEN WIEN 1973 Inhalt Vorwort 9 1. Einführung 11 1.1 Redundante Codierung

Mehr

15. Vorlesung. Primitive Polynome (Beispiel) Beispiel zur Konstruktion von GF(p)[x]/f (x) mit einem primitiven Polynom f (x) (Logarithmentafel)

15. Vorlesung. Primitive Polynome (Beispiel) Beispiel zur Konstruktion von GF(p)[x]/f (x) mit einem primitiven Polynom f (x) (Logarithmentafel) 15. Vorlesung Primitive Polynome (Beispiel) Beispiel zur Konstruktion von GF(p)[x]/f (x) mit einem primitiven Polynom f (x) (Logarithmentafel) Struktur endlicher Körper Rechnen in endlichen Körpern Isomorphie

Mehr

Formelsammlung Kanalcodierung

Formelsammlung Kanalcodierung Formelsammlung Kanalcodierung Allgemeines Codewortlänge: N Anzahl der Informationsstellen: K Coderate: R = K/N Hamming-Distanz: D( x i, x j ) = w( x i xj ) Codedistanz: d = min D( x i, x j ); i j Fehlerkorrektur:

Mehr

Vorlesungsskript Kanalcodierung I WS 2011/2012

Vorlesungsskript Kanalcodierung I WS 2011/2012 Vorlesungsskript Kanalcodierung I WS 2011/2012 von DR.-ING. VOLKER KÜHN aktualisiert von DR.-ING. DIRK WÜBBEN Fachbereich Physik/Elektrotechnik (FB 1) Arbeitsbereich Nachrichtentechnik Postfach 33 04 40

Mehr

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2 AUFGABEN KANALCODIERUNG Aufgabe Wir betrachten den Hamming-Code mit m = 5 Prüfbits. a) Wie gross ist die Blocklänge n dieses Codes? b) Wie viele gültige Codewörter umfasst dieser Code? c) Leiten Sie die

Mehr

(Network) Coding und Verbindungen zur Systemtheorie

(Network) Coding und Verbindungen zur Systemtheorie (Network) Coding und Verbindungen zur Systemtheorie Anna-Lena Horlemann-Trautmann Algorithmics Laboratory, EPFL, Schweiz 10. Februar 2016 Elgersburg Workshop Klassische Codierungstheorie Einführung Klassische

Mehr

Endliche Körper und Codierung SS Übungsblatt. 9. Bestimmen Sie alle primitiven Elemente (Erzeuger der multiplikativen Gruppe) von

Endliche Körper und Codierung SS Übungsblatt. 9. Bestimmen Sie alle primitiven Elemente (Erzeuger der multiplikativen Gruppe) von Endliche Körper und Codierung SS 2007 1. Übungsblatt 1. Sei p eine Primzahl und 0 j p 1. Zeigen Sie, dass ( ) p 1 j ( 1) j (mod p). 2. Sei R ein kommutativer Ring der Charakteristik p > 0 (prim). Zeigen

Mehr

Algebra für Informationssystemtechniker

Algebra für Informationssystemtechniker Algebra für Informationssystemtechniker Prof. Dr. Ulrike Baumann Fachrichtung Mathematik Institut für Algebra www.math.tu-dresden.de/ baumann Ulrike.Baumann@tu-dresden.de 16.07.2018 14. Vorlesung irreduzible

Mehr

Codierungsverfahren SS 2011. Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur

Codierungsverfahren SS 2011. Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur Wie die zyklischen BCH-Codes zur Mehrbitfehler-Korrektur eignen sich auch die sehr verwandten Reed-Solomon-Codes (= RS-Codes) zur Mehrbitfehler-Korrektur.

Mehr

Algebraische Grundlagen der Informatik

Algebraische Grundlagen der Informatik Kurt-Ulrich Witt Algebraische Grundlagen der Informatik Zahlen - Strukturen - Codierung - Verschlüsselung vieweg Vorwort Abbildungssverzeichnis V VII XIII I Grundlagen 1 1 Mengen und Einführung in die

Mehr

Der (7, 4)-Hamming-Code

Der (7, 4)-Hamming-Code Polynomcodes p. 1 Der (7, 4)-Hamming-Code Der 1-Fehler-korrigierende Hamming-Code der Länge 7 besteht aus 16 binären 7-Tupeln: 0000000 1111111 1101000 0010111 0110100 1001011 0011010 1100101 0001101 1110010

Mehr

6.2. Ringe und Körper

6.2. Ringe und Körper 62 RINGE UND K ÖRPER 62 Ringe und Körper Wir betrachten nun Mengen (endlich oder unendlich) mit zwei Operationen Diese werden meist als Addition und Multiplikation geschrieben Meist ist dabei die additiv

Mehr

Fehlerkorrigierende Codes

Fehlerkorrigierende Codes Fehlerkorrigierende Codes SS 2013 Gerhard Dorfer 2 Inhaltsverzeichnis 1 Fehlerkorrigierende Codes 4 1.1 Einführende Beispiele................................. 4 1.2 Mathematische Grundlagen..............................

Mehr

in der Mathematik-Ausbildung

in der Mathematik-Ausbildung Fehler-korrigierende in der Mathematik-Ausbildung Institut für Informatik & Automation, IIA Fakultät E&I, Hochschule Bremen, HSB DMV-Jahrestagung, Erlangen 15.-19.9.2008 Agenda Bedeutung ECC-Speicher HDD

Mehr

Einführung in die Kodierungstheorie

Einführung in die Kodierungstheorie Einführung in die Kodierungstheorie Einführung Vorgehen Beispiele Definitionen (Code, Codewort, Alphabet, Länge) Hamming-Distanz Definitionen (Äquivalenz, Coderate, ) Singleton-Schranke Lineare Codes Hamming-Gewicht

Mehr

Von den ganzen Zahlen zu GF(p)

Von den ganzen Zahlen zu GF(p) Endliche Körper p. 1 Von den ganzen Zahlen zu GF(p) Aus dem Ring aller ganzen Zahlen gewinnt man endliche Körper wie folgt: Man führt das Rechnen modulo n ein (modulare Arithmetik) und erhält so endliche

Mehr

Informationstheorie und Codierung. Prof. Dr.-Ing. Lilia Lajmi l.lajmi@ostfalia.de

Informationstheorie und Codierung. Prof. Dr.-Ing. Lilia Lajmi l.lajmi@ostfalia.de Informationstheorie und Codierung Prof. Dr.-Ing. Lilia Lajmi l.lajmi@ostfalia.de Inhaltsverzeichnis 3. Kanalcodierung 3.1 Nachrichtentheorie für gestörte Kanäle 3.1.1 Transinformation 3.1.2 Kanalkapazität

Mehr

Codierungstheorie, Vorlesungsskript

Codierungstheorie, Vorlesungsskript Codierungstheorie, Vorlesungsskript Irene I. Bouw Sommersemester 2014 Inhaltsverzeichnis 1 Lineare Codes 2 1.1 Einführung.............................. 2 1.2 Eigenschaften linearer Codes....................

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

Zusammenfassung zu Codierungstheorie

Zusammenfassung zu Codierungstheorie Zusammenfassung zu Codierungstheorie Sara Adams 5. Juli 2005 Diese Zusammenfassung basiert auf der Vorlesung Codierungstheorie gehalten im Sommersemester 2005 von Prof. Dr. Hans-Dietrich Gronau an der

Mehr

Fehler-korrigierende Codes

Fehler-korrigierende Codes Fehler-korrigierende Codes Prof. Dr. Thomas Risse Institut für Informatik & Automation, IIA Fakultät E&I, Hochschule Bremen, HSB 8. April 2013 Nummerierung der Kapitel und Abschnitte in [15] sind beibehalten,

Mehr

A2.1: Gruppe, Ring, Körper

A2.1: Gruppe, Ring, Körper Abschnitt: 2.1 Einige Grundlagen der Algebra A2.1: Gruppe, Ring, Körper Im Theorieteil zu diesem Kapitel 2.1 wurden verschiedene algebraische Begriffe definiert. Für das Folgende setzen wir voraus, dass

Mehr

Man unterscheidet zwei Gruppen von Codes: Blockcodes und Faltungscodes.

Man unterscheidet zwei Gruppen von Codes: Blockcodes und Faltungscodes. Versuch: Kanalcodierung. Theoretische Grundlagen Kanalcodierungstechniken werden zur Erkennung und Korrektur von Übertragungsfehlern in digitalen Systemen eingesetzt. Auf der Sendeseite wird zur Originalinformation

Mehr

FEHLERKORRIGIERENDE CODES

FEHLERKORRIGIERENDE CODES FEHLERKORRIGIERENDE CODES Inhalt der Vorlesung Jürgen Koslowski @ Institut für Theoretische Informatik Technische Universität Braunschweig Juli 2009 INHALTSVERZEICHNIS -1 Inhaltsverzeichnis 0 Einführung

Mehr

Ein (7,4)-Code-Beispiel

Ein (7,4)-Code-Beispiel Ein (7,4)-Code-Beispiel Generator-Polynom: P(X) = X 3 + X 2 + 1 Bemerkung: Es ist 7 = 2^3-1, also nach voriger Überlegung sind alle 1-Bit-Fehler korrigierbar Beachte auch d min der Codewörter ist 3, also

Mehr

Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f.

Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f. 3 Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f 4 Auf der Menge aller Restklassen [f] g kann man Addition und

Mehr

Polynome und endliche Körper

Polynome und endliche Körper Universität Koblenz-Landau Polynome und endliche Körper Ausarbeitung zum Proseminar Modul 4c Kryptographie im Fachbereich 3 Regula Krapf Arbeitsgruppe: Prof. Dr. Peter Ullrich Universität Koblenz-Landau

Mehr

Probeklausur. Algebra SS Bearbeitungszeit: 120 Minuten

Probeklausur. Algebra SS Bearbeitungszeit: 120 Minuten Prof. Dr. Bernd Siebert Probeklausur Algebra SS 2014 Bearbeitungszeit: 120 Minuten Nachname: Vorname: Matrikelnr: Es dürfen alle Vorlesungsunterlagen inklusive Übungsaufgaben und Lösungen verwendet werden.

Mehr

Was bisher geschah...

Was bisher geschah... Polynomcodes, Fortsetzung p. 1 Was bisher geschah... Zyklische Codes versteht man beser als Polynomcodes Polynomcodes erhält man als Hauptideale im Ring GF(q)[X]/X n 1. Solche Hauptideale bestehen aus

Mehr

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Lineare Codes Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Codes Ein Code ist eine eindeutige Zuordnung von Zeichen

Mehr

KANN DER VEKTORRAUM R 3 EIN KÖRPER WERDEN? 1. Der Körper Centsprichtdem Vektorraum R 2

KANN DER VEKTORRAUM R 3 EIN KÖRPER WERDEN? 1. Der Körper Centsprichtdem Vektorraum R 2 KANN DER VEKTORRAUM R 3 EIN KÖRPER WERDEN? MARKUS FULMEK 1. Der Körper Centsprichtdem Vektorraum R 2 Die Menge R 2 = { (x, y) : x, y R } bildet mit der komponentenweisen Addition + R 2 R 2 R 2, (x, y)+(a,

Mehr

Übung zur Vorlesung. Informationstheorie und Codierung

Übung zur Vorlesung. Informationstheorie und Codierung Übung zur Vorlesung Informationstheorie und Codierung Prof. Dr. Lilia Lajmi Juni 25 Ostfalia Hochschule für angewandte Wissenschaften Hochschule Braunschweig/Wolfenbüttel Postanschrift: Salzdahlumer Str.

Mehr

Definition 153 Sei n eine fest gewählte ganze Zahl 0. Für jedes l Z heißt die Menge

Definition 153 Sei n eine fest gewählte ganze Zahl 0. Für jedes l Z heißt die Menge 3.6 Restklassen in Polynomringen 3.6.1 Einführung und Definitionen Der Begriff der Restklasse stammt ursprünglich aus der Teilbarkeitslehre in Z; (Z = Z, +, ist ein kommutativer Ring). Definition 153 Sei

Mehr

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Ziel: Nachrichten fehlerfrei übertragen und ökonomisch (wenig Redundanz) übertragen Was ist der Hamming-Abstand?

Mehr

Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1. (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K }

Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1. (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K } Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1 14 Körper (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K } (14.2) BEM: a) Ist K ein Körper, so ist (K

Mehr

1 Algebraische Strukturen

1 Algebraische Strukturen Prof. Dr. Rolf Socher, FB Technik 1 1 Algebraische Strukturen In der Mathematik beschäftigt man sich oft mit Mengen, auf denen bestimmte Operationen definiert sind. Es kommt oft vor, dass diese Operationen

Mehr

Galoiskörper GF(2 n ) (Teschl/Teschl 4)

Galoiskörper GF(2 n ) (Teschl/Teschl 4) Galoiskörper GF(2 n ) (Teschl/Teschl 4) auch Galois-Felder (englisch Galois elds), benannt nach Evariste Galois (18111832). Körper (in der Mathematik) allgemein: Zahlenbereich, in dem die vier Grundrechenarten

Mehr

3. Zur Algebra der Restklassen

3. Zur Algebra der Restklassen Codierungstheorie, WS 2006/2007-63 - Fakultät 5, Universität Stuttgart 3. Zur Algebra der Restklassen 3.1 Restklassen bei ganzen Zahlen und Polynomen A Ideale, Restklassen und Restklassenringe bei ganzen

Mehr

Algebraische Strukturen. Idee. Gruppen, Ringe, Körper... (Teschl/Teschl Abschnitt 3.2, siehe auch Kap. 4)

Algebraische Strukturen. Idee. Gruppen, Ringe, Körper... (Teschl/Teschl Abschnitt 3.2, siehe auch Kap. 4) Algebraische Strukturen Gruppen, Ringe, Körper... (Teschl/Teschl Abschnitt 3.2, siehe auch Kap. 4) Idee Formalisierung von Strukturen, die in verschiedenen Bereichen der Mathematik und ihrer Anwendungen

Mehr

SE Codierungstheorie Leitung: Dr. Amin Coja-Oghlan. Reed-Solomon-Codes. Jörg Pohle, Dezember 2006

SE Codierungstheorie Leitung: Dr. Amin Coja-Oghlan. Reed-Solomon-Codes. Jörg Pohle, Dezember 2006 SE Codierungstheorie Leitung: Dr. Amin Coja-Oghlan Reed-Solomon-Codes Jörg Pohle, 140114 15. Dezember 2006 1 Einleitung Im gleichen Jahr, in dem R. C. Bose, D. K. Ray-Chaudhuri und A. Hocquenghem die später

Mehr

Galoiskörper GF(2 n ) (Teschl/Teschl 4)

Galoiskörper GF(2 n ) (Teschl/Teschl 4) Galoiskörper GF(2 n ) (Teschl/Teschl 4) auch Galois-Felder (englisch Galois elds), benannt nach Evariste Galois (18111832). Körper (in der Mathematik) allgemein: Zahlenbereich, in dem die vier Grundrechenarten

Mehr

Eine Menge K, auf der eine Addition. + und eine Multiplikation definiert sind, nennt man einen Körper, wenn folgende Eigenschaften gelten: Körper 1-1

Eine Menge K, auf der eine Addition. + und eine Multiplikation definiert sind, nennt man einen Körper, wenn folgende Eigenschaften gelten: Körper 1-1 Körper Eine Menge K, auf der eine Addition + und eine Multiplikation definiert sind, nennt man einen Körper, wenn folgende Eigenschaften gelten: Körper 1-1 Körper Eine Menge K, auf der eine Addition +

Mehr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr Bemerkung: Der folgende Abschnitt Boolesche Algebren ist (im WS 2010/11) nicht Teil des Prüfungsstoffs, soweit nicht Teile daraus in der Übung behandelt werden! Diskrete Strukturen 5.9 Permutationsgruppen

Mehr

Unterlagen zu Polynomringen. Erhard Aichinger

Unterlagen zu Polynomringen. Erhard Aichinger Unterlagen zu Polynomringen Erhard Aichinger Linz, im November 2005 Alle Rechte vorbehalten 1 KAPITEL 1 Polynome und Körper 1. Körper DEFINITION 1.1. Ein kommutativer Ring mit Eins R R,,,, 0, 1 ist ein

Mehr

Informationstheorie und Codierung Schriftliche Prüfung am 8. Mai 2006

Informationstheorie und Codierung Schriftliche Prüfung am 8. Mai 2006 Informationstheorie und Codierung Schriftliche Prüfung am 8. Mai 2006 Institut für Nachrichtentechnik und Hochfrequenztechnik Bitte beachten Sie: Sie dürfen das Vorlesungsskriptum, einen Taschenrechner

Mehr

Vorlesung Theoretische Grundlagen

Vorlesung Theoretische Grundlagen Vorlesung Theoretische Grundlagen Fehlerkorrigierende Jörn Müller-Quade 4. Februar 2010 INSTITUT FÜR KRYPTOGRAPHIE UND SICHERHEIT KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

(R4) Addition und Multiplikation erfüllen das Distributivgesetz a (b + c) = ab + ac und. Endomorphismenring d) K Körper, n N, R = K n n Matrizenring

(R4) Addition und Multiplikation erfüllen das Distributivgesetz a (b + c) = ab + ac und. Endomorphismenring d) K Körper, n N, R = K n n Matrizenring 5 Polynome 5.1 Ringe Definition 5.1.1. Eine Menge R zusammen mit zwei inversen Verknüpfungen (+ : R R R Addition, : R R R Multiplikation heißt Ring, wenn folgende Bedingungen gelten: Ring (R1 (R, + abelsche

Mehr

Bemerkungen. Gilt m [l] n, so schreibt man auch m l mod n oder m = l mod n und spricht. m kongruent l modulo n.

Bemerkungen. Gilt m [l] n, so schreibt man auch m l mod n oder m = l mod n und spricht. m kongruent l modulo n. 3.6 Restklassen in Polynomringen 3.6.1 Einführung und Definitionen Der Begriff der Restklasse stammt ursprünglich aus der Teilbarkeitslehre in Z; (Z = Z, +, ist ein kommutativer Ring). Definition 153 Sei

Mehr

Ein (7,4)-Code-Beispiel

Ein (7,4)-Code-Beispiel Ein (7,4)-Code-Beispiel Generator-Polynom: P(X) = X 3 + X 2 + 1 Bemerkung: Es ist 7 = 2^3-1, also nach voriger Überlegung sind alle 1-Bit-Fehler korrigierbar Beachte auch d min der Codewörter ist 3, also

Mehr

Vorlesung Theoretische Grundlagen Fehlerkorrigierende Codes Jörn Müller-Quade 29. Januar 2013

Vorlesung Theoretische Grundlagen Fehlerkorrigierende Codes Jörn Müller-Quade 29. Januar 2013 Vorlesung Theoretische Grundlagen Fehlerkorrigierende Jörn Müller-Quade 29. Januar 2013 I NSTITUT FÜR K RYPTOGRAPHIE UND S ICHERHEIT KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Algebraische Strukturen

Algebraische Strukturen Algebraische Strukturen Eine kommutative Gruppe (G, ) ist eine Menge G, auf der eine Verknüpfung (ein zweistelliger Operator) deniert ist (d. h. zu a, b G ist a b G deniert), welche bestimmten Regeln genügt

Mehr

Signale und Codes Vorlesung 6

Signale und Codes Vorlesung 6 Signale und Codes Vorlesung 6 Nico Döttling December 13, 2013 1 / 24 Vergleich Shannon vs. Schranken für Minimaldistanz (1) BSC ρ hat Kapazität 1 H 2 (ρ) Shannon: Es existiert ein (n, k) Code C für BSC

Mehr

Hamming-Geometrie der Bitvektoren

Hamming-Geometrie der Bitvektoren Hamming-Geometrie Hamming-Geometrie der Bitvektoren B = {0, } mit den Operationen = Konjunktion ( und ) = Disjunktion ( oder ) oder = Negation ( nicht ) ist die zweielementige boolesche Algebra. (B,, 0)

Mehr

30 Ringe und Körper Motivation Definition: Ring. Addition und eine. Häufig gibt es auf einer Menge zwei Verknüpfungen: eine

30 Ringe und Körper Motivation Definition: Ring. Addition und eine. Häufig gibt es auf einer Menge zwei Verknüpfungen: eine 30 Ringe und Körper 30.1 Motivation Häufig gibt es auf einer Menge zwei Verknüpfungen: eine Addition und eine Multiplikation. Beispiele: (Z, +, ) hier gibt es sogar noch eine Division mit Rest. (IR, +,

Mehr

Gegeben ist ein systematischer (7,3)-Cod. Die drei seiner Codewörter lauten:

Gegeben ist ein systematischer (7,3)-Cod. Die drei seiner Codewörter lauten: Prof. Dr.-Ing. H.G. Musmann INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 67 Hannover Gegeben ist ein systematischer (7,)-Cod. Die drei seiner

Mehr

Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik. Sommersemester 2018

Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik. Sommersemester 2018 Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik Sommersemester 2018 Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper).

Mehr

Kapitel III Ringe und Körper

Kapitel III Ringe und Körper Kapitel III Ringe und Körper 1. Definitionen und Beispiele Definition 117 Eine Algebra A = S,,, 0, 1 mit zwei zweistelligen Operatoren und heißt ein Ring, falls R1. S,, 0 eine abelsche Gruppe mit neutralem

Mehr

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche: Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 5/ 44 Unser Modell Shannon

Mehr

6 Fehlerkorrigierende Codes

6 Fehlerkorrigierende Codes R. Reischuk, ITCS 35 6 Fehlerkorrigierende Codes Wir betrachten im folgenden nur Blockcodes, da sich bei diesen das Decodieren und auch die Analyse der Fehlertoleranz-Eigenschaften einfacher gestaltet.

Mehr

Inhaltsverzeichnis. Grundlagen

Inhaltsverzeichnis. Grundlagen Grundlagen 1 Logik und Mengen... 1 1.1 Elementare Logik... 1 1.2 Elementare Mengenlehre... 10 1.3 Schaltalgebra... 15 1.3.1 Anwendung: Entwurf von Schaltkreisen... 21 1.4 Mit dem digitalen Rechenmeister...

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

Decodierung von Faltungscode- und Turbocode-basierten 2D-Barcodes unter Ausnutzung des Matched-Filter Ansatzes

Decodierung von Faltungscode- und Turbocode-basierten 2D-Barcodes unter Ausnutzung des Matched-Filter Ansatzes Decodierung von Faltungscode- und Turbocode-basierten 2D-Barcodes unter Ausnutzung des Matched-Filter Ansatzes Andreas Weinand 1, Wolfgang Sauer-Greff 2, Hans D. Schotten 1 1 Lehrstuhl für Funkkommunikation

Mehr

Körper- und Galoistheorie. Nachklausur mit Lösungen

Körper- und Galoistheorie. Nachklausur mit Lösungen Fachbereich Mathematik/Informatik 14. Januar 2012 Prof. Dr. H. Brenner Körper- und Galoistheorie Nachklausur mit en Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben

Mehr

Single Parity check Codes (1)

Single Parity check Codes (1) Single Parity check Codes (1) Der Single Parity check Code (SPC) fügt zu dem Informationsblock u = (u 1, u 2,..., u k ) ein Prüfbit (englisch: Parity) p hinzu: Die Grafik zeigt drei Beispiele solcher Codes

Mehr

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch

Mehr

Kanalkodierung. 6 Kanalkodierung Zielstellung. Störungen der übertragenen Daten. 6 Kanalkodierung Zielstellung WS 2018/2019

Kanalkodierung. 6 Kanalkodierung Zielstellung. Störungen der übertragenen Daten. 6 Kanalkodierung Zielstellung WS 2018/2019 Fakultät Informatik Institut Systemarchitektur Professur Datenschutz und Datensicherheit WS 2018/2019 6. Kanalkodierung Dr.-Ing. Elke Franz Elke.Franz@tu-dresden.de 6 Kanalkodierung Zielstellung en der

Mehr

Kapitel 13: Syndromcodierung / Hamming Codes

Kapitel 13: Syndromcodierung / Hamming Codes Kapitel 3: Syndromcodierung / Hamming Codes Ziele des Kapitels Lineare Codes Zyklische Codes Copyright M. Gross, ETH Zürich 26, 27 2 Parity-Check-Matrix Theorem: Die Minimaldistanz eines linearen Codes

Mehr

Algebra (Studiengang I+K)

Algebra (Studiengang I+K) Formeln und Notizen Algebra (Studiengang I+K) Florian Franzmann 7. April 2009, 23:50 Uhr Abbildungsverzeichnis Tabellenverzeichnis Inhaltsverzeichnis 1 Grundlegende Definitionen 2 1.1 Morphismen...................................

Mehr

Inhaltsverzeichnis. 2.6.5 C-Abhängigkeit... 155. 2.6.6 S- und R-Abhängigkeit... 156 2.6.7 EN-Abhängigkeit... 156 2.6.9 M-Abhängigkeit...

Inhaltsverzeichnis. 2.6.5 C-Abhängigkeit... 155. 2.6.6 S- und R-Abhängigkeit... 156 2.6.7 EN-Abhängigkeit... 156 2.6.9 M-Abhängigkeit... VII 1 Grundlagen der Elektrotechnik und Elektronik 1 1.1 Physikalische Größen................................ 1 1.1.1 Die Schreibweise von Gleichungen.................... 2 1.1.2 Ursachen und Wirkungen

Mehr

Fehlerkorrigierende Codes

Fehlerkorrigierende Codes Fehlerkorrigierende Codes 2016S Gerhard Dorfer 1 2 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführende Beispiele 4 2 Mathematische Grundlagen 6 3 Fehlererkennung und Fehlerkorrektur für Blockcodes 9 4

Mehr

Vorwort 13 Themenaspekte 13 Digitale Kommunikationstechniken 13 Übersicht über den Lehrstoff 14 Beispiele und Übungsaufgaben 15 Kursoptionen 15

Vorwort 13 Themenaspekte 13 Digitale Kommunikationstechniken 13 Übersicht über den Lehrstoff 14 Beispiele und Übungsaufgaben 15 Kursoptionen 15 Inhaltsverzeichnis Vorwort 13 Themenaspekte 13 Digitale Kommunikationstechniken 13 Übersicht über den Lehrstoff 14 Beispiele und Übungsaufgaben 15 Kursoptionen 15 Kapitel 1 Einleitung 17 1.1 Historischer

Mehr

IT-Sicherheitsmanagement. Teil 4: Einführung in algebraische Strukturen

IT-Sicherheitsmanagement. Teil 4: Einführung in algebraische Strukturen IT-Sicherheitsmanagement Teil 4: Einführung in algebraische Strukturen 19.09.18 1 Literatur und Videos [4-1] http://www.iti.fh-flensburg.de/lang/krypto [4-2] Forster, Otto: Algorithmische Zahlentheorie.

Mehr

Algebra, Kryptologie und Kodierungstheorie

Algebra, Kryptologie und Kodierungstheorie Algebra, Kryptologie und Kodierungstheorie Mathematische Methoden der Datensicherheit von Roland Matthes 1. Auflage Hanser München 2003 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 22431 5

Mehr

Ι. Einführung in die Codierungstheorie

Ι. Einführung in die Codierungstheorie 1. Allgemeines Ι. Einführung in die Codierungstheorie Codierung: Sicherung von Daten und Nachrichten gegen zufällige Fehler bei der Übertragung oder Speicherung. Ziel der Codierung: Möglichst viele bei

Mehr

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch.

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch. Abbildungen Rechnen Matrizen Rechnen Vektoren Äquivalenzrelation Addition: Skalarmultiplikation: Skalarprodukt: Länge eines Vektors: Vektorprodukt (im ): i ii i ii v) gilt (Cauchy-Schwarz-Ungleichung):

Mehr

IT-Security. Teil 9: Einführung in algebraische Strukturen

IT-Security. Teil 9: Einführung in algebraische Strukturen IT-Security Teil 9: Einführung in algebraische Strukturen 08.05.17 1 Literatur und Videos [9-1] http://www.iti.fh-flensburg.de/lang/krypto [9-2] Forster, Otto: Algorithmische Zahlentheorie. 2. Auflage,

Mehr

Literatur und Videos. ISM WS 2017/18 Teil 4/Algebren

Literatur und Videos. ISM WS 2017/18 Teil 4/Algebren Literatur und Videos [4-1] http://www.iti.fh-flensburg.de/lang/krypto [4-2] Forster, Otto: Algorithmische Zahlentheorie. 2. Auflage, Springer, 2015 [4-3] Teschl, Gerald; Teschl, Susanne: Mathematik für

Mehr

Fehlerkorrigierende Codes

Fehlerkorrigierende Codes Fehlerkorrigierende Codes 2018S Gerhard Dorfer 1 2 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführende Beispiele 4 2 Mathematische Grundlagen 6 3 Fehlererkennung und Fehlerkorrektur für Blockcodes 9 4

Mehr

INHALTSVERZEICHNIS XII

INHALTSVERZEICHNIS XII Inhaltsverzeichnis I Gruppen 1 1 Halbgruppen, Gruppen und Untergruppen... 1 1.1 Innere Verknüpfungen und Halbgruppen... 1 1.2 Beispiele... 2 1.3 Definition einer Gruppe... 4 1.4 Abschwächung der Gruppenaxiome...

Mehr

Inhaltsverzeichnis. Bibliografische Informationen digitalisiert durch

Inhaltsverzeichnis. Bibliografische Informationen  digitalisiert durch Inhaltsverzeichnis Gruppen 1 1 Halbgruppen, Gruppen und Untergruppen 1 1.1 Innere Verknüpfungen und Halbgruppen 1 1.2 Beispiele 2 1.3 Definition einer Gruppe 4 1.4 Abschwächung der Gruppenaxiome 4 1.5

Mehr

Stochastische Analysen und Algorithmen zur Soft Decodierung binärer linearer Blockcodes

Stochastische Analysen und Algorithmen zur Soft Decodierung binärer linearer Blockcodes UNIVERSITÄT DER BUNDESWEHR MÜNCHEN Fakultät für Elektrotechnik und Informationstechnik Stochastische Analysen und Algorithmen zur Soft Decodierung binärer linearer Blockcodes UNIVERSITÄT DER BUNDESWEHR

Mehr

KLAUSUR ZUR ALGEBRA UND ZAHLENTHEORIE. 15. Februar 2017 MUSTERLÖSUNG. Aufgabe Summe. Allgemeine Hinweise

KLAUSUR ZUR ALGEBRA UND ZAHLENTHEORIE. 15. Februar 2017 MUSTERLÖSUNG. Aufgabe Summe. Allgemeine Hinweise Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/2017 KLAUSUR ZUR ALGEBRA UND ZAHLENTHEORIE 15. Februar 2017 MUSTERLÖSUNG Nachname: Vorname: Studiengang: Aufgabe 1 2 3 4 5 6 7 8 9 Summe

Mehr

Die Mathematik in der CD

Die Mathematik in der CD Lehrstuhl D für Mathematik RWTH Aachen Lehrstuhl D für Mathematik RWTH Aachen St.-Michael-Gymnasium Monschau 14. 09. 2006 Codes: Definition und Aufgaben Ein Code ist eine künstliche Sprache zum Speichern

Mehr

Einführung in die Kodierungstheorie

Einführung in die Kodierungstheorie Anton Malevich Einführung in die Kodierungstheorie Skript zu einer im Februar 2013 gehaltenen Kurzvorlesung Fakultät für Mechanik und Mathematik Belorussische Staatliche Universität Institut für Algebra

Mehr

für alle a, b, x, y R.

für alle a, b, x, y R. Algebra I 13. April 2008 c Rudolf Scharlau, 2002 2008 33 1.5 Ringe Definition 1.5.1 Ein Ring ist eine Menge R zusammen mit zwei Verknüpfungen + und, genannt Addition und Multiplikation, für die folgendes

Mehr

Mathematik für Informatik und Biolnformatik

Mathematik für Informatik und Biolnformatik M.P.H. Wolff P. Hauck W. Küchlin Mathematik für Informatik und Biolnformatik Springer Inhaltsverzeichnis 1. Einleitung und Überblick... 1 1.1 Ziele und Entstehung des Buchs... 1 1.2 Wozu dient die Mathematik

Mehr

Dirk Hachenberger Mathematik für Informatiker

Dirk Hachenberger Mathematik für Informatiker Dirk Hachenberger Mathematik für Informatiker ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam Inhaltsverzeichnis Vorwort

Mehr

3.4 Erweiterungen von Ringen und Körpern

3.4 Erweiterungen von Ringen und Körpern Algebra I c Rudolf Scharlau, 2002 2010 145 3.4 Erweiterungen von Ringen und Körpern In diesem Abschnitt werden Erweiterungen von Ringen (etwas vereinfacht gesagt: Oberringe), insbesondere Erweiterungen

Mehr

Lehrbuch der Algebra, Vieweg 2007

Lehrbuch der Algebra, Vieweg 2007 Lehrbuch der Algebra, Vieweg 2007 Korrekturen und Ergänzungen V 16 statt 1931 lies 1930 VI 25 statt vorenthalten lies vorbehalten 1 8 statt [We] lies [We 1 ] 2 3 statt nicht leere Menge lies Menge 9 9

Mehr

Informationstheorie und Codierung

Informationstheorie und Codierung Informationstheorie und Codierung 5. Fehlerkorrigierende Codierung Grundlagen Fehlererkennung, Fehlerkorrektur Linearcodes, Hamming-Codes Zyklische Codes und technische Realisierung Burstfehlerkorrektur

Mehr

II. CODIERUNGSTHEORIE

II. CODIERUNGSTHEORIE II. CODIERUNGSTHEORIE Inhaltsverzeichnis 1 Einleitung 1 1.1 Literatur................................... 1 1.2 Übersicht.................................. 1 1.3 Mathematische Grundlagen der Codierungstheorie............

Mehr

Gruppe. Kanalcodierung

Gruppe. Kanalcodierung Kanalcodierung Ziele Mit diesen rechnerischen und experimentellen Übungen wird die prinzipielle Vorgehensweise zur Kanalcodierung mit linearen Block-Codes und mit Faltungscodes erarbeitet. Die konkrete

Mehr

Übung 14: Block-Codierung

Übung 14: Block-Codierung ZHW, NTM, 26/6, Rur Übung 4: Block-Codierung Aufgabe : Datenübertragung über BSC. Betrachten Sie die folgende binäre Datenübertragung über einen BSC. Encoder.97.3.3.97 Decoder Für den Fehlerschutz stehen

Mehr

Inhaltsverzeichnis. Leitfaden 1

Inhaltsverzeichnis. Leitfaden 1 Inhaltsverzeichnis Leitfaden 1 1 Gruppen 5 1.1 Halbgruppen, Gruppen und Untergruppen... 5 1.1.1 Innere Verknüpfungen und Halbgruppen... 5 1.1.2 Beispiele... 6 1.1.3 Definition einer Gruppe... 8 1.1.4 Abschwächung

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 22 Algebraische Körpererweiterung Satz 1. Sei K L eine Körpererweiterung und sei f L ein Element. Dann sind folgende Aussagen

Mehr

Vorlesung. Inhalt. Lineare Algebra und Wahrscheinlichkeitsrechnung für Informatik Gunter Ochs, Nico Rompos Sommersemester 2016

Vorlesung. Inhalt. Lineare Algebra und Wahrscheinlichkeitsrechnung für Informatik Gunter Ochs, Nico Rompos Sommersemester 2016 Vorlesung Lineare Algebra und Wahrscheinlichkeitsrechnung für Informatik Gunter Ochs, Nico Rompos Sommersemester 2016 Inhalt Polynome, Algebraische Strukturen Vektorrechnung Lineare Algebra Elementare

Mehr