PC I Thermodynamik G. Jeschke FS Lösung zur Übung 12

Größe: px
Ab Seite anzeigen:

Download "PC I Thermodynamik G. Jeschke FS Lösung zur Übung 12"

Transkript

1 PC I Thermodynamik G. Jeschke FS 2015 Lösung zur Übung Die Hydrierung von Ethen zu Ethan a) Die Reaktionsenthalpie ist direkt aus den in der Aufgabenstellung tabellierten Standardbildungsenthalpien von Ethen und Ethan gemäss R H = i ν i B H = kj mol kj mol 1 = kj mol 1 (1) zugänglich. Die freie Reaktionsenthalpie lässt sich über den Zusammenhang mit der gegebenen Gleichgewichtskonstanten K berechnen: R G = RT lnk = JK 1 mol K ln(2000) = 50.6 kj mol 1. (2) Die Reaktionsentropie ergibt sich nun durch Umstellung der Definitionsgleichung der freien Enthalpie als R G = R H T R S (3) R S = RH R G T [ ( 50.6)] kj mol 1 = 800 K = JK 1 mol 1. (4) Da R H < 0 ist, liegt eine exotherme Reaktion vor. b) Die Aufgabenstellung erfordert die Anwendung des Satzes von Hess, der besagt, dass sich die Enthalpieänderung einer Reaktionsfolge als Summe der Enthalpiebeiträge der einzelnen Reaktionsschritte ergibt. Mithilfe des Satzes von Hess lassen sich Reaktionsenthalpien von Reaktionen berechnen, wenn die Reaktionsenthalpien anderer Reaktionen bekannt sind, die über einen alternativen Reaktionsweg von den gleichen Edukten zu den gleichen Produkten führen. Dies ist besonders 1

2 nützlich für Reaktionen, für welche sich, z.b. wegen zu niedriger Reaktionsgeschwindigkeit, in der Praxis keine Messungen durchführen lassen. Hier lassen sich die drei Reaktionen mit gegebener bzw. berechneter Reaktionsenthalpie folgendermassen zu der gesuchten Reaktion kombinieren: Reaktion R H (I): C 2 H 4 (g) + H 2 (g) C 2 H 6 (g) kj mol 1 (II): C 2 H 6 (g) O 2(g) 2 CO 2 (g) + 3 H 2 O(g) 1560 kj mol 1 (III): H 2 (g) O 2(g) H 2 O(g) 286 kj mol 1 (I+II III): C 2 H 4 (g) + 3 O 2 (g) 2 CO 2 (g) + 2 H 2 O(g) kj mol 1 Die gesuchte Reaktionsenthalpie ergibt sich also gemäss R H = kj mol 1 + ( 1560 kj mol 1 ) ( 286 kj mol 1 ) = kj mol 1. (5) c) Entscheidend für die Druckabhängigkeit von K x ist nach Gl. (357) des Skriptes, K x p i ν i(g) = K (p ) i ν i(g), (6) der Umsatz an Teilchen in der Gasphase. Zunächst berechnen wir die druckunabhängige Gleichgewichtskonstante K bei der neuen Temperatur T 1 durch Einsetzen in Gl. (6) gemäss K 1 = K x,1 p i ν i(g) = p ( ) kpa = (7) 100 kpa Die Temperaturänderung auf T 1 hat das Gleichgewicht der exothermen Reaktion nun auf die Seite der Produkte verschoben (K < K 1). Daraus lässt sich schliessen, dass T 1 < 800 K sein muss. Da K nicht druckabhängig ist, gilt K 2 = K 1 = 5000 (8) und somit K x,2 = K p 2 p i ν i(g) = K 2 8 = (9) Die Druckerhöhung verschiebt das Gleichgewicht also erwartungsgemäss in Richtung des Produktes. 2

3 d) (i) Es muss die Rückreaktion, d.h. die Reaktion zu den Edukten Ethen und Wasserstoff, abgelaufen sein, da die Hinreaktion aufgrund des fehlenden Ethen im Startzustand nicht ablaufen kann und sich weiterhin Ethen und Wasserstoff gebildet haben. (ii) Um diese Frage zu beantworten, muss die Gleichgewichtskonstante K p für die Reaktion berechnet und mit den vorliegenden Bedingungen verglichen werden. Es gilt K p = K (p ) i ν i(g) (10) = 2000 = 0.02 Pa (11) Im thermodynamischen Gleichgewicht gilt weiterhin K p = i pν i i. Dieser Ausdruck wird nun für die gegebenen Partialdrücke der Reaktionskomponenten berechnet und mit dem Wert im Gleichgewicht verglichen. i p ν i i = p C 2 H 6 p C2 H 4 p H2 (12) = Pa 50 Pa Pa = Pa 1 = K p. (13) Das System hat also in sehr guter Näherung das Gleichgewicht erreicht. Daher wird die Reaktion nicht spontan weiter in diese Richtung laufen. (iii) Da zu Reaktionsbeginn kein Ethen vorhanden war und die Reaktionslaufzahl ξ = 1 mol beträgt, muss sich genau 1 mol Ethen gebildet haben. Entsprechend der Aufgabenstellung enspricht dies einem Druck von genau 50 Pa. Die Stoffmengen aller Komponenten am Ende der Reaktion, d.h. bei ξ = 1 mol, lassen sich berechnen als n C2 H 4 = 1 mol, n H2 = 50025/50 = mol, n C2 H 6 = 49925/50 = mol (14) und damit diejenigen der Ausgangsmischung als n 0,C2 H 4 = 0 mol, n 0,H2 = n H2 1 mol = mol, n 0,C2 H 6 = n C2 H mol = mol. (15) Demzufolge ist die gesamte Stoffmenge am Anfang der Reaktion 1999 mol. (iv) Am Anfang der Reaktion sind nur Ethan und Wasserstoff vorhanden. Da die Stoffmengen der beiden Gase gleich sind und wir ideale Gase betrachten, müssen auch beide Partialdrücke gleich sein, also p 0,H2 = p 0,C2 H 6 = Pa. (10 Punkte) 3

4 12.2 Herstellung von Phosphorpentachlorid a) Wir betrachten eine Ausgangsstoffmenge von jeweils 1 mol PCl 3 und Cl 2 angenommen. Um Gleichgewicht zu erreichen, wären unter den in der Aufgabenstellung gegebenen Bedingungen mol zu PCl 5 umgesetzt worden und mol verblieben. Mit x i = n i ergeben sich die Molenbrüche im Gleichgewicht zu i n i x PCl5 = und x PCl3 = x Cl2 = Mit p i = p ges x i = p x i (16) erhält man so die Partialdrücke p PCl5 = bar und p PCl3 = p Cl2 = bar. Mit diesen Werten ergibt sich K p als K p = p PCl 5 p PCl3 p Cl2 = bar ( bar) 2 = bar 1 (17) und K = K p (p ) ν i = K p 1 bar = da ν i = 1. Mit der Standardreaktionsenthalpie von R H = kj/mol und der freien Standardreaktionsenthalpie von R G = RT ln K (18) = Jmol 1 K K ln (3.251) = kjmol 1 und damit erhalten wir die Standardreaktionsentropie als R S = RH R G T = kjmol kjmol K b) Nach van t Hoff, Skript Gl. (373), gilt = J mol 1 K 1. (19) ln K 2 = ln K 1 RH ( 1 1 ) R T 2 T 1 (20) ( ) K 2 = K 1 e R H 1 1 R T 2 T 1 = e Jmol 1 ( Jmol 1 K K K) = (21) und K x,2 = K 2 ( p p ges ) ν i (g) mit ν i = 1 liefert K x,2 = K 2 = Aus der Stöchiometrie ergibt sich x PCl3 = x Cl2 und x PCl5 = 1 2x Cl2 und somit die quadratische Gleichung K x,2 = 1 2x Cl 2 x 2 Cl 2 (22) 0 = x 2 Cl 2 + 2x Cl 2 K x,2 1 K x,2 (23) 4

5 mit der physikalisch sinnvollen Lösung x Cl2 = K 1 x,2 + x Cl2 = x PCl3 = x PCl5 = 1 2x Cl2 = K 2 x,2 + K 1 x,2 (24) Die quadratische Gl. (23) hat selbstredend zwei Lösungen, von denen aber nur die in Gl. (24) angegebene physikalisch sinnvoll ist. Mit p i = p ges x i erhalten wir p PCl5 = bar und p PCl3 = p Cl2 = bar. Der Partialdruck von PCl 5 ist durch die Temperaturerhöhung von bar auf bar gefallen, was für eine kleinere Ausbeute spricht. Der Vorschlag ist damit unzweckmässig. c) Bei der Kompression auf p ges = 2 bar bei 473 K liefert uns K p = K (p ) ν i nun K p = K 1bar 1 = bar 1. Mit K x = K (p /p ges ) ν i und ν i = 1 ergibt sich damit K x = Für x Cl2, x PCl3 und x PCl5 erhalten wir also x Cl2 = Kx 1 + Kx 2 x Cl2 = x PCl3 = x PCl5 = 1 2x Cl2 = K 1 x (25) und somit p PCl5 = 0.93bar und p PCl3 = p Cl2 = 0.535bar. Bei Druckerhöhung wird das Reaktionsgleichgewicht, an den Molenbrüchen besser ersichtlich, in Richtung höherer Ausbeute von PCl 5 verschoben. Diese Variante erscheint damit als besser geeignet als die in b) vorgeschlagene. d) Mit einer Temperaturabsenkung auf 403 K ergibt sich ( ) K 2 = K 1 e R H 1 1 R T 2 T 1 = e Jmol 1 ( 8.314Jmol 1 K K 473K) 1 = (26) und damit K x,2 = K 2 = sowie schliesslich x Cl2 = K 1 x,2 + x Cl2 = x PCl3 = x PCl5 = 1 2x Cl2 = K 2 x,2 + K x,2 (27) und somit p PCl5 = bar und p PCl3 = p Cl2 = bar. Durch die Temperaturabsenkung ist das Gleichgewicht stark zugunsten einer guten Ausbeute an PCl 5 verschoben worden. Diese Variante ist letztendlich die zweckmässigste, allerdings aus einem wichtigeren Grund: PCl 5 desublimiert bei K. Die beiden anderen Komponenten sind bei dieser Temperatur noch gasförmig. Damit ergibt sich eine einfache Methode, dem Gleichgewicht schlagartig das gewünschte Produkt zu entziehen. (5 Punkte) 5

6 12.3 Herstellung von Essigsäureethylester a) Da i ν i =0, gilt (siehe Gl. 353 im Skript) K c = K x = K = [CH 3 COOC 2H 5 ][H 2 O] [CH 3 COOH][C 2 H 5 OH] (28) und wir knnen aus der folgenden Tabellierung der Stoffmengen aller Substanzen vor, nach und während der Reaktion CH 3 COOH(l) + C 2 H 5 OH(l) CH 3 COOC 2 H 5 (l) +H 2 O(l) vor der Reaktion : 2 mol 2 mol 0 mol 0 mol nach der Reaktion : 2 mol ξ 2 mol ξ ξ ξ ξ = 0.88 mol 1.12 mol 1.12 mol 0.88 mol 0.88 mol alle nötigen Stoffmengen ermitteln, um damit die Gleichgewichtskonstante zu berechnen. b) Die Reaktion ist endotherm, da K = = (29) R H = R G + T R S = RT ln K + T R S = ( ) J/mol = 4614 J/mol, (30) und eine Temperaturerhöhung verschiebt das Gleichgewicht zugunsten der Reaktionsprodukte. Ebenso kann kontinuierliches Abschöpfen des Essigsäureethylesters oder fortlaufende Abtrennung des entstehenden Wassers nach dem Massenwirkungsgesetz das Gleichgewicht auf die Seite der Produkte verlagern. c) Analog zu a) notieren wir die Stoffmengen in der nachfolgenden Tabelle CH 3 COOH(l) +C 2 H 5 OH(l) CH 3 COOC 2 H 5 (l) + H 2 O(l) vor der Reaktion : 1 mol 0 mol 3 mol 5 mol nach der Reaktion : 1 mol + ξ +ξ 3 mol ξ 5mol ξ und können mittels K = 0.62 = (3 ξ)(5 ξ) (1 + ξ)ξ (31) nun die gültige Lösung ξ 1 = 1.9 mol erhalten, da ξ 2 = mol negative Stoffmengen liefern würde. Damit sind 1.9 mol Ethanol entstanden. (3 Punkte) 6

Musterlösung Übung 9

Musterlösung Übung 9 Musterlösung Übung 9 Aufgabe 1: Chlorierung von Phosphotrichlorid a) Von 1 mol ursprünglichem PCl 3 und Cl 2 wären 0.515 mol zu PCl 5 reagiert und 0.485 mol verblieben. Mit x i = n i ergeben sich die Molenbrüche

Mehr

Musterlösung Übung 10

Musterlösung Übung 10 Musterlösung Übung 10 Aufgabe 1: Isotherme Titrationskalorimetrie a) Exothermic: It leads to an increase in T and a compensating decrease in applied power. b) After the 18th injection, the lysozyme is

Mehr

Musterlösung Übung 10

Musterlösung Übung 10 Musterlösung Übung 10 Aufgabe 1: Phasendiagramme Abbildung 1-1: Skizzen der Phasendiagramme von Wasser links) und Ethanol rechts). Die Steigung der Schmelzkurven sind zur besseren Anschaulichkeit überzogen

Mehr

Lösungsvorschlag zu Übung 11

Lösungsvorschlag zu Übung 11 PCI Thermodynamik G. Jeschke FS 2015 Lösungsvorschlag zu Übung 11 (Version vom 28.04.2015) Aufgabe 1 Alle Reaktionsgleichgewichte stellen sich bei 1000 K ein, damit sind alle Komponenten stets gasförmig.

Mehr

Musterlösung Übung 10

Musterlösung Übung 10 Musterlösung Übung 10 Aufgabe 1: Phasendiagramme Abbildung 1-1: Skizzen der Phasendiagramme von Wasser (links) und Ethanol (rechts). Die Steigung der Schmelzkurven sind zur besseren Anschaulichkeit überzogen

Mehr

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Institut für hysikalische Chemie Albert-Ludwigs-Universität Freiburg Lösungen zum 0. Übungsblatt zur Vorlesung hysikalische Chemie I SS 04 rof. Dr. Bartsch 0. L Die freie Standardreaktionsenthalpie der

Mehr

Die Innere Energie U

Die Innere Energie U Die Innere Energie U U ist die Summe aller einem System innewohnenden Energien. Es ist unmöglich, diese zu berechnen. U kann nicht absolut angegeben werden! Differenzen in U ( U) können gemessen werden.

Mehr

Übung 6. Allgemeine Chemie I Herbstsemester O(l) H 3. (g), (4) G 0 R = ( 32.89) kj/mol ( ) kj/mol (5) G 0 R = 101.

Übung 6. Allgemeine Chemie I Herbstsemester O(l) H 3. (g), (4) G 0 R = ( 32.89) kj/mol ( ) kj/mol (5) G 0 R = 101. Übung 6 Allgemeine Chemie I Herbstsemester 01 1. Aufgabe MM Aufgabe 1.10 Wir betrachten zuerst den Fall X = F. Reaktionsgleichung: BX 3 (g) + 3 H O(l) H 3 BO 3 (aq) + 3 HX(g) (X = F oder Cl) G 0 R = i

Mehr

Das Chemische Gleichgewicht

Das Chemische Gleichgewicht Das Chemische Gleichgewicht Geschwindigkeit der Hinreaktion: v hin = k hin c(a 2 ) c(x 2 ) Geschwindigkeit der Rückreaktion: v rück = k rück c 2 (AX) Gleichgewicht: v hin = v rück k hin c(a 2 ) c(x 2 )

Mehr

Thermodynamik. Thermodynamik ist die Lehre von den Energieänderungen im Verlauf von physikalischen und chemischen Vorgängen.

Thermodynamik. Thermodynamik ist die Lehre von den Energieänderungen im Verlauf von physikalischen und chemischen Vorgängen. Thermodynamik Was ist das? Thermodynamik ist die Lehre von den Energieänderungen im Verlauf von physikalischen und chemischen Vorgängen. Gesetze der Thermodynamik Erlauben die Voraussage, ob eine bestimmte

Mehr

4.3 Reaktionsgeschwindigkeit und Katalysator

4.3 Reaktionsgeschwindigkeit und Katalysator 4.3 Reaktionsgeschwindigkeit und Katalysator - Neben der thermodynamischen Lage des chemischen Gleichgewichts ist der zeitliche Ablauf der Reaktion, also die Geschwindigkeit der Ein- Einstellung des Gleichgewichts,

Mehr

Spezialfälle. BOYLE-MARIOTT`sches Gesetz p V = n R T bei T, n = konstant: p V = const. GAY-LUSSAC`sches Gesetz. bei V, n = konstant: p = const.

Spezialfälle. BOYLE-MARIOTT`sches Gesetz p V = n R T bei T, n = konstant: p V = const. GAY-LUSSAC`sches Gesetz. bei V, n = konstant: p = const. Spezialfälle BOYLE-MARIOTT`sches Gesetz p V = n R T bei T, n = konstant: p V = const. GAY-LUSSAC`sches Gesetz p V = n R T bei V, n = konstant: p = const. T Druck Druck V = const. Volumen T 2 T 1 Temperatur

Mehr

Übung 3. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) Verständnis des thermodynamischen Gleichgewichts

Übung 3. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) Verständnis des thermodynamischen Gleichgewichts Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) adiabatische Flammentemperatur Verständnis des thermodynamischen Gleichgewichts Definition von K X, K c, K p Berechnung von K

Mehr

Musterlösung Klausur Physikalische Chemie I: Thermodynamik (Januar 2009)

Musterlösung Klausur Physikalische Chemie I: Thermodynamik (Januar 2009) Musterlösung Klausur Physikalische Chemie I: Thermodynamik (Januar 2009) Aufgabe 1: Reaktionsthermodynamik a) möglichst niedrige Temeratur (begünstigt exotherme Reaktionen) möglichst hoher Druck (begünstigt

Mehr

Musterlösung Klausur Physikalische Chemie I: Thermodynamik

Musterlösung Klausur Physikalische Chemie I: Thermodynamik Musterlösung Klausur Physikalische Chemie I: hermodynamik Aufgabe : Dimerisierung von Stickstoffdioxid a Nach dem Prinzip des kleinsten Zwanges von LeChatelier sollte der Druck p möglichst klein und die

Mehr

Anorganische-Chemie. Dr. Stefan Wuttke Butenandstr. 11, Haus E, E

Anorganische-Chemie. Dr. Stefan Wuttke Butenandstr. 11, Haus E, E Dr. Stefan Wuttke Butenandstr. 11, Haus E, E 3.039 stefan.wuttke@cup.uni-muenchen.de www.wuttkegroup.de norganische-chemie Grundpraktikum für Biologen 2017 Chemische Gleichungen Chemische Reaktionen können

Mehr

Anorganische-Chemie. Dr. Stefan Wuttke Butenandstr. 11, Haus E, E

Anorganische-Chemie. Dr. Stefan Wuttke Butenandstr. 11, Haus E, E Dr. Stefan Wuttke Butenandstr. 11, Haus E, E 3.039 stefan.wuttke@cup.uni-muenchen.de www.wuttkegroup.de Anorganische-Chemie Grundpraktikum für Biologen 2016 Wie zählen wir Mengen in der Chemie? Stefan

Mehr

Anorganische-Chemie. Dr. Stefan Wuttke Butenandstr. 11, Haus E, E

Anorganische-Chemie. Dr. Stefan Wuttke Butenandstr. 11, Haus E, E Dr. Stefan Wuttke Butenandstr. 11, Haus E, E 3.039 stefan.wuttke@cup.uni-muenchen.de www.wuttkegroup.de Anorganische-Chemie Grundpraktikum für Biologen 2014/2015 Wie zählen wir Mengen in der Chemie? Stefan

Mehr

8.5 Das Reaktionsgleichgewicht. Für eine Bruttoreaktion gilt: Wdhl.: Stoffumwandlungen und Gleichgewicht aus Kap. 8.3

8.5 Das Reaktionsgleichgewicht. Für eine Bruttoreaktion gilt: Wdhl.: Stoffumwandlungen und Gleichgewicht aus Kap. 8.3 8.5 Das Reaktionsgleichgewicht Wdhl.: Stoffumwandlungen und Gleichgewicht aus Kap. 8.3 Die Teilchenzahlen in einem System können sich durch Stoffumwandlungen zum Beispiel verbunden mit chemischen Reaktionen

Mehr

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a)

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a) Aufgabe 1: Multiple Choice (10P) Geben Sie an, welche der Aussagen richtig sind. Unabhängig von der Form der Fragestellung (Singular oder Plural) können eine oder mehrere Antworten richtig sein. a) Welche

Mehr

weniger Gasteilchen enthält. In diesem Fall also auf die Produktseite.

weniger Gasteilchen enthält. In diesem Fall also auf die Produktseite. A ÜB Prinzip Le HATELIER Seite 1 von 5 1. a) Formulieren Sie für die folgenden Reaktionen jeweils und entscheiden Sie gemäss dem Prinzip Le hatelier in welche Richtung sich die jeweiligen Gleichgewichte

Mehr

Grundlagen der Chemie Chemisches Gleichgewicht

Grundlagen der Chemie Chemisches Gleichgewicht Chemisches Gleichgewicht Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Das Massenwirkungsgesetz Wenn Substanzen

Mehr

Thermochemie. Arbeit ist das Produkt aus wirkender Kraft F und Weglänge s. w = F s 1 J = 1 Nm = 1 kgm 2 /s 2

Thermochemie. Arbeit ist das Produkt aus wirkender Kraft F und Weglänge s. w = F s 1 J = 1 Nm = 1 kgm 2 /s 2 Thermochemie Energie ist die Fähigkeit, Arbeit zu leisten. E pot = m g h E kin = ½ m v 2 Arbeit ist das Produkt aus wirkender Kraft F und Weglänge s. w = F s 1 J = 1 Nm = 1 kgm 2 /s 2 Eine wirkende Kraft

Mehr

Thermo Dynamik. Mechanische Bewegung (= Arbeit) Wärme (aus Reaktion) maximale Umsetzung

Thermo Dynamik. Mechanische Bewegung (= Arbeit) Wärme (aus Reaktion) maximale Umsetzung Thermo Dynamik Wärme (aus Reaktion) Mechanische Bewegung (= Arbeit) maximale Umsetzung Aussagen der Thermodynamik: Quantifizieren von: Enthalpie-Änderungen Entropie-Änderungen Arbeit, maximale (Gibbs Energie)

Mehr

Homogenes Gleichgewicht

Homogenes Gleichgewicht Knoch, Anastasiya Datum der Durchführung: Petri, Guido 08.12.2015 (Gruppe 11) Datum der Korrektur: 02.02.2016 Praktikum Physikalische Chemie I. Thermodynamik Homogenes Gleichgewicht 1. Aufgabenstellung

Mehr

Enthalpie H (Wärmeinhalt, Wärmefunktion)

Enthalpie H (Wärmeinhalt, Wärmefunktion) Enthalpie H (Wärmeinhalt, Wärmefunktion) U = Q + W Innere Energie: Bei konstantem Volumen ablaufende Zustandsänderung (isochorer Prozess, dv=) W=p V= U=Q v Bei Zustandsänderung unter konstantem Druck (isobarer

Mehr

3.4 Chemische Reaktionen und Reaktionsgleichgewichte Diskussion der chemischen Reaktionsbereitschaft einer Mischung

3.4 Chemische Reaktionen und Reaktionsgleichgewichte Diskussion der chemischen Reaktionsbereitschaft einer Mischung Inhalt von Abschnitt 3.4 3.4-0 3.4 Chemische Reaktionen und Reaktionsgleichgewichte 3.4.1 Diskussion der chemischen Reaktionsbereitschaft einer Mischung 3.4.2 Die Änderung der freien Enthalpie und die

Mehr

Das Chemische Gleichgewicht

Das Chemische Gleichgewicht Das Chemische Gleichgewicht a A + b B c C + d D r r r r Für r G = 0 gilt: Q = K r G G E D r G = dg dx

Mehr

Anorganische-Chemie. Dr. Stefan Wuttke Butenandstr. 11, Haus E, E

Anorganische-Chemie. Dr. Stefan Wuttke Butenandstr. 11, Haus E, E Dr. Stefan Wuttke Butenandstr. 11, Haus E, E 3.039 stefan.wuttke@cup.uni-muenchen.de www.wuttkegroup.de norganische-chemie Grundpraktikum für Biologen 2014/2015 Chemische Bindung - Bindungsarten Stefan

Mehr

7.2 Energiebilanz bei chemischen Stoffumwandlungen

7.2 Energiebilanz bei chemischen Stoffumwandlungen 7.2 Energiebilanz bei chemischen Stoffumwandlungen Betrachtung eines Reaktionsgefäßes mit eintretenden Edukten und austretenden Produkten am Beispiel der Verbrennung eines Brennstoffes mit Luft (kinetische

Mehr

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Wärmekapazitäten isochore/isobare Zustandsänderungen Standardbildungsenthalpien Heizwert/Brennwert adiabatische Flammentemperatur WS 2013/14

Mehr

3.4 Chemische Reaktionen und Reaktionsgleichgewichte Diskussion der chemischen Reaktionsbereitschaft einer Mischung

3.4 Chemische Reaktionen und Reaktionsgleichgewichte Diskussion der chemischen Reaktionsbereitschaft einer Mischung Inhalt von Abschnitt 3.4 3.4-0 3.4 Chemische Reaktionen und Reaktionsgleichgewichte 3.4.1 Diskussion der chemischen Reaktionsbereitschaft einer Mischung 3.4.2 Die Änderung der freien Enthalpie und die

Mehr

Allgemeine Chemie für r Studierende der Zahnmedizin

Allgemeine Chemie für r Studierende der Zahnmedizin Allgemeine Chemie für r Studierende der Zahnmedizin Allgemeine und Anorganische Chemie Teil 3 Dr. Ulrich Schatzschneider Institut für Anorganische und Angewandte Chemie, Universität Hamburg Lehrstuhl für

Mehr

Chemie. Leistungskurs. Beispielaufgabe A 4. Auswahlverfahren: Hessisches Kultusministerium. Landesabitur 2007 Beispielaufgaben

Chemie. Leistungskurs. Beispielaufgabe A 4. Auswahlverfahren: Hessisches Kultusministerium. Landesabitur 2007 Beispielaufgaben Hessisches Kultusministerium Landesabitur 27 Beispielaugaben Chemie Leistungskurs Beispielaugabe A 4 Auswahlverahren: Von vier Teilaugaben (A1 A4) müssen drei Teilaugaben bearbeitet werden. Einlese- und

Mehr

D r H Entropie-Änderungeng. D rs Arbeit, maximale (Nicht Volumen) D r G

D r H Entropie-Änderungeng. D rs Arbeit, maximale (Nicht Volumen) D r G REP Was schon behandelt wurde: 1. Hauptsatz 2. Hauptsatz Enthalpie-Änderungen D r H Entropie-Änderungeng D rs Arbeit, maximale (Nicht Volumen) D r G REP D r G = D r H - TDD r S Gleichgewicht: D r G = 0

Mehr

1 Halbwertszeit einer allgemeinen Reaktion m-ter Ordnung

1 Halbwertszeit einer allgemeinen Reaktion m-ter Ordnung Physikalische Chemie II Lösung 5 6. Oktober 25 Halbwertszeit einer allgemeinen Reaktion m-ter Ordnung Für c = c B =... = c gilt c (t) = c B (t) =... = c(t) und das Geschwindigkeitsgesetz lautet dc(t) =

Mehr

Abiturvorbereitung Energetik

Abiturvorbereitung Energetik Abiturvorbereitung Energetik Folgende Fragen sind an Chemie-Abiturfragen aus Baden-Württemberg angelehnt, wurden jedoch aus didaktischen Gründen in der Aufgabenstellung ergänzt, modifiziert oder gekürzt.

Mehr

PC I Thermodynamik J. Stohner/M. Quack Sommer Übung 12

PC I Thermodynamik J. Stohner/M. Quack Sommer Übung 12 PC I Thermodynamik J. Stohner/M. Quack Sommer 2006 Übung 12 Ausgabe: Dienstag, 20. 6. 2006 Rückgabe: Dienstag, 27. 6. 2006 (vor Vorlesungsbeginn) Besprechung: Freitag, 30.6./Montag, 3.7.2006 (in der Übungsstunde)

Mehr

1 I. Thermodynamik. 1.1 Ideales Gasgesetz. 1.2 Vereinfachte kinetische Gastheorie. 1.3 Erster Hauptsatz der Thermodynamik.

1 I. Thermodynamik. 1.1 Ideales Gasgesetz. 1.2 Vereinfachte kinetische Gastheorie. 1.3 Erster Hauptsatz der Thermodynamik. 1 I. hermodynamik 1.1 Ideales Gasgesetz eilchenzahl N Stoffmenge: n [mol], N A = 6.022 10 23 mol 1 ; N = nn A molare Größen: X m = X/n ideales Gasgesetz: V = nr, R = 8.314JK 1 mol 1 Zustandsgrößen:, V,,

Mehr

Praktische Einführung in die Chemie Integriertes Praktikum:

Praktische Einführung in die Chemie Integriertes Praktikum: Praktische Einführung in die Chemie Integriertes Praktikum: Versuch 1-2 (MWG) Massenwirkungsgesetz Versuchs-Datum: 20. Juni 2012 Gruppenummer: 8 Gruppenmitglieder: Domenico Paone Patrick Küssner Michael

Mehr

Allgemeine Chemie für r Studierende der Medizin

Allgemeine Chemie für r Studierende der Medizin Allgemeine Chemie für r Studierende der Medizin Allgemeine und Anorganische Chemie Teil 4+5 Dr. Ulrich Schatzschneider Institut für Anorganische und Angewandte Chemie, Universität Hamburg Lehrstuhl für

Mehr

c C 2 K = c A 2 c B 2mol /l 2 0,5mol /l 2 4 mol /l K =4l /mol

c C 2 K = c A 2 c B 2mol /l 2 0,5mol /l 2 4 mol /l K =4l /mol Berechnungen zum Massenwirkungsgesetz 1/13 Jakob 2010 Fall 1a: Gegeben: Gleichgewichtskonzentrationen aller Stoffe; Gesucht: Gleichgewichtskonstante Die Reaktion 2A + B 2C befindet sich im Gleichgewicht.

Mehr

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C?

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? (-> Tabelle p) A 1.1 b Wie groß ist der Auftrieb eines Helium (Wasserstoff) gefüllten

Mehr

Lösungsvorschlag Übung 2

Lösungsvorschlag Übung 2 Lösungsvorschlag Übung Aufgabe : Dichte von Gasen a) Die Dichte ρ eines Gases ist definiert als der Quotient aus Masse m und Volumen V ρ = m V..) Die Masse eines Gases erhält man aus dem Produkt seiner

Mehr

Themen heute: Reaktionsgleichungen, chemische Gleichgewichte

Themen heute: Reaktionsgleichungen, chemische Gleichgewichte Wiederholung der letzten Vorlesungsstunde: Ionenbindung, Coulomb-Gesetz, Ionen- (Kristall-)strukturen, NaCl, CsCl, ZnS, Elementarzelle, 7 Kristallsysteme Themen heute: Reaktionsgleichungen, chemische Gleichgewichte

Mehr

Übung zum chemischen Praktikum für Studierende der Biologie und Medizin Übung Nr. 1, /

Übung zum chemischen Praktikum für Studierende der Biologie und Medizin Übung Nr. 1, / Übung zum chemischen Praktikum für Studierende der Biologie und Medizin Übung Nr. 1, 18.04.11 / 19.04.11 Lösung 1. Proteine sind Biopolymere, welche aus langen Ketten von Aminosäuren bestehen. a) Zeichnen

Mehr

Physikalische Chemie 1 (Thermodyn. u. Elektrochemie) SS09 - Blatt 1 von 13. Klausur PC 1. Sommersemester :15 bis 11:45.

Physikalische Chemie 1 (Thermodyn. u. Elektrochemie) SS09 - Blatt 1 von 13. Klausur PC 1. Sommersemester :15 bis 11:45. Physikalische Chemie 1 (Thermodyn. u. Elektrochemie) SS09 - Blatt 1 von 13 Klausur PC 1 Sommersemester 2009 03.08.2007 10:15 bis 11:45 Name: Vorname: geb. am: in: Matrikelnummer: Unterschrift: Für die

Mehr

ÜBUNGEN ZUR VORLESUNG Physikalische Chemie I (PC I) (Prof. Meerholz, Hertel, Klemmer) Blatt 14,

ÜBUNGEN ZUR VORLESUNG Physikalische Chemie I (PC I) (Prof. Meerholz, Hertel, Klemmer) Blatt 14, ÜBUNGEN ZUR VORLESUNG Physikalische Chemie I (PC I) (Prof. Meerholz, Hertel, Klemmer) Blatt 14, 12.02.2016 Aufgabe 1 Kreisprozesse Mit einem Mol eines idealen, monoatomaren Gases (cv = 3/2 R) wird, ausgehend

Mehr

A 2.6 Wie ist die Zusammensetzung der Flüssigkeit und des Dampfes eines Stickstoff-Sauerstoff-Gemischs

A 2.6 Wie ist die Zusammensetzung der Flüssigkeit und des Dampfes eines Stickstoff-Sauerstoff-Gemischs A 2.1 Bei - 10 o C beträgt der Dampfdruck des Kohlendioxids 26,47 bar, die Dichte der Flüssigkeit 980,8 kg/m 3 und die Dichte des Dampfes 70,5 kg/m 3. Bei - 7,5 o C beträgt der Dampfdruck 28,44 bar. Man

Mehr

Klausur zu Grundlagen der Physikalischen Chemie (21371) - Teil 1

Klausur zu Grundlagen der Physikalischen Chemie (21371) - Teil 1 Klausur zu Grundlagen der Physikalischen Chemie (21371) - Teil 1 Name: Mat.Nr.: Punkte: /50 Zur Bearbeitung der folgenden Aufgaben haben Sie 90 Minuten Zeit. Antworten dürfen in Form von Stichpunkten gegeben

Mehr

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Kapitel 7: Boltzmann-Verteilung Kapitel 8: Statistische Beschreibung makroskopischer Grössen Kapitel 9: Thermodynamik:

Mehr

Lösungen 10 (Kinetik)

Lösungen 10 (Kinetik) Chemie I WS 2003/2004 Lösungen 10 (Kinetik) Aufgabe 1 Verschiedenes 1.1 Als Reaktionsgeschwindigkeit v c wird die Ableitung der Konzentration eines Reaktanden A nach der Zeit t, dividiert durch dessen

Mehr

Richtung chemischer Reaktionen, chemisches Gleichgewicht. Massenwirkungsgesetz

Richtung chemischer Reaktionen, chemisches Gleichgewicht. Massenwirkungsgesetz Richtung chemischer Reaktionen, chemisches Gleichgewicht a A + b B K [C] [A] c a [D] [B] c C + d D d b K = Gleichgewichtskonstante Massenwirkungsgesetz [ ] = in Lösung: Konzentration (in mol L -1 ), für

Mehr

Allgemeine Chemie. SS 2014 Thomas Loerting. Thomas Loerting Allgemeine Chemie

Allgemeine Chemie. SS 2014 Thomas Loerting. Thomas Loerting Allgemeine Chemie Allgemeine Chemie SS 2014 Thomas Loerting 1 Inhalt 1 Der Aufbau der Materie (Teil 1) 2 Die chemische Bindung (Teil 2) 3 Die chemische Reaktion (Teil 3) 2 Definitionen von den an einer chemischen Reaktion

Mehr

Thermodynamik & Kinetik

Thermodynamik & Kinetik Thermodynamik & Kinetik Inhaltsverzeichnis Ihr versteht die Begriffe offenes System, geschlossenes System, isoliertes System, Enthalpie, exotherm und endotherm... 3 Ihr kennt die Funktionsweise eines Kalorimeters

Mehr

Richtung chemischer Reaktionen, Chemisches Gleichgewicht. Massenwirkungsgesetz

Richtung chemischer Reaktionen, Chemisches Gleichgewicht. Massenwirkungsgesetz Richtung chemischer Reaktionen, Chemisches Gleichgewicht a A + b B K = [C] [A] c a [D] [B] c C + d D d b Massenwirkungsgesetz K = Gleichgewichtskonstante [ ] = in Lösung: Konzentration (in mol L -1 ),

Mehr

Das chemische Gleichgewicht

Das chemische Gleichgewicht Das chemische Gleichgewicht Modell: Geschlossenes Gefäß mit Flüssigkeit, die verdampft ( T=const ) Moleküle treten über in die Dampfphase H 2 O (l) H 2 O (g) H 2 O (g) Dampfdruck p H 2 O (l) T = const.

Mehr

Übung zur Einführung in die Physikalische Chemie I für Biologen, Pharmazeuten und Lehramt Wintersemester 2008/09 Klausur. Name:

Übung zur Einführung in die Physikalische Chemie I für Biologen, Pharmazeuten und Lehramt Wintersemester 2008/09 Klausur. Name: Übung zur Einführung in die Physikalische Chemie I für Biologen, Pharmazeuten und Lehramt Wintersemester 2008/09 Klausur Department Chemie Prof. D. Lamb, PhD Prof. Dr. Ch. Scheu Name: Bitte schreiben Sie

Mehr

7. Chemische Reaktionen

7. Chemische Reaktionen 7. Chemische Reaktionen 7.1 Thermodynamik chemischer Reaktionen Welche Reaktion läuft spontan freiwillig ab? H 2 + I 2 2HI H 2 + I 2 2HI H 2 + I 2 2HI Wie ist der Energieumsatz einer Reaktion? Welche Wärme

Mehr

1 Aufwärmen nach den Ferien

1 Aufwärmen nach den Ferien Physikalische Chemie II Lösung 23. September 206 Aufwärmen nach den Ferien. Ermitteln Sie die folgenden Integrale. Partielle Integration mit der Anwendung der generellen Regel f g = fg fg (in diesem Fall

Mehr

Produkten am Beispiel der Verbrennung eines Brennstoffes mit Luft. Massen-, Energie- und Entropieströme treten in die Kammer ein bzw. aus.

Produkten am Beispiel der Verbrennung eines Brennstoffes mit Luft. Massen-, Energie- und Entropieströme treten in die Kammer ein bzw. aus. 7.2 Energiebilanz bei chemischen Stoffumwandlungen 2.2-1 Betrachtung eines Reaktionsgefäßes mit eintretenden Edukten und austretenden Produkten am Beispiel der Verbrennung eines Brennstoffes mit Luft Massen-,

Mehr

LN Vortermin SS 02. PC Teil

LN Vortermin SS 02. PC Teil LN Vortermin SS 02 PC Teil 1. 15g Magnesium werden mit Salzsäure im Überschuß versetzt. Folgende Standardbildungsenthalpien bei 198K sind dazu gegeben: Mg 2+ -466,85 kj/mol Cl - aq -167,16 kj/mol a) Berechnen

Mehr

Prüfungsaufgaben zur Reaktionsgeschwindigkeit und zum chemischem Gleichgewicht

Prüfungsaufgaben zur Reaktionsgeschwindigkeit und zum chemischem Gleichgewicht Prüfungsaufgaben zur Reaktionsgeschwindigkeit und zum chemischem Gleichgewicht Hilfsmittel: Tabellenbuch, Taschenrechner (nicht programmierbar) 1. Folgende Reaktionen finden in geschlossenen Systemen statt.

Mehr

2. Klausur zur Vorlesung Physikalische Chemie I

2. Klausur zur Vorlesung Physikalische Chemie I 2. Klausur zur Vorlesung Physikalische Chemie I Sommersemester 2006 20. Juli 2006 Angaben zur Person (BITTE LESERLICH UND IN DRUCKBUCHSTABEN) Name, Vorname... Geburtsdatum und -ort... Matrikelnummer...

Mehr

Thermodynamik. Thermodynamik

Thermodynamik. Thermodynamik Geschlossenes System: Energieaustausch, aber kein Materieaustausch mit der Umgebung. Innere Energie: Jeder Stoff hat in sich Energie in irgendeiner Form gespeichert: die innere Energie U. U 1 = innere

Mehr

Bevor man sich an diesen Hauptsatz heranwagt, muss man sich über einige Begriffe klar sein. Dazu gehört zunächst die Energie.

Bevor man sich an diesen Hauptsatz heranwagt, muss man sich über einige Begriffe klar sein. Dazu gehört zunächst die Energie. Thermodynamik 1 1.Hauptsatz der Thermodynamik Bevor man sich an diesen Hauptsatz heranwagt, muss man sich über einige Begriffe klar sein. Dazu gehört zunächst die Energie. Energie ist die Fähigkeit Arbeit

Mehr

Physikalische Chemie Praktikum. Thermodynamik: Verbrennungsenthalpie einer organischen Substanz

Physikalische Chemie Praktikum. Thermodynamik: Verbrennungsenthalpie einer organischen Substanz Hochschule Emden/Leer Physikalische Chemie Praktikum Vers. Nr. 18 Nov. 2016 Thermodynamik: Verbrennungsenthalpie einer organischen Substanz Allgemeine Grundlagen 1. Hauptsatz der Thermodynamik, Enthalpie,

Mehr

1. Klausur: Veranstaltung Allgemeine und Anorganische Chemie

1. Klausur: Veranstaltung Allgemeine und Anorganische Chemie 1. Klausur: Veranstaltung Allgemeine und Anorganische Chemie Geowissenschaften (BSc, Diplom), Mathematik (BSc, Diplom), Informatik mit Anwendungsfach Chemie und andere Naturwissenschaften 1. Klausur Modulbegleitende

Mehr

Physikalische Chemie I

Physikalische Chemie I M.Bredol / MP Physikalische Chemie I / 10.3.16 1 Physikalische Chemie I Nachname orname Matrikel Aufgabe Punkte erreicht Note 1 20 2 20 3 20 4 22 5 18 Summe: 100 1. Gegeben seien 20 g Kohlendioxid, die

Mehr

Klausur zur Vorlesung "Allgemeine Chemie " am

Klausur zur Vorlesung Allgemeine Chemie  am 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Σ Klausur zur Vorlesung "Allgemeine Chemie " am 08.02.2007 Name: Vorname: Matr.-Nr. Studiengang: Platz.-Nr. Hinweise für die Bearbeitung der Aufgaben 1) Hilfsmittel außer

Mehr

Grundlagen der Kinetik

Grundlagen der Kinetik Kapitel 1 Grundlagen der Kinetik In diesem Kapitel werden die folgenden Themen kurz wiederholt: Die differenziellen und integralen Geschwindigkeitsgesetze von irreversiblen Reaktionen., 1., und. Ordnung

Mehr

Benutzen Sie, falls erforderlich, die folgenden Werte für die Naturkonstanten. Naturkonstante Zahlenwert Einheit

Benutzen Sie, falls erforderlich, die folgenden Werte für die Naturkonstanten. Naturkonstante Zahlenwert Einheit Benutzen Sie, falls erforderlich, die folgenden Werte für die Naturkonstanten. Naturkonstante Zahlenwert Einheit Allgemeine Gaskonstante R 8,31 J mol -1 K -1 Elementarladung e 1,60 10-19 C Faradaykonstante

Mehr

1 Translationszustandssumme

1 Translationszustandssumme 1 Translationszustandssumme Um die Gleichung für die dreidimensionale Translationszustandssumme (Gl. (4.89c) im Skript) ( ) 2πmkB T 3/2 q t,3d V h 2 (1) aus der Gleichung für die Zustandsdichte ρ(e) m

Mehr

Vorlesung Anorganische Chemie

Vorlesung Anorganische Chemie Vorlesung Anorganische Chemie Prof. Ingo Krossing WS 2007/08 B.Sc. Chemie Lernziele Block 5 Verhalten von Lösungen Konzentrationen Solvatation und Solvatationsenthalpie Kolligative Eigenschaften Kryoskopie/Ebullioskopie

Mehr

Energie und chemische Reaktion. Was ist Energie? Welche Einheit hat Energie?

Energie und chemische Reaktion. Was ist Energie? Welche Einheit hat Energie? Was ist Energie? Welche Einheit hat Energie? Was ist Energie? Es gibt verschiedene Formen von Energie, die ineinander überführt werden können. Energie kann jedoch nicht vernichtet oder erzeugt. Es gibt

Mehr

Übungen zur VL Chemie für Biologen und Humanbiologen 05.12.2011 Lösung Übung 6

Übungen zur VL Chemie für Biologen und Humanbiologen 05.12.2011 Lösung Übung 6 Übungen zur VL Chemie für Biologen und Humanbiologen 05.12.2011 Lösung Übung 6 Thermodynamik und Gleichgewichte 1. a) Was sagt die Enthalpie aus? Die Enthalpie H beschreibt den Energiegehalt von Materie

Mehr

PC I Thermodynamik und Transportprozesse

PC I Thermodynamik und Transportprozesse 13.06.2006 16:37 1 PC I Thermodynamik und Transportprozesse Kapitel 4 13.06.2006 16:37 2 Chemische und Physikalische Umwandlungen Das chemische Gleichgewicht: Minimum der Freien Enthalpie Reaktionslaufzahl

Mehr

Chemie für Biologen. Vorlesung im. WS 2004/05 V2, Mi 10-12, S04 T01 A02. Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen

Chemie für Biologen. Vorlesung im. WS 2004/05 V2, Mi 10-12, S04 T01 A02. Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen Chemie für Biologen Vorlesung im WS 200/05 V2, Mi 10-12, S0 T01 A02 Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen (Teil : 03.11.200) MILESS: Chemie für Biologen 66 Chemische

Mehr

Schülervorbereitungsseminar an der Rheinischen Friedrich-Wilhelms- Universität Bonn für die Chemieolympiade Teil 3: Physikalische Chemie

Schülervorbereitungsseminar an der Rheinischen Friedrich-Wilhelms- Universität Bonn für die Chemieolympiade Teil 3: Physikalische Chemie Prof. Dr. Robert Glaum Institut für Anorganische Chemie Gerhard-Domagk-Straße 1 D-53121 Bonn (Germany) Tel. +49 228 / 73 53 53 Fax. +49 228 / 73 56 60 e-mail: rglaum @uni-bonn.de Schülervorbereitungsseminar

Mehr

2. Chemische Reaktionen und chemisches Gleichgewicht

2. Chemische Reaktionen und chemisches Gleichgewicht 2. Chemische Reaktionen und chemisches Gleichgewicht 2.1 Enthalpie (ΔH) Bei chemischen Reaktionen reagieren die Edukte zu Produkten. Diese unterscheiden sich in der inneren Energie. Es gibt dabei zwei

Mehr

Zweiter Hauptsatz der Thermodynamik

Zweiter Hauptsatz der Thermodynamik Zweiter Hauptsatz der hermodynamik Spontan ablaufende Prozesse: Expansion von ideale Gasen Diffusion Wärmeaustausch Der 2. Hauptsatz der hermodynamik liefert Kriterien, mit deren Hilfe sich die Richtung

Mehr

Basiswissen Chemie. Vorkurs des MINTroduce-Projekts

Basiswissen Chemie. Vorkurs des MINTroduce-Projekts Basiswissen Chemie Vorkurs des MINTroduce-Projekts Christoph Wölper christoph.woelper@uni-due.de Sprechzeiten (Raum: S07 S00 C24 oder S07 S00 D27) Organisatorisches Kurs-Skript http://www.uni-due.de/ adb297b

Mehr

Verbrennungsenergie und Bildungsenthalpie

Verbrennungsenergie und Bildungsenthalpie Praktikum Physikalische Chemie I 1. Januar 2016 Verbrennungsenergie und Bildungsenthalpie Guido Petri Anastasiya Knoch PC111/112, Gruppe 11 Aufgabenstellung Die Bildungsenthalpie von Salicylsäure wurde

Mehr

Übungsblatt MWG und Spontanität 2 Seite 1 von 6

Übungsblatt MWG und Spontanität 2 Seite 1 von 6 Übungsblatt MWG und Spontanität Seite 1 von 6 Aufgabe 1 Im Gleichgewicht H (g) + N (g) NH (g) mit 7.18. 10 - ka - betragen die Gleichgewichtsdrücke p(n ) 6.4 ka und p(nh ) 16.8 ka. Wie gross ist der Gleichgewichtsdruck

Mehr

Das Chemische Gleichgewicht

Das Chemische Gleichgewicht Das Chemische Gleichgewicht 2 Ein chemisches Gleichgewicht herrscht dann, wenn Hin- sowie Rückreaktion gleich schnell ablaufen. Die Reaktionsgeschwindigkeit der Gesamtreaktion erscheint daher gleich null,

Mehr

Zentralprüfung SwissChO 2016

Zentralprüfung SwissChO 2016 PROBLEM 1 - VERSCHIEDENE FRAGEN 9.5 PUNKTE a 6 N A = 3.61 10 4 mol 1 Punkt b Aufgrund der Verdünnung hat man 0.05M Br Ionen, 0.05M I Ionen und 0.1M Br + Ionen. 1/ Punkt wenn Br und I richtig, 1/ Punkt

Mehr

Thermodynamik II. G 0 Ed = G 0 A + G 0 B = n A,st g 0. = n A,st

Thermodynamik II. G 0 Ed = G 0 A + G 0 B = n A,st g 0. = n A,st Thermodynamik II Lösung ufgabe 89 sgleichgewicht a us der efinition der Freien Enthalie H T S ergibt sich bei Referenzdruck Index aus den molaren ildungsenthalien und den absoluten Entroien die Freie Enthalie

Mehr

1.1 V 1 Überprüfung des Satzes von Hess mit der Reaktion von Calcium und Salzsäure

1.1 V 1 Überprüfung des Satzes von Hess mit der Reaktion von Calcium und Salzsäure 1.1 V 1 Überprüfung des Satzes von Hess mit der Reaktion von Calcium und Salzsäure In diesem Versuch soll der Satz von Hess (die umgesetzte Wärmemenge ist bei einer chemischen Reaktion unabhängig vom Weg)

Mehr

Grundlagen der Physiologie

Grundlagen der Physiologie Grundlagen der Physiologie Bioenergetik www.icbm.de/pmbio Energieformen Von Lebewesen verwertete Energieformen o Energie ist etwas, das Arbeit ermöglicht. o Lebewesen nutzen nur zwei Formen: -- Licht --

Mehr

Reaktion und Energie

Reaktion und Energie Reaktion und Energie Grundsätzliches Bei chemischen Reaktionen werden die Atome der Ausgangsstoffe neu angeordnet, d. h. Bindungen werden gespalten und neu geknüpft. Die Alltasgserfahrung legt nahe, dass

Mehr

PCI (Biol./Pharm.) Thermodyn. Musterlösung Übung 5 H.P. Lüthi / R. Riek HS Musterlösung Übung 5

PCI (Biol./Pharm.) Thermodyn. Musterlösung Übung 5 H.P. Lüthi / R. Riek HS Musterlösung Übung 5 Musterlösung Übung 5 ufgabe 1: Enthalpieänderungen bei Phasenübergängen Es ist hilfreich, zuerst ein Diagramm wie das folgende zu konstruieren: (Die gesuchten Werte sind in den umrandeten oxen.) sub X

Mehr

Berechnen Sie die Wärmemenge in kj, die erforderlich ist, um 750g H 2 O von

Berechnen Sie die Wärmemenge in kj, die erforderlich ist, um 750g H 2 O von Aufgabe 1: Berechnen Sie die Wärmemenge in kj, die erforderlich ist, um 750g H O von 0 C bis zum Siedepunkt (100 C) zu erwärmen. Die spezifische Wärmekapazität von Wasser c = 4.18 J K - 1 g -1. Lösung

Mehr

Exercise(1!Solution(Proposal!

Exercise(1!Solution(Proposal! Exercise(1Solution(Proposal (a Gemischzusammensetzung zu Beginn # Mol Mol Fraction Xi CO CO2 1.333 H2 2.666 H2O ntot 3 zu Beginn enthaelt der Gemisch: CO2, H2 beim Gleichgewichtszustand enthaelt der Gemisch:

Mehr

Die bei chemischen Reaktionen auftretenden Energieumsätze werden nicht durch stöchiometrische Gesetze erfasst. Sie sind Gegenstand der Thermodynamik.

Die bei chemischen Reaktionen auftretenden Energieumsätze werden nicht durch stöchiometrische Gesetze erfasst. Sie sind Gegenstand der Thermodynamik. Die Stöchiometrie ist die Lehre von der Zusammensetzung chemischer Verbindungen, sowie der Massen-, Volumen- und Ladungsverhältnisse bei chemischen Reaktionen. Die bei chemischen Reaktionen auftretenden

Mehr

Bekannter Stoff aus dem 1. Semester:

Bekannter Stoff aus dem 1. Semester: Bekannter Stoff aus dem 1. Semester: Atombau! Arten der Teilchen! Elemente/Isotope! Kernchemie! Elektronenhülle/Quantenzahlen Chemische Bindung! Zustände der Materie! Ionenbindung! Atombindung! Metallbindung

Mehr

VERSUCH 16 CHEMISCHES GLEICHGEWICHT IN DER GASPHASE

VERSUCH 16 CHEMISCHES GLEICHGEWICHT IN DER GASPHASE GRUNDPRAKTIKUM PHYSIKALISCHE CHEMIE VERSUCH 16 CHEMISCHES GLEICHGEWICHT IN DER GASPHASE Kurzbeschreibung: Die Temperaturabhängigkeit des chemischen Gasphasen-Gleichgewichts wird unter isobaren Bedingungen

Mehr

Chemie Klausur

Chemie Klausur Chemie Klausur 12.1 1 21. Oktober 2002 Aufgaben Aufgabe 1 1.1. Definiere: Innere Energie, Enthalpieänderung, Volumenarbeit, Standard-Bildungsenthalpie, molare Standard- Bildungsenthalpie. 4 VP 1.2. Stelle

Mehr

Übungsblatt 2 ( )

Übungsblatt 2 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 01 Übungsblatt (11.05.01) 1) Geschwindigkeitsverteilung eines idealen Gases (a) Durch welche Verteilung lässt sich die Geschwindigkeitsverteilung

Mehr

Prof. Dr. J. Gmehling Universität Oldenburg, Institut für Reine und Angewandte Chemie, Technische Chemie, D Oldenburg

Prof. Dr. J. Gmehling Universität Oldenburg, Institut für Reine und Angewandte Chemie, Technische Chemie, D Oldenburg Abschlussbericht an die Max-Buchner-Forschungsstiftung (FKZ: 277) Messung der Gleichgewichtslage und der Kinetik ausgewählter Veretherungsreaktionen und Überprüfung der Vorhersagbarkeit der Lösungsmitteleffekte

Mehr