Kapitel ML: I. I. Einführung. Beispiele für Lernaufgaben Spezifikation von Lernproblemen

Größe: px
Ab Seite anzeigen:

Download "Kapitel ML: I. I. Einführung. Beispiele für Lernaufgaben Spezifikation von Lernproblemen"

Transkript

1 Kapitel ML: I I. Einführung Beispiele für Lernaufgaben Spezifikation von Lernproblemen ML: I-8 Introduction c STEIN/LETTMANN

2 Beispiele für Lernaufgaben Autoeinkaufsberater Welche Kriterien liegen einer Entscheidung zugrunde? ML: I-9 Introduction c STEIN/LETTMANN

3 Beispiele für Lernaufgaben Risikoanalyse bei Kreditvergabe Kunde 1 Hausbesitzer ja Einkommen (p.a.) EUR Tilgung (p.m.) EUR Kreditlaufzeit 7 Jahre SCHUFA-Eintrag nein Alter 37 verheiratet ja Kunde n Hausbesitzer nein Einkommen (p.a.) EUR Tilgung (p.m.) EUR Kreditlaufzeit 8 Jahre SCHUFA-Eintrag nein Alter? verheiratet nein... ML: I-10 Introduction c STEIN/LETTMANN

4 Beispiele für Lernaufgaben Risikoanalyse bei Kreditvergabe Kunde 1 Hausbesitzer ja Einkommen (p.a.) EUR Tilgung (p.m.) EUR Kreditlaufzeit 7 Jahre SCHUFA-Eintrag nein Alter 37 verheiratet ja Kunde n Hausbesitzer nein Einkommen (p.a.) EUR Tilgung (p.m.) EUR Kreditlaufzeit 8 Jahre SCHUFA-Eintrag nein Alter? verheiratet nein... Gelernte Regeln: IF THEN IF THEN (Einkommen> AND Kreditlaufzeit<3) OR Hausbesitzer=ja Kreditvergabe=ja SCHUFA-Eintrag=ja OR (Einkommen<20.000) AND Tilgung>800) Kreditvergabe=nein ML: I-11 Introduction c STEIN/LETTMANN

5 Beispiele für Lernaufgaben Bildanalyse ML: I-12 Introduction c STEIN/LETTMANN

6 Beispiele für Lernaufgaben Bildanalyse Sharp Left Straight Ahead Sharp Right 30 Output Units 4 Hidden Units 30x32 Sensor Input Retina ML: I-13 Introduction c STEIN/LETTMANN

7 Definition 1 (Maschinelles Lernen, Machine Learning [Mitchell 1997]) A computer program is said to learn from experience (Erfahrung) with respect to some class of tasks (Aufgaben) and a performance measure (Gütemaß), if its performance at the tasks improves with the experience. ML: I-14 Introduction c STEIN/LETTMANN

8 Bemerkungen: Beispiel Schach. Aufgabe = Schachspielen Gütemaß = Anteil gewonnener Spiele bei einer Weltmeisterschaft Erfahrung = Möglichkeit, gegen sich selbst zu spielen Beispiel Schrifterkennung. Aufgabe = Isolation und Klassifikation handgeschriebener Worte in Bitmaps Gütemaß = Anteil korrekt klassifizierter Worte Erfahrung = Kollektion mit korrekt klassifizierten, handgeschriebenen Worten ML: I-15 Introduction c STEIN/LETTMANN

9 Lernparadigmen 1. Überwachtes Lernen (Supervised Learning) Gelernt werden soll eine Funktion aus gegebenen Paaren von Ein- und Ausgaben. Wichtiges Teilgebiet des überwachten Lernens ist die automatische Klassifikation. Beispiel: Handschrifterkennung 2. Unüberwachtes Lernen (Unsupervised Learning) Ziel ist das Erkennen von Strukturen in Daten. Hierzu gehört die automatische Einteilung in Kategorien (Clustering), Optimierung von Modellparametern (Expectation Maximization), oder die Übersetzung der beobachteten Daten in eine einfachere Repräsentation (Faktoranalyse). 3. Bekräftigungslernen (Reinforcement Learning) Ziel ist das Erlernen bzw. Anpassen oder Optimieren einer Verhaltensstrategie durch Feedback aus der Umwelt unter dem Prinzip der Nutzenmaximierung. Beispiel: Agenten in einer virtuellen Welt ML: I-16 Introduction c STEIN/LETTMANN

10 Lernparadigmen 1. Überwachtes Lernen (Supervised Learning) Gelernt werden soll eine Funktion aus gegebenen Paaren von Ein- und Ausgaben. Wichtiges Teilgebiet des überwachten Lernens ist die automatische Klassifikation. Beispiel: Handschrifterkennung 2. Unüberwachtes Lernen (Unsupervised Learning) Ziel ist das Erkennen von Strukturen in Daten. Hierzu gehört die automatische Einteilung in Kategorien (Clustering), Optimierung von Modellparametern (Expectation Maximization), oder die Übersetzung der beobachteten Daten in eine einfachere Repräsentation (Faktoranalyse). 3. Bekräftigungslernen (Reinforcement Learning) Ziel ist das Erlernen bzw. Anpassen oder Optimieren einer Verhaltensstrategie durch Feedback aus der Umwelt unter dem Prinzip der Nutzenmaximierung. Beispiel: Agenten in einer virtuellen Welt ML: I-17 Introduction c STEIN/LETTMANN

11 Beispiel Schach: Art der Erfahrung 1. Feedback direkt: Zu einer Brettkonfiguration ist der beste Zug gegeben. indirekt: Es gibt nur das Resultat eine ganzen Serie von Zügen, am Ende eines Spiels. ML: I-18 Introduction c STEIN/LETTMANN

12 Beispiel Schach: Art der Erfahrung 1. Feedback direkt: Zu einer Brettkonfiguration ist der beste Zug gegeben. indirekt: Es gibt nur das Resultat eine ganzen Serie von Zügen, am Ende eines Spiels. 2. Reihenfolge der Beispiele Ein Lehrer präsentiert dem Lernenden wichtige Beispiele einschließlich deren Lösung. Der Lernende wählt die Beispiele selbst aus; z. B. Brettkonfiguration, für die er keinen passenden Zug kennt. ML: I-19 Introduction c STEIN/LETTMANN

13 Beispiel Schach: Art der Erfahrung 1. Feedback direkt: Zu einer Brettkonfiguration ist der beste Zug gegeben. indirekt: Es gibt nur das Resultat eine ganzen Serie von Zügen, am Ende eines Spiels. 2. Reihenfolge der Beispiele Ein Lehrer präsentiert dem Lernenden wichtige Beispiele einschließlich deren Lösung. Der Lernende wählt die Beispiele selbst aus; z. B. Brettkonfiguration, für die er keinen passenden Zug kennt. 3. Relevanz hinsichtlich des Gütemaßes Wieviel lässt sich aufgrund der Erfahrung lernen, um in der realen Situation zu bestehen? Allein durch Spielen gegen sich selbst kann man bei Schach nicht auf Weltmeisterniveau kommen. ML: I-20 Introduction c STEIN/LETTMANN

14 Spezifikation von Klassifikationsproblemen Situation in der realen Welt: O ist ein Menge von Objekten. C ist eine Menge von Klassen. γ : O C ist der ideale Klassifikator für O. ML: I-24 Introduction c STEIN/LETTMANN

15 Spezifikation von Klassifikationsproblemen Situation in der realen Welt: O ist ein Menge von Objekten. C ist eine Menge von Klassen. γ : O C ist der ideale Klassifikator für O. Klassifikation: Feststellung der Klasse γ(o) C für gegebene o O. Ansatz zur Automatisierung: 1. Auswahl einer Menge von realen Beispielen der Form (o, γ(o)). 2. Abstraktion der Objekte o O zu Merkmalsvektoren x = α(o). 3. Berechnung von Beispielen (x, c(x)) mit x = α(o), c(x) definiert als γ(o). 4. Mathematische Formulierung des Zusammenhangs zwischen x und c(x). ML: I-25 Introduction c STEIN/LETTMANN

16 Spezifikation von Klassifikationsproblemen Situation im Modell: X ist ein Instanzenraum (Merkmalsraum) über endlich vielen Merkmalen. C ist eine Menge von Klassen. c : X C ist der ideale Klassifikator für X. D = {(x 1,c(x 1 )),...,(x n,c(x n ))} X C ist eine Menge von Beispielen. ML: I-26 Introduction c STEIN/LETTMANN

17 Spezifikation von Klassifikationsproblemen Situation im Modell: X ist ein Instanzenraum (Merkmalsraum) über endlich vielen Merkmalen. C ist eine Menge von Klassen. c : X C ist der ideale Klassifikator für X. D = {(x 1,c(x 1 )),...,(x n,c(x n ))} X C ist eine Menge von Beispielen. Maschinelles Lernproblem: Bestimmung eines Klassifikators y : X C auf Basis von D, d.h., Approximation des idealen Klassifikator c durch y. Herangehensweise: Statistik, Theorie und Algorithmen des Maschinellen Lernens. ML: I-27 Introduction c STEIN/LETTMANN

18 Spezifikation von Klassifikationsproblemen Objekte O γ Klassen C α X Merkmalsraum c y Abbildungen: γ. idealer Klassifikator auf den realen Objekten α. Modellbildungsfunktion c. idealer Klassifikator auf dem Merkmalsraum y. Approximationsfunktion für c ML: I-28 Introduction c STEIN/LETTMANN

19 Bemerkungen: Der Merkmalsraum X enthält die gemäß unserer Vorstellung (= unseres Modells) berechneten Darstellungen x 1,x 2,... der realen Objekte o 1,o 2,... Die Modellbildungsfunktion α bestimmt die Abstraktion / Darstellungstreue / Exaktheit / Qualität / Vereinfachung bei der Berechnung von x als x = α(o). Auch wenn α ein Objekt o O nur eingeschränkt als x = α(o) erfassen kann, so ist c(x) als ideale Zielfunktion zu verstehen, weil c(x) als γ(o) definiert ist und somit der Wirklichkeit entspricht. D.h., c und γ unterscheiden sich zwar im Eingaberaum, nicht aber in der Klassifikation. y ist eine Approximationsfunktion für c. Entscheidungsprobleme sind Klassifikationsprobleme mit genau zwei Klassen. Das Halteproblem für Turingmaschinen ist ein unentscheidbares Klassifikationsproblem. ML: I-29 Introduction c STEIN/LETTMANN

20 LMS-Algorithmus zur Bestimmung von y Algorithm: LMS Least Mean Square Input: D Beispiele der Form (x, c(x)) mit c(x) als Zielfunktionswert für x. η Lernrate; eine positive kleine Konstante. Internal: y(d) Menge der y(x) für die Vektoren x aus D. Output: w Gewichtsvektor. LMS(D, η) 1. initialize_random_weights((w 0,w 1,...,w p )) 2. REPEAT 3. (x, c(x)) = random_select(d) 4. y(x) = w 0 +w 1 x w p x p 5. error = c(x) y(x) 6. FOR i = 1 TO p DO 7. w i = η error x i 8. w i = w i + w i 9. ENDDO 10. UNTIL(convergence(D, y(d))) 11. return((w 0,w 1,...,w p )) ML: I-30 Introduction c STEIN/LETTMANN

21 Aufbau von lernenden Systemen [vgl. p.12, Mitchell 1997] compute_performance() Chess program Solution trace Moves, γ ML: I-31 Introduction c STEIN/LETTMANN

22 Aufbau von lernenden Systemen [vgl. p.12, Mitchell 1997] compute_performance() Chess program Solution trace Moves, γ evaluation() Move analysis accept improve Training examples <x 1, c(x 1 )>,..., <x n, c(x n )> ML: I-32 Introduction c STEIN/LETTMANN

23 Aufbau von lernenden Systemen [vgl. p.12, Mitchell 1997] compute_performance() Chess program Solution trace Moves, γ evaluation() Move analysis accept improve Training examples <x 1, c(x 1 )>,..., <x n, c(x n )> Hypothesis w 1,..., w 6 generalize() LMS algorithm ML: I-33 Introduction c STEIN/LETTMANN

24 Aufbau von lernenden Systemen [vgl. p.12, Mitchell 1997] compute_performance() Chess program Solution trace Moves, γ evaluation() Move analysis accept improve Training examples <x 1, c(x 1 )>,..., <x n, c(x n )> Problem Chess board problem generation() Hypothesis w 1,..., w 6 generalize() LMS algorithm Design-Entscheidungen (u.a.): 1. Art der Lernerfahrung 2. Form der idealen Zielfunktion γ 3. Komplexität der Modellbildungsfunktion α : O X 4. Lernalgorithmus zur Bestimmung eines Klassifikators y ML: I-34 Introduction c STEIN/LETTMANN

25 Fragestellungen Welche Algorithmen sind zur Funktionsapproximation geeignet? Wie sehen Gütemaße zur Beurteilung der Genauigkeit aus? Wie beeinflusst die Anzahl der Beispiele die Genauigkeit? Wie beeinflussen verrauschte Daten die Genauigkeit? Wo sind die theoretischen Grenzen der Lernbarkeit? Wie lässt sich Vorwissen in Lernverfahren integrieren? Was kann man bei biologischen Systemen abschauen? ML: I-35 Introduction c STEIN/LETTMANN

Kapitel LF: I. Beispiele für Lernaufgaben. Beispiele für Lernaufgaben. LF: I Introduction c STEIN

Kapitel LF: I. Beispiele für Lernaufgaben. Beispiele für Lernaufgaben. LF: I Introduction c STEIN Kapitel LF: I I. Einführung in das Maschinelle Lernen Bemerkungen: Dieses Kapitel orientiert sich an dem Buch Machine Learning von Tom Mitchell. http://www.cs.cmu.edu/ tom/mlbook.html 1 Autoeinkaufsberater?

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

Kapitel MK:IV. IV. Modellieren mit Constraints

Kapitel MK:IV. IV. Modellieren mit Constraints Kapitel MK:IV IV. Modellieren mit Constraints Einführung und frühe Systeme Konsistenz I Binarization Generate-and-Test Backtracking-basierte Verfahren Konsistenz II Konsistenzanalyse Weitere Analyseverfahren

Mehr

R ist freie Software und kann von der Website. www.r-project.org

R ist freie Software und kann von der Website. www.r-project.org R R ist freie Software und kann von der Website heruntergeladen werden. www.r-project.org Nach dem Herunterladen und der Installation von R kann man R durch Doppelklicken auf das R-Symbol starten. R wird

Mehr

Grundlagen des Maschinellen Lernens Kap. 4: Lernmodelle Teil II

Grundlagen des Maschinellen Lernens Kap. 4: Lernmodelle Teil II 1. Motivation 2. Lernmodelle Teil I 2.1. Lernen im Limes 2.2. Fallstudie: Lernen von Patternsprachen 3. Lernverfahren in anderen Domänen 3.1. Automatensynthese 3.2. Entscheidungsbäume 3.3. Entscheidungsbäume

Mehr

Kirkpatrick s Four Levels of Evaluation

Kirkpatrick s Four Levels of Evaluation Evaluation von Trainingsmaßnahmen Kirkpatrick s Four Levels of Evaluation Kirkpatrick s Four Levels of Evaluation Vier aufeinander aufbauende Ebenen der Evaluation: Reaktion Lernen Verhalten Ergebnisse

Mehr

QM: Prüfen -1- KN16.08.2010

QM: Prüfen -1- KN16.08.2010 QM: Prüfen -1- KN16.08.2010 2.4 Prüfen 2.4.1 Begriffe, Definitionen Ein wesentlicher Bestandteil der Qualitätssicherung ist das Prüfen. Sie wird aber nicht wie früher nach der Fertigung durch einen Prüfer,

Mehr

1 Part-of-Speech Tagging

1 Part-of-Speech Tagging 2. Übung zur Vorlesung NLP Analyse des Wissensrohstoes Text im Sommersemester 2008 Dr. Andreas Hotho, Dipl.-Inform. Dominik Benz, Wi.-Inf. Beate Krause 28. Mai 2008 1 Part-of-Speech Tagging 1.1 Grundlagen

Mehr

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen 5.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind zwei

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Das System der gewerblichen Schutzrechte und der Grundzüge des Urheberrechts aus gründerspezifischer Sicht

Das System der gewerblichen Schutzrechte und der Grundzüge des Urheberrechts aus gründerspezifischer Sicht Das System der gewerblichen Schutzrechte und der Grundzüge des Urheberrechts aus gründerspezifischer Sicht Vorlesung Wintersemester 2014/2015 Rechtsanwalt Alexander Goldberg Fachanwalt für gewerblichen

Mehr

Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens

Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 17.04.2015 Entscheidungsprobleme beim Textmining

Mehr

Erfahrungen mit Hartz IV- Empfängern

Erfahrungen mit Hartz IV- Empfängern Erfahrungen mit Hartz IV- Empfängern Ausgewählte Ergebnisse einer Befragung von Unternehmen aus den Branchen Gastronomie, Pflege und Handwerk Pressegespräch der Bundesagentur für Arbeit am 12. November

Mehr

Moderne Methoden der KI: Maschinelles Lernen

Moderne Methoden der KI: Maschinelles Lernen Moderne Methoden der KI: Maschinelles Lernen Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung Sommer-Semester 2009 1. Einführung: Definitionen Grundbegriffe Lernsysteme Maschinelles Lernen Lernen: Grundbegriffe

Mehr

Ohne Fehler geht es nicht Doch wie viele Fehler sind erlaubt?

Ohne Fehler geht es nicht Doch wie viele Fehler sind erlaubt? Ohne Fehler geht es nicht Doch wie viele Fehler sind erlaubt? Behandelte Fragestellungen Was besagt eine Fehlerquote? Welche Bezugsgröße ist geeignet? Welche Fehlerquote ist gerade noch zulässig? Wie stellt

Mehr

2 Evaluierung von Retrievalsystemen

2 Evaluierung von Retrievalsystemen 2. Evaluierung von Retrievalsystemen Relevanz 2 Evaluierung von Retrievalsystemen Die Evaluierung von Verfahren und Systemen spielt im IR eine wichtige Rolle. Gemäß der Richtlinien für IR der GI gilt es,...

Mehr

Vorwissen der SuS erfassen. Positive/Negative Aspekte von Online-Spielen feststellen. Urteilsfähigkeit der SuS trainieren.

Vorwissen der SuS erfassen. Positive/Negative Aspekte von Online-Spielen feststellen. Urteilsfähigkeit der SuS trainieren. Unterrichtsverlauf Zeit/ Unterrichtsinhalt U-Phase (Lehrer- und Schüleraktivitäten) Kompetenzerwerb/Ziele Arbeitsform und Methoden Medien und weitere Materialien Stundenthema: Online-Spiele und ihre Nachteile

Mehr

Kapitel 4 Die Datenbank Kuchenbestellung Seite 1

Kapitel 4 Die Datenbank Kuchenbestellung Seite 1 Kapitel 4 Die Datenbank Kuchenbestellung Seite 1 4 Die Datenbank Kuchenbestellung In diesem Kapitel werde ich die Theorie aus Kapitel 2 Die Datenbank Buchausleihe an Hand einer weiteren Datenbank Kuchenbestellung

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.

Mehr

Das Vermögen der privaten Haushalte in Nordrhein-Westfalen ein Überblick auf der Basis der Einkommens- und Verbrauchsstichprobe

Das Vermögen der privaten Haushalte in Nordrhein-Westfalen ein Überblick auf der Basis der Einkommens- und Verbrauchsstichprobe Sozialberichterstattung NRW. Kurzanalyse 02/2010 09.07.2010 12.07.2010 Das Vermögen der privaten Haushalte in Nordrhein-Westfalen ein Überblick auf der Basis der Einkommens- und Verbrauchsstichprobe 2008

Mehr

15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit

15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit 5.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit Einführendes Beispiel ( Erhöhung der Sicherheit bei Flugreisen ) Die statistische Wahrscheinlichkeit, dass während eines Fluges ein Sprengsatz an Bord

Mehr

Reinforcement Learning

Reinforcement Learning Effiziente Darstellung von Daten Reinforcement Learning 02. Juli 2004 Jan Schlößin Einordnung Was ist Reinforcement Learning? Einführung - Prinzip der Agent Eigenschaften das Ziel Q-Learning warum Q-Learning

Mehr

Fuzzy Logik und Genetische Algorithmen für adaptive Prozesskontrolle

Fuzzy Logik und Genetische Algorithmen für adaptive Prozesskontrolle Fuzzy Logik und Genetische Algorithmen für adaptive Prozesskontrolle Umgang mit unsicherem Wissen VAK 03-711.08 Oliver Ahlbrecht 8. Dezember 2005 Struktur 1. Einleitung 2. Beispiel Cart-Pole 3. Warum Hybride

Mehr

AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b

AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b AGROPLUS Buchhaltung Daten-Server und Sicherheitskopie Version vom 21.10.2013b 3a) Der Daten-Server Modus und der Tresor Der Daten-Server ist eine Betriebsart welche dem Nutzer eine grosse Flexibilität

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Vorbereitungsaufgaben

Vorbereitungsaufgaben Praktikum Bildverarbeitung / Bildinformationstechnik Versuch BV 4 / BIT 3: Mustererkennung Paddy Gadegast, CV00, 160967 Alexander Opel, CV00, 16075 Gruppe 3 Otto-von-Guericke Universität Magdeburg Fakultät

Mehr

WinWerk. Prozess 6a Rabatt gemäss Vorjahresverbrauch. KMU Ratgeber AG. Inhaltsverzeichnis. Im Ifang 16 8307 Effretikon

WinWerk. Prozess 6a Rabatt gemäss Vorjahresverbrauch. KMU Ratgeber AG. Inhaltsverzeichnis. Im Ifang 16 8307 Effretikon WinWerk Prozess 6a Rabatt gemäss Vorjahresverbrauch 8307 Effretikon Telefon: 052-740 11 11 Telefax: 052-740 11 71 E-Mail info@kmuratgeber.ch Internet: www.winwerk.ch Inhaltsverzeichnis 1 Ablauf der Rabattverarbeitung...

Mehr

Statistische Auswertung:

Statistische Auswertung: Statistische Auswertung: Die erhobenen Daten mittels der selbst erstellten Tests (Surfaufgaben) Statistics Punkte aus dem Punkte aus Surftheorietest Punkte aus dem dem und dem Surftheorietest max.14p.

Mehr

4. Erstellen von Klassen

4. Erstellen von Klassen Statistik mit Tabellenkalkulation 4. Erstellen von Klassen Mit einem einfachen Befehl lässt sich eine Liste von Zahlen auf die Häufigkeit der einzelnen Werte untersuchen. Verwenden Sie dazu den Befehl

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

1.3 Die Beurteilung von Testleistungen

1.3 Die Beurteilung von Testleistungen 1.3 Die Beurteilung von Testleistungen Um das Testergebnis einer Vp zu interpretieren und daraus diagnostische Urteile ableiten zu können, benötigen wir einen Vergleichsmaßstab. Im Falle des klassischen

Mehr

Semestralklausur zur Vorlesung. Web Mining. Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7.

Semestralklausur zur Vorlesung. Web Mining. Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7. Semestralklausur zur Vorlesung Web Mining Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7. 2004 Name: Vorname: Matrikelnummer: Fachrichtung: Punkte: (1).... (2)....

Mehr

Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual!

Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual! Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual! 0kg 4000 Euro Luster 5,5 kg, 430.- Laptop 2,0 kg, 000.- Schatulle 3,2 kg, 800.- Uhr 3,5 kg, 70.- Schwert,5 kg, 850.- Bild 3,4 kg, 680.- Besteck

Mehr

Bruchrechnung Wir teilen gerecht auf

Bruchrechnung Wir teilen gerecht auf Bruchrechnung Wir teilen gerecht auf Minipizzen auf Personen. Bruchrechnung Wir teilen gerecht auf Minipizzen auf Personen. : (+) : + Wir teilen einen Teil Eine halbe Minipizza auf Personen. :? Wir teilen

Mehr

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002)

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002) 6. Bayes-Klassifikation (Schukat-Talamazzini 2002) (Böhm 2003) (Klawonn 2004) Der Satz von Bayes: Beweis: Klassifikation mittels des Satzes von Bayes (Klawonn 2004) Allgemeine Definition: Davon zu unterscheiden

Mehr

Kap. 8: Speziell gewählte Kurven

Kap. 8: Speziell gewählte Kurven Stefan Lucks 8: Spezielle Kurven 82 Verschl. mit Elliptischen Kurven Kap. 8: Speziell gewählte Kurven Zur Erinnerung: Für beliebige El. Kurven kann man den Algorithmus von Schoof benutzen, um die Anzahl

Mehr

MSXFORUM - Exchange Server 2003 > SMTP Konfiguration von Exchange 2003

MSXFORUM - Exchange Server 2003 > SMTP Konfiguration von Exchange 2003 Page 1 of 8 SMTP Konfiguration von Exchange 2003 Kategorie : Exchange Server 2003 Veröffentlicht von webmaster am 25.02.2005 SMTP steht für Simple Mail Transport Protocol, welches ein Protokoll ist, womit

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

Die Wahlpflichtfächer. Operations Research Statistik/Ökonometrie. Optimierung linearer Modelle Statistische Analyseverfahren

Die Wahlpflichtfächer. Operations Research Statistik/Ökonometrie. Optimierung linearer Modelle Statistische Analyseverfahren Die Wahlpflichtfächer Operations Research Statistik/Ökonometrie Modellierung ökonomischer Sachverhalte mit mathematischen Mitteln Einsatz statistischer Modelle zur Erfassung und zur Auswertung von Daten

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Datenexport aus JS - Software

Datenexport aus JS - Software Datenexport aus JS - Software Diese Programm-Option benötigen Sie um Kundendaten aus der JS-Software in andere Programme wie Word, Works oder Excel zu exportieren. Wählen Sie aus dem Programm-Menu unter

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

Anleitung über den Umgang mit Schildern

Anleitung über den Umgang mit Schildern Anleitung über den Umgang mit Schildern -Vorwort -Wo bekommt man Schilder? -Wo und wie speichert man die Schilder? -Wie füge ich die Schilder in meinen Track ein? -Welche Bauteile kann man noch für Schilder

Mehr

Melanie Kaspar, Prof. Dr. B. Grabowski 1

Melanie Kaspar, Prof. Dr. B. Grabowski 1 7. Hypothesentests Ausgangssituation: Man muss sich zwischen 2 Möglichkeiten (=Hypothesen) entscheiden. Diese Entscheidung soll mit Hilfe von Beobachtungen ( Stichprobe ) getroffen werden. Die Hypothesen

Mehr

Sparpotential Gemeindeverwaltung

Sparpotential Gemeindeverwaltung Sparptential Gemeindeverwaltung Sparptential in den ö. Gemeindeverwaltungen Dr. Werner Lenzelbauer Land Oberösterreich Direktin Präsidium Abteilung Statistik Datum: 28.10.2014 - sfusin Die einer Gemeinde

Mehr

Musterlösung zu Serie 14

Musterlösung zu Serie 14 Dr. Lukas Meier Statistik und Wahrscheinlichkeitsrechnung FS 21 Musterlösung zu Serie 14 1. Der Datensatz von Forbes zeigt Messungen von Siedepunkt (in F) und Luftdruck (in inches of mercury) an verschiedenen

Mehr

Professionelle Diagramme mit Excel 2010 erstellen. Peter Wies. 1. Ausgabe, 2. Aktualisierung, März 2014. Themen-Special W-EX2010DI

Professionelle Diagramme mit Excel 2010 erstellen. Peter Wies. 1. Ausgabe, 2. Aktualisierung, März 2014. Themen-Special W-EX2010DI Peter Wies 1. Ausgabe, 2. Aktualisierung, März 2014 Professionelle Diagramme mit Excel 2010 erstellen Themen-Special W-EX2010DI 2 Professionelle Diagramme mit Excel 2010 erstellen - Themen-Special 2 Wichtige

Mehr

(C)opyright 2009 by Jochen Vajda

(C)opyright 2009 by Jochen Vajda (C)opyright 2009 by Jochen Vajda Inhalt Einführung Darstellung des Verzeichnisbaums Statusleiste Überschreibenvon Dateien Ordnereinstellungen Suche Einleitung Der folgende Artikel vergleicht den Windows

Mehr

Pflegeberichtseintrag erfassen. Inhalt. Frage: Antwort: 1. Voraussetzungen. Wie können (Pflege-) Berichtseinträge mit Vivendi Mobil erfasst werden?

Pflegeberichtseintrag erfassen. Inhalt. Frage: Antwort: 1. Voraussetzungen. Wie können (Pflege-) Berichtseinträge mit Vivendi Mobil erfasst werden? Connext GmbH Balhorner Feld 11 D-33106 Paderborn FON +49 5251 771-150 FAX +49 5251 771-350 hotline@connext.de www.connext.de Pflegeberichtseintrag erfassen Produkt(e): Vivendi Mobil Kategorie: Allgemein

Mehr

Die Zukunft des beruflichen Lernens in Ausbildung und Hochschule

Die Zukunft des beruflichen Lernens in Ausbildung und Hochschule Die Zukunft des beruflichen Lernens in Ausbildung und Hochschule Flankierende Aspekte zum Vortrag von Dr. Bernd Kassebaum (Anlässlich Forum Berufsbildung am 17.6.2014) Um eine Antwort auf den Umsteuerungsprozess

Mehr

Übungsaufgaben Tilgungsrechnung

Übungsaufgaben Tilgungsrechnung 1 Zusatzmaterialien zu Finanz- und Wirtschaftsmathematik im Unterricht, Band 1 Übungsaufgaben Tilgungsrechnung Überarbeitungsstand: 1.März 2016 Die grundlegenden Ideen der folgenden Aufgaben beruhen auf

Mehr

Titration einer Säure mit einer Base

Titration einer Säure mit einer Base Titration einer Säure mit einer Base Peter Bützer Inhalt 1 Einleitung... 1 2 Modellannahmen (Systemdynamik)... 2 3 Simulationsdiagramm (Typ 1)... 2 4 Dokumentation (Gleichungen, Parameter)... 3 5 Simulation...

Mehr

4. Dynamische Optimierung

4. Dynamische Optimierung 4. Dynamische Optimierung Allgemeine Form dynamischer Optimierungsprobleme 4. Dynamische Optimierung Die dynamische Optimierung (DO) betrachtet Entscheidungsprobleme als eine Folge voneinander abhängiger

Mehr

Zeit lässt sich nicht wie Geld für schlechte Zeiten zur Seite legen. Die Zeit vergeht egal, ob genutzt oder ungenutzt.

Zeit lässt sich nicht wie Geld für schlechte Zeiten zur Seite legen. Die Zeit vergeht egal, ob genutzt oder ungenutzt. Zeitmanagement Allgemeine Einleitung Wie oft haben Sie schon gehört Ich habe leider keine Zeit? Und wie oft haben Sie diesen Satz schon selbst gesagt? Wahrscheinlich nahezu jeden Tag. Dabei stimmt der

Mehr

Erweiterung der Aufgabe. Die Notenberechnung soll nicht nur für einen Schüler, sondern für bis zu 35 Schüler gehen:

Erweiterung der Aufgabe. Die Notenberechnung soll nicht nur für einen Schüler, sondern für bis zu 35 Schüler gehen: VBA Programmierung mit Excel Schleifen 1/6 Erweiterung der Aufgabe Die Notenberechnung soll nicht nur für einen Schüler, sondern für bis zu 35 Schüler gehen: Es müssen also 11 (B L) x 35 = 385 Zellen berücksichtigt

Mehr

NEET - Jugendliche: Problemausmaß, Charakteristika und Handlungsstrategien

NEET - Jugendliche: Problemausmaß, Charakteristika und Handlungsstrategien NEET - Jugendliche: Problemausmaß, Charakteristika und Handlungsstrategien All we NEET is...? Barrieren & Chancen für Jugendliche in Bildung & Beruf Dennis Tamesberger (AK OÖ) Wien, 27. Mai 2015 Übersicht

Mehr

Resultate GfS-Umfrage November 2006. Wie bekannt ist das Phänomen Illettrismus bei der Schweizer Bevölkerung?

Resultate GfS-Umfrage November 2006. Wie bekannt ist das Phänomen Illettrismus bei der Schweizer Bevölkerung? Resultate GfS-Umfrage November 2006 Wie bekannt ist das Phänomen Illettrismus bei der Schweizer Bevölkerung? Frage 1: Kennen Sie das Phänomen, dass Erwachsene fast nicht lesen und schreiben können, obwohl

Mehr

Arbeit zur Lebens-Geschichte mit Menschen mit Behinderung Ein Papier des Bundesverbands evangelische Behindertenhilfe e.v.

Arbeit zur Lebens-Geschichte mit Menschen mit Behinderung Ein Papier des Bundesverbands evangelische Behindertenhilfe e.v. Arbeit zur Lebens-Geschichte mit Menschen mit Behinderung Ein Papier des Bundesverbands evangelische Behindertenhilfe e.v. Meine Lebens- Geschichte Warum ist Arbeit zur Lebens-Geschichte wichtig? Jeder

Mehr

Die richtigen Partner finden, Ressourcen finden und zusammenführen

Die richtigen Partner finden, Ressourcen finden und zusammenführen Kongress Kinder.Stiften.Zukunft Workshop Willst Du mit mir gehen? Die richtigen Partner finden, Ressourcen finden und zusammenführen Dr. Christof Eichert Unsere Ziele: Ein gemeinsames Verständnis für die

Mehr

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

Deutliche Mehrheit der Bevölkerung für aktive Sterbehilfe

Deutliche Mehrheit der Bevölkerung für aktive Sterbehilfe Allensbacher Kurzbericht 6. Oktober 2014 Deutliche Mehrheit der Bevölkerung für aktive Sterbehilfe Zwei Drittel sind für die Erlaubnis aktiver Sterbehilfe, 60 Prozent für die Zulassung privater Sterbehilfe-Organsationen.

Mehr

Lohnt es sich, Krankenversicherungsbeiträge vorauszuzahlen?

Lohnt es sich, Krankenversicherungsbeiträge vorauszuzahlen? MUSTERFALL Lohnt es sich, Krankenversicherungsbeiträge vorauszuzahlen? von Dipl.-Kfm. Dirk Klinkenberg, Rösrath, www.instrumenta.de Steuerlich kann es vorteilhaft sein, die Beiträge zur Kranken- und zur

Mehr

Datenbanken Microsoft Access 2010

Datenbanken Microsoft Access 2010 Datenbanken Microsoft Access 2010 Abfragen Mithilfe von Abfragen kann ich bestimmte Informationen aus einer/mehrerer Tabellen auswählen und nur diese anzeigen lassen die Daten einer/mehrerer Tabellen sortieren

Mehr

FH-SY Chapter 2.4 - Version 3 - FH-SY.NET - FAQ -

FH-SY Chapter 2.4 - Version 3 - FH-SY.NET - FAQ - FH-SY Chapter 2.4 - Version 3 - FH-SY.NET - FAQ - Version vom 02.02.2010 Inhaltsverzeichnis 1. KANN ICH BEI EINER EIGENEN LEKTION NACHTRÄGLICH NOCH NEUE LERNINHALTE ( WAS WURDE BEHANDELT? ) EINFÜGEN?...

Mehr

Ein Vorwort, das Sie lesen müssen!

Ein Vorwort, das Sie lesen müssen! Ein Vorwort, das Sie lesen müssen! Sehr geehrte Teilnehmerin, sehr geehrter Teilnehmer am Selbststudium, herzlichen Glückwunsch, Sie haben sich für ein ausgezeichnetes Stenografiesystem entschieden. Sie

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Wichtiges Thema: Ihre private Rente und der viel zu wenig beachtete - Rentenfaktor

Wichtiges Thema: Ihre private Rente und der viel zu wenig beachtete - Rentenfaktor Wichtiges Thema: Ihre private Rente und der viel zu wenig beachtete - Rentenfaktor Ihre private Gesamtrente setzt sich zusammen aus der garantierten Rente und der Rente, die sich aus den über die Garantieverzinsung

Mehr

Meinungen zum Sterben Emnid-Umfrage 2001

Meinungen zum Sterben Emnid-Umfrage 2001 Meinungen zum Sterben Emnid-Umfrage 2001 Als Interessenvertretung der Schwerstkranken und Sterbenden beschäftigt sich die Deutsche Hospiz Stiftung seit ihrer Gründung 1995 mit dem Thema "Sterben in Deutschland".

Mehr

Kosten-Leistungsrechnung Rechenweg Optimales Produktionsprogramm

Kosten-Leistungsrechnung Rechenweg Optimales Produktionsprogramm Um was geht es? Gegeben sei ein Produktionsprogramm mit beispielsweise 5 Aufträgen, die nacheinander auf vier unterschiedlichen Maschinen durchgeführt werden sollen: Auftrag 1 Auftrag 2 Auftrag 3 Auftrag

Mehr

Auswertung Fünfjahresüberprüfung

Auswertung Fünfjahresüberprüfung Auswertung Fünfjahresüberprüfung Insitution Abkürzung Anzahl Rückmeldungen Lehrbetrieb Lehrbetrieb mit -Angebot (befreiter Betrieb) Ausbildungszentrum mit Basisausbildung und -Angebot Überbetriebliches

Mehr

Simulation LIF5000. Abbildung 1

Simulation LIF5000. Abbildung 1 Simulation LIF5000 Abbildung 1 Zur Simulation von analogen Schaltungen verwende ich Ltspice/SwitcherCAD III. Dieses Programm ist sehr leistungsfähig und wenn man weis wie, dann kann man damit fast alles

Mehr

Requirements Engineering für IT Systeme

Requirements Engineering für IT Systeme Requirements Engineering für IT Systeme Warum Systemanforderungen mit Unternehmenszielen anfangen Holger Dexel Webinar, 24.06.2013 Agenda Anforderungsdefinitionen Von der Herausforderung zur Lösung - ein

Mehr

8: Zufallsorakel. Wir suchen: Einfache mathematische Abstraktion für Hashfunktionen

8: Zufallsorakel. Wir suchen: Einfache mathematische Abstraktion für Hashfunktionen Stefan Lucks 8: Zufallsorakel 139 Kryptogr. Hashfunkt. (WS 08/09) 8: Zufallsorakel Unser Problem: Exakte Eigenschaften von effizienten Hashfunktionen nur schwer erfassbar (z.b. MD5, Tiger, RipeMD, SHA-1,...)

Mehr

Übung Theoretische Grundlagen

Übung Theoretische Grundlagen Übung Theoretische Grundlagen Berechenbarkeit/Entscheidbarkeit Nico Döttling November 26, 2009 INSTITUT FÜR KRYPTOGRAPHIE UND SICHERHEIT KIT University of the State of Baden-Wuerttemberg and National Laboratory

Mehr

2. Psychologische Fragen. Nicht genannt.

2. Psychologische Fragen. Nicht genannt. Checkliste für die Beurteilung psychologischer Gutachten durch Fachfremde Gliederung eines Gutachtens 1. Nennung des Auftraggebers und Fragestellung des Auftraggebers. 2. Psychologische Fragen. Nicht genannt.

Mehr

Daten sammeln, darstellen, auswerten

Daten sammeln, darstellen, auswerten Vertiefen 1 Daten sammeln, darstellen, auswerten zu Aufgabe 1 Schulbuch, Seite 22 1 Haustiere zählen In der Tabelle rechts stehen die Haustiere der Kinder aus der Klasse 5b. a) Wie oft wurden die Haustiere

Mehr

Betriebliche Gestaltungsfelder

Betriebliche Gestaltungsfelder Betriebliche Gestaltungsfelder Präsenzkultur aufbrechen Name Autor/in Anlass, Ort und Datum Gefördert vom: 1 Gliederung 1. Präsenzkultur 2. Handlungsfeld: Mobile Arbeit 3. Präsenz ist nicht gleich Leistung

Mehr

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Das Wachstum der deutschen Volkswirtschaft

Das Wachstum der deutschen Volkswirtschaft Institut für Wachstumsstudien www.wachstumsstudien.de IWS-Papier Nr. 1 Das Wachstum der deutschen Volkswirtschaft der Bundesrepublik Deutschland 1950 2002.............Seite 2 Relatives Wachstum in der

Mehr

4 Aufzählungen und Listen erstellen

4 Aufzählungen und Listen erstellen 4 4 Aufzählungen und Listen erstellen Beim Strukturieren von Dokumenten und Inhalten stellen Listen und Aufzählungen wichtige Werkzeuge dar. Mit ihnen lässt sich so ziemlich alles sortieren, was auf einer

Mehr

2012/13 Jahrgangsstufe 7 A. Jahrgangsstufentest im Fach Mathematik am Hanns-Seidel-Gymnasium am 28.9.2012

2012/13 Jahrgangsstufe 7 A. Jahrgangsstufentest im Fach Mathematik am Hanns-Seidel-Gymnasium am 28.9.2012 2012/13 Jahrgangsstufe 7 A Jahrgangsstufentest im Fach Mathematik am Hanns-Seidel-Gymnasium am 28.9.2012 Name: Note: Klasse: Punkte: 1 Aufgabe 1 In einer Umfrage wurden 640 Schüler befragt: "Für welche

Mehr

Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist

Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist Frage Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist k a F (x) =1 k>0,x k x Finden Sie den Erwartungswert und den Median der Dichte für a>1. (Bei

Mehr

Bedienungsanleitung Albumdesigner. Neues Projekt: Bestehendes Projekt öffnen:

Bedienungsanleitung Albumdesigner. Neues Projekt: Bestehendes Projekt öffnen: Bedienungsanleitung Albumdesigner Hier wählen Sie aus ob Sie mit einem neuen Album beginnen - Neues Projekt erstellen oder Sie arbeiten an einem bestehenden weiter - Bestehendes Projekt öffnen. Neues Projekt:

Mehr

Media Teil III. Begriffe, Definitionen, Übungen

Media Teil III. Begriffe, Definitionen, Übungen Media Teil III. Begriffe, Definitionen, Übungen Kapitel 1 (Intermedia- Vergleich: Affinität) 1 Affinitätsbewertung als Mittel des Intermedia-Vergleichs Um die Streugenauigkeit eines Werbeträgers zu bestimmen,

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu])

Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) 3.7 Erstellen einer Collage Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) Dann Größe des Dokuments festlegen beispielsweise A4 (weitere

Mehr

Konzepte der Informatik

Konzepte der Informatik Konzepte der Informatik Vorkurs Informatik zum WS 2011/2012 26.09. - 30.09.2011 17.10. - 21.10.2011 Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 1 aus "Abenteuer Informatik" von Jens

Mehr

Mathematik I Prüfung für den Übertritt aus der 9. Klasse

Mathematik I Prüfung für den Übertritt aus der 9. Klasse Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Browsereinstellungen für moneycheck24 in Explorer unter Windows

Browsereinstellungen für moneycheck24 in Explorer unter Windows Browsereinstellungen für moneycheck24 in Explorer unter Windows Wichtige Einstellungen im + Um zu prüfen, welche Version Sie nutzen Einstellungen: Klicken Sie im Menü INTERNETOPTIONEN Extras [oder Tastenkürzel

Mehr

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen 1 3.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind

Mehr

1. Adressen für den Serienversand (Briefe Katalogdruck Werbung/Anfrage ) auswählen. Die Auswahl kann gespeichert werden.

1. Adressen für den Serienversand (Briefe Katalogdruck Werbung/Anfrage ) auswählen. Die Auswahl kann gespeichert werden. Der Serienversand Was kann man mit der Maske Serienversand machen? 1. Adressen für den Serienversand (Briefe Katalogdruck Werbung/Anfrage ) auswählen. Die Auswahl kann gespeichert werden. 2. Adressen auswählen,

Mehr

Tutorium zur Mikroökonomie II WS 02/03 Universität Mannheim Tri Vi Dang. Aufgabenblatt 3 (KW 44) (30.10.02)

Tutorium zur Mikroökonomie II WS 02/03 Universität Mannheim Tri Vi Dang. Aufgabenblatt 3 (KW 44) (30.10.02) Tutorium zur Mikroökonomie II WS 02/03 Universität Mannheim Tri Vi Dang Aufgabenblatt 3 (KW 44) (30.10.02) Aufgabe 1: Preisdiskriminierung dritten Grades (20 Punkte) Ein innovativer Uni-Absolvent plant,

Mehr

Einfache Ausdrücke Datentypen Rekursive funktionale Sprache Franz Wotawa Institut für Softwaretechnologie wotawa@ist.tugraz.at

Einfache Ausdrücke Datentypen Rekursive funktionale Sprache Franz Wotawa Institut für Softwaretechnologie wotawa@ist.tugraz.at Inhalt SWP Funktionale Programme (2. Teil) Einfache Ausdrücke Datentypen Rekursive funktionale Sprache Franz Wotawa Institut für Softwaretechnologie wotawa@ist.tugraz.at Interpreter für funktionale Sprache

Mehr

STATISTIK. Erinnere dich

STATISTIK. Erinnere dich Thema Nr.20 STATISTIK Erinnere dich Die Stichprobe Drei Schüler haben folgende Noten geschrieben : Johann : 4 6 18 7 17 12 12 18 Barbara : 13 13 12 10 12 3 14 12 14 15 Julia : 15 9 14 13 10 12 12 11 10

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr