Kapitel 4. Mehrfachvererbung. Beispiel 1: typische Diamant Struktur. Person. Hiwi

Größe: px
Ab Seite anzeigen:

Download "Kapitel 4. Mehrfachvererbung. Beispiel 1: typische Diamant Struktur. Person. Hiwi"

Transkript

1 Kapitel 4 Mehrfachvererbung eispiel 1: Person Student ngestellter typische iamant Struktur Hiwi 29

2 4. Mehrfachvererbung eispiel 2: Fenster mit Rand und Menü; Verteilung von Rand und Menü auf 2 Unterklassen W = Window, W = order Window (Fenster mit Umrandung), MW = Menu Window (Fenster mit Menü), MW = ordered Menu Window, f() = erechnung der Fensterfläche class W { virtual f(); virtual g(); virtual h(); virtual k(); }; class MW : virtual W { g(); }; class W : virtual W { f(); }; class MW : W, MW, virtual W { h(); } ufruf MW* pbmw; MW* pmw = pbmw; pmw->f(); ruft W::f()! ( Static Lookup) ieses Verhalten ist sinnvoll: Wenn man bei einem Fenster mit Rand und Menü den Rand ignoriert (pmw=pbmw), muß die Flächenberechnung ihn trotzdem berücksichtigen! 30

3 4.1. INTERFE-MEHRFHVERERUNG 4. Mehrfachvererbung 4.1 Interface-Mehrfachvererbung Interface: nur Methodensignaturen und Konstanten; keine Instanzvariablen, keine Objekte Interfaces können als Typen verwendet werden, aber konkrete Klassen müssen alle Interface-Methoden implementieren Interface-Vererbung (Subtyping) möglich. eispiel: interface { static final int x=42; void f(object x); } interface { int g(int x);} interface extends { double h(string s);} class U extends O implements, { void f(object x) {...Rumpf...}; int g(int x) {...Rumpf...}; double h(string s) {...Rumpf...};... eigene Methoden/Instanzvariablen...} 31

4 4.1. INTERFE-MEHRFHVERERUNG 4. Mehrfachvererbung abstrakte Klasse: manche Methodenrümpfe können fehlen (abstrakte Methoden) Instanzvariablen möglich Unterklassen müssen abstrakte Methoden implementieren Java kennt sowohl abstrakte Klassen als auch Interfaces Mehrfachvererbung für Klassen gibt es nicht Jedoch: Mehrfachvererbung für Interfaces eispiel: interface I1 {... Konstantendef.... Signatur... } interface I2 {... } interface I3 extends I1, I2 interface I4 {... } class extends implements I3, I4 {... } Vorteil: effizient; Klassenhierarchie kann durch Interface-Vererbung ausgedrückt werden Nachteil: echte Implementierungen können nur von einer Oberklasse geerbt werden, alle Interfacemethoden müssen selbst implementiert werden 32

5 4.2. MULTIPLE SUOJEKTE IN Mehrfachvererbung 4.2 Multiple Subobjekte in kennt virtuelle und nichtvirtuelle Vererbung nichtvirtuelle Vererbung (default, durchgezogene Linie im Klassendiagramm): Unterklassenobjekt enthält Oberklassenobjekt physikalisch virtuelle Vererbung (gestrichelte Linie): Unterklassenobjekt enthält Pointer auf Oberklassenobjekt nichtvirtuelle Mehrfachvererbung führt zu Mehrfachkopien desselben Subobjektes -Subobjekt von -Subobjekt von -Subobjekt von -Subobjekt von -Objekt -Subobjekt von (!) -Subobjekt von -Subobjekt von -Objekt 33

6 4.3. SUOJEKTGRPHEN 4. Mehrfachvererbung 4.3 Subobjektgraphen Formalismus zur eschreibung von Objektlayouts (Rossie/Friedman 1997) Subobjekte können nur durch vollständige Vererbungspfade eindeutig identifiziert werden: [, ] bedeutet das -Subobjekt eines -Objektes eispiel 1: eispiel 2: 34

7 4.4. STTI LOOKUP 4. Mehrfachvererbung 4.4 Static Lookup Gegeben: Klasse in Hierarchie H, Membername m Gesucht: Subobjekt von, in dem m deklariert ist: lookup(, m) = [,...] Falls keine Mehrfachvererbung: einfach (ufwärtssuche in der Hierarchie) in ++: bitter! eispiele: f f f f x.f() f f E x.f() x.f() E Fall 1: Konflikt, da f mehrdeutig Fall 2: Konflikt, da mehrfaches -Subobjekt wg. nichtvirtueller Mehrfachvererbung analog zu 1.! Fall 3: kein Konflikt, da virtuelle Mehrfachvererbung: member name f in one subobject dominates a member name f in subobject if is a base class subobject of lookup(e, f ) = [E, E ] 35

8 4.4. STTI LOOKUP 4. Mehrfachvererbung eispiel 2. Klassenhierarchie: foo E bar bar F G foo bar H x.foo() x.bar() ef s(, m) ist die Menge aller Subobjekte von, die eine efinition von m enthält: ef s(h, f oo) = [H, ], [H, ], [H, H G] ef s(h, bar ) = [H, H F E], [H, ], [H, H G] ef. (ominanz) [, α] [, β], wenn es im Subobjektgraph (bwärts)pfad [, β] nach [, α] gibt ominierendstes (größtes) Subobjekt σ = max() einer Subobjekt- Menge : dominiert alle σ. Falls nicht eindeutig: σ =. lookup(, m) = max(ef s(, m)) lookup(h, f oo) = [H, H G] lookup(h, bar ) = 36

9 4.4. STTI LOOKUP 4. Mehrfachvererbung Formale efinitionen:,, seien Klassen. Wir schreiben < V für virtuelle Vererbung, < N für nichtvirtuelle Vererbung, sowie < = < V < N. 1. [, ] ist ein Subobjekt 2. Ist [, α ] ein Subobjekt und : < N, so ist [, α ] ein Subobjekt 3. Ist [, α] ein Subobjekt und, : <, < V, so ist [, ] Subobjekt 4. [, α] [, α ] 5. [, α ] [, ] wenn < V 6. mdc([, α ]) = ( most derived class ) 7. ldc([, α ]) = ( least derived class ) 8. ef () = {m enthält efinition von Member m} 9. ef s(, m) = {σ [, ] m ef (ldc(σ ))} bezeichnet die transitive Hülle von amit lässt sich statischer Lookup auf Subobjekten wie folgt ausdrücken: lookup(σ, m) = max({σ σ σ, m ef (ldc(σ )}) 37

10 4.4. STTI LOOKUP 4. Mehrfachvererbung Hinweis. us historischen Gründen schreibt man max (das größte Subobjekt), mathematisch ist jedoch das min bezüglich gemeint Falls das max nicht eindeutig ist, ist das Ergebnis = eispiele zu Hierarchie S. 53: [H, H G] [H, ] [H, ] mdc([h, ]) = H, ldc([h, ]) = lookup([h, H], f oo) = max({[h, H G], [H, ], [H, ]}) = [H, H G] lookup([h, H], bar ) = max({[h, H F E], [H, ], [H, H G]}) = 38

11 4.5. YNMISHE INUNG EI ROSSIE/FRIEMNN 4. Mehrfachvererbung 4.5 ynamische indung bei Rossie/Friedmann ynamische indung auf Subobjekten: dynind(σ, m) = max({σ σ [mdc(σ ), mdc(σ )], m ef (ldc(σ ))}) eispiele: 1. Hierarchie S. 53 sowie d = new H(); d.f oo(); er ast H bewirkt, dass d das [H, ] Subobjekt bezeichnet. Es ist mdc([h, ]) = H, wir suchen also alle σ [H, H], die f oo enthalten. lso dynind([h, ], f oo) = max({[h, H G], [H, ], = [H, H G] [H, ]}) 2. Hierarchie S. 50 (virtueller Fall), wobei f () in und deklariert sei, und b = new (); b.f (); dynind([, ], f ) = max({[, ], [, ]}) = [, ] en Zusammenhang zwischen statischer und dynamischer indung beschreibt das Lemma: dynind(σ, m) = max({σ σ [mdc(σ ), mdc(σ )], m ef (ldc(σ ))} = lookup([mdc(σ ), mdc(σ )], m) d.h. dynamische indung ist wie statischer Lookup angewendet auf den dynamischen Typ 39

12 4.6. ROSSIE/FRIEMNN UN Mehrfachvererbung 4.6 Rossie/Friedmann und ++ Rossie/Friedmann weicht im Fall von Konflikten durch nichtvirtuelle Mehrfachvererbung von ++ ab, denn ++ berücksichtigt in solchen Situationen zusätzlich den statischen Typ! amit wird dynamische indung auch vom statischen Typ abhängig! Im letzten eispiel nichtvirtuell ergibt sich in ++ dynind([, ], f ) = max({[, ], [, ], = [, ] [, ]}) obwohl bei R/F rauskommt! Grund: b hat statischen Typ. Hätte b statischen Typ, wäre der ufruf aber auch in ++ mehrdeutig. Stroustrup behauptet, dass er sich das alles gut überlegt hat... 40

Vererbung & Schnittstellen in C#

Vererbung & Schnittstellen in C# Vererbung & Schnittstellen in C# Inhaltsübersicht - Vorüberlegung - Vererbung - Schnittstellenklassen - Zusammenfassung 1 Vorüberlegung Wozu benötigt man Vererbung überhaubt? 1.Um Zeit zu sparen! Verwendung

Mehr

Objektorientierte Programmierung. Kapitel 12: Interfaces

Objektorientierte Programmierung. Kapitel 12: Interfaces 12. Interfaces 1/14 Objektorientierte Programmierung Kapitel 12: Interfaces Stefan Brass Martin-Luther-Universität Halle-Wittenberg Wintersemester 2012/13 http://www.informatik.uni-halle.de/ brass/oop12/

Mehr

Prinzipien Objektorientierter Programmierung

Prinzipien Objektorientierter Programmierung Prinzipien Objektorientierter Programmierung Valerian Wintner Inhaltsverzeichnis 1 Vorwort 1 2 Kapselung 1 3 Polymorphie 2 3.1 Dynamische Polymorphie...................... 2 3.2 Statische Polymorphie........................

Mehr

Abschnitt 9: Schnittstellen: Interfaces

Abschnitt 9: Schnittstellen: Interfaces Abschnitt 9: Schnittstellen: Interfaces 9. Schnittstellen: Interfaces 9.1 Die Idee der Schnittstellen 9.2 Schnittstellen in Java 9.3 Marker-Interfaces 9.4 Interfaces und Hilfsklassen 9.5 Zusammenfassung

Mehr

Wintersemester Maschinenbau und Kunststofftechnik. Informatik. Tobias Wolf http://informatik.swoke.de. Seite 1 von 22

Wintersemester Maschinenbau und Kunststofftechnik. Informatik. Tobias Wolf http://informatik.swoke.de. Seite 1 von 22 Kapitel 19 Vererbung, UML Seite 1 von 22 Vererbung - Neben der Datenabstraktion und der Datenkapselung ist die Vererbung ein weiteres Merkmal der OOP. - Durch Vererbung werden die Methoden und die Eigenschaften

Mehr

5. Abstrakte Klassen. Beispiel (3) Abstrakte Klasse. Beispiel (2) Angenommen, wir wollen die folgende Klassenhierarchie implementieren:

5. Abstrakte Klassen. Beispiel (3) Abstrakte Klasse. Beispiel (2) Angenommen, wir wollen die folgende Klassenhierarchie implementieren: 5. Abstrakte Klassen Beispiel 5. Abstrakte Klassen 5. Abstrakte Klassen Beispiel Beispiel (3) Angenommen, wir wollen die folgende Klassenhierarchie implementieren: Probleme des Implementierungsvorschlags:

Mehr

Programmieren in Java

Programmieren in Java Programmieren in Java objektorientierte Programmierung 2 2 Zusammenhang Klasse-Datei In jeder *.java Datei kann es genau eine public-klasse geben wobei Klassen- und Dateiname übereinstimmen. Es können

Mehr

Klassenbeziehungen & Vererbung

Klassenbeziehungen & Vererbung Klassenbeziehungen & Vererbung VL Objektorientierte Programmierung Raimund Kirner teilweise nach Folien von Franz Puntigam, TU Wien Überblick Arten von Klassenbeziehungen Untertypen versus Vererbung in

Mehr

Einführung in die Programmierung

Einführung in die Programmierung Technische Universität München WS 2003/2004 Institut für Informatik Prof. Dr. Christoph Zenger Testklausur Einführung in die Programmierung Probeklausur Java (Lösungsvorschlag) 1 Die Klasse ArrayList In

Mehr

Typumwandlungen bei Referenztypen

Typumwandlungen bei Referenztypen Typumwandlungen bei Referenztypen Genau wie es bei einfachen Typen Typumwandlungen gibt, gibt es auch bei Referenztypen Umwandlungen von einem Referenztypen in einen anderen Referenztypen, die wie bei

Mehr

5. Abstrakte Klassen

5. Abstrakte Klassen 5. Abstrakte Klassen Beispiel 5. Abstrakte Klassen Angenommen, wir wollen die folgende Klassenhierarchie implementieren: Vogel Amsel Drossel Fink Peter Becker, Programiersprache Java FH Bonn-Rhein-Sieg,

Mehr

Verhindert, dass eine Methode überschrieben wird. public final int holekontostand() {...} public final class Girokonto extends Konto {...

Verhindert, dass eine Methode überschrieben wird. public final int holekontostand() {...} public final class Girokonto extends Konto {... PIWIN I Kap. 8 Objektorientierte Programmierung - Vererbung 31 Schlüsselwort: final Verhindert, dass eine Methode überschrieben wird public final int holekontostand() {... Erben von einer Klasse verbieten:

Mehr

Kapitel 6. Vererbung

Kapitel 6. Vererbung Kapitel 6 Vererbung Vererbung 1 Ziele Das Vererbungsprinzip der objektorientierten Programmierung verstehen Und in Java umsetzen können Insbesondere folgende Begriffe verstehen und anwenden können: Ober/Unterklassen

Mehr

Kapitel 6. Vererbung

Kapitel 6. Vererbung 1 Kapitel 6 2 Ziele Das sprinzip der objektorientierten Programmierung verstehen Und in Java umsetzen können Insbesondere folgende Begriffe verstehen und anwenden können: Ober/Unterklassen Subtyping Überschreiben

Mehr

OO Softwareentwicklung

OO Softwareentwicklung OO Softwareentwicklung Objektorientierung Prof. Dr. Bernhard Schiefer 1 OO als Ansatz zur Verbesserung der Software-Qualität Modellierung der Welt als selbständig agierende Objekte. Gemeinsame Beschreibung

Mehr

Große Übung Praktische Informatik 1

Große Übung Praktische Informatik 1 Große Übung Praktische Informatik 1 2005-12-08 fuessler@informatik.uni-mannheim.de http://www.informatik.uni-mannheim.de/pi4/people/fuessler 1: Announcements / Orga Weihnachtsklausur zählt als Übungsblatt,

Mehr

Java: Vererbung. Teil 3: super() www.informatikzentrale.de

Java: Vererbung. Teil 3: super() www.informatikzentrale.de Java: Vererbung Teil 3: super() Konstruktor und Vererbung Kindklasse ruft SELBSTSTÄNDIG und IMMER zuerst den Konstruktor der Elternklasse auf! Konstruktor und Vererbung Kindklasse ruft SELBSTSTÄNDIG und

Mehr

Java Einführung Abstrakte Klassen und Interfaces

Java Einführung Abstrakte Klassen und Interfaces Java Einführung Abstrakte Klassen und Interfaces Interface Interface bieten in Java ist die Möglichkeit, einheitliche Schnittstelle für Klassen zu definieren, die später oder/und durch andere Programmierer

Mehr

1. Grundlegende Eigenscha5en 2. Redefini+on 3. Polymophie 4. Mehrfachvererbung

1. Grundlegende Eigenscha5en 2. Redefini+on 3. Polymophie 4. Mehrfachvererbung K05 Vererbung & Polymorphie in C++ 1. Grundlegende Eigenscha5en 2. Redefini+on 3. Polymophie 4. Mehrfachvererbung 2 Vererbung in C++: Grundlagen Analog zu Java unterstützt C++ das Konzept der Vererbung:

Mehr

4. AuD Tafelübung T-C3

4. AuD Tafelübung T-C3 4. AuD Tafelübung T-C3 Simon Ruderich 17. November 2010 Arrays Unregelmäßige Arrays i n t [ ] [ ] x = new i n t [ 3 ] [ 4 ] ; x [ 2 ] = new i n t [ 2 ] ; for ( i n t i = 0; i < x. l e n g t h ; i ++) {

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Grundkonstrukte der Objektorientierung in Java, C# und C++

Grundkonstrukte der Objektorientierung in Java, C# und C++ Grundkonstrukte der Objektorientierung in Java, C# und C++ 2 Viele Patterns basieren auf einer Kombination einiger zentraler Modellierungskonstrukte, namentlich auf Schnittstellen- und Implementierungsvererbung

Mehr

Kapitel 6. Vererbung

Kapitel 6. Vererbung 1 Kapitel 6 2 Ziele Das sprinzip der objektorientierten Programmierung verstehen Und in Java umsetzen können Insbesondere folgende Begriffe verstehen und anwenden können: Ober/Unterklassen Subtyping Überschreiben

Mehr

Universität Augsburg, Institut für Informatik Sommersemester 2005 Prof. Dr. Werner Kießling 16. Juli 2005 Dr. Alfons Huhn, Timotheus Preisinger

Universität Augsburg, Institut für Informatik Sommersemester 2005 Prof. Dr. Werner Kießling 16. Juli 2005 Dr. Alfons Huhn, Timotheus Preisinger Universität Augsburg, Institut für Informatik Sommersemester 2005 Prof. Dr. Werner Kießling 16. Juli 2005 Dr. Alfons Huhn, Timotheus Preisinger Informatik II Hinweise: Die Bearbeitungszeit beträgt 90 Minuten.

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

Factory Method (Virtual Constructor)

Factory Method (Virtual Constructor) Factory Method (Virtual Constructor) Zweck: Definition einer Schnittstelle für Objekterzeugung Anwendungsgebiete: Klasse neuer Objekte bei Objekterzeugung unbekannt Unterklassen sollen Klasse neuer Objekte

Mehr

C/C++-Programmierung

C/C++-Programmierung 1 C/C++-Programmierung new/delete, virtual, Typumwandlungen Sebastian Hack Christoph Mallon (hack mallon)@cs.uni-sb.de Fachbereich Informatik Universität des Saarlandes Wintersemester 2009/2010 2 new/delete

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

GetName(), GetName(), GetGeschlecht() und AelterWerden().

GetName(), GetName(), GetGeschlecht() und AelterWerden(). 11. Vererbung Vererbung ist eine der mächtigsten Funktionalitäten der objektorientierten Programmiersprachen. Man versteht unter Vererbung die Tatsache, dass eine Klasse alle Methoden und Variablen einer

Mehr

Folge 18 - Vererbung

Folge 18 - Vererbung Workshop Folge 18 - Vererbung 18.1 Ein einfacher Fall der Vererbung Schritt 1 - Vorbereitungen Besorgen Sie sich - vielleicht aus einer der Übungen der Folge 17 - ein fertiges und lauffähiges Listenprojekt,

Mehr

Kapitel 12: Übersetzung objektorienter Konzepte

Kapitel 12: Übersetzung objektorienter Konzepte Kapitel 12: Übersetzung objektorienter Konzepte Themen Klassendarstellung und Methodenaufruf Typüberprüfung Klassenhierarchieanalyse Escape Analyse 12.1 Klassendarstellung bei Einfachvererbung class Punkt

Mehr

3 Objektorientierte Konzepte in Java

3 Objektorientierte Konzepte in Java 3 Objektorientierte Konzepte in Java 3.1 Klassendeklarationen Fragen an die Klassendeklaration: Wie heißt die Klasse? Wer darf auf die Klasse und ihre Attribute/Methoden zugreifen? Ist die Klasse eine

Mehr

Tutorium 5 - Programmieren

Tutorium 5 - Programmieren Tutorium 5 - Programmieren Grischa Liebel Uni Karlsruhe (TH) Tutorium 11 1 Einleitung 2 Abschlussaufgaben 3 Vorlesungsstoff 4 Ergänzungen zum Vorlesungsstoff Grischa Liebel (Uni Karlsruhe (TH)) c 2008

Mehr

Prof. Dr. Uwe Schmidt. 21. August 2007. Aufgaben zur Klausur Objektorientierte Programmierung im SS 2007 (IA 252)

Prof. Dr. Uwe Schmidt. 21. August 2007. Aufgaben zur Klausur Objektorientierte Programmierung im SS 2007 (IA 252) Prof. Dr. Uwe Schmidt 21. August 2007 Aufgaben zur Klausur Objektorientierte Programmierung im SS 2007 (IA 252) Zeit: 75 Minuten erlaubte Hilfsmittel: keine Bitte tragen Sie Ihre Antworten und fertigen

Mehr

Objektorientierte Programmierung

Objektorientierte Programmierung Universität der Bundeswehr Fakultät für Informatik Institut 2 Priv.-Doz. Dr. Lothar Schmitz FT 2006 Zusatzaufgaben Lösungsvorschlag Objektorientierte Programmierung Lösung 22 (Java und UML-Klassendiagramm)

Mehr

Whitebox-Vererbung vs. Blackbox-Vererbung. - Begriffsbestimmung - Vererbung öffentliche Vererbung private Vererbung - Zusammenfassung

Whitebox-Vererbung vs. Blackbox-Vererbung. - Begriffsbestimmung - Vererbung öffentliche Vererbung private Vererbung - Zusammenfassung Whitebox-Vererbung vs. Blackbox-Vererbung - Begriffsbestimmung - Vererbung öffentliche Vererbung private Vererbung - Zusammenfassung Begriffsbestimmung Whitebox- oder Glassbox-Testverfahren - auch Strukturtest-Verfahren

Mehr

Innere Klassen in Java

Innere Klassen in Java Innere Klassen in Java SS 2012 Prof. Dr. Margarita Esponda Innere Klassen Klassen- oder Interfacedefinitionen können zur besseren Strukturierung von Programmen verschachtelt werden Eine "Inner Class" wird

Mehr

Das Typsystem von Scala. L. Piepmeyer: Funktionale Programmierung - Das Typsystem von Scala

Das Typsystem von Scala. L. Piepmeyer: Funktionale Programmierung - Das Typsystem von Scala Das Typsystem von Scala 1 Eigenschaften Das Typsystem von Scala ist statisch, implizit und sicher 2 Nichts Primitives Alles ist ein Objekt, es gibt keine primitiven Datentypen scala> 42.hashCode() res0:

Mehr

Objektorientierte Programmierung

Objektorientierte Programmierung Objektorientierte Programmierung 1 Geschichte Dahl, Nygaard: Simula 67 (Algol 60 + Objektorientierung) Kay et al.: Smalltalk (erste rein-objektorientierte Sprache) Object Pascal, Objective C, C++ (wiederum

Mehr

Vorkurs C++ Programmierung

Vorkurs C++ Programmierung Vorkurs C++ Programmierung Klassen Letzte Stunde Speicherverwaltung automatische Speicherverwaltung auf dem Stack dynamische Speicherverwaltung auf dem Heap new/new[] und delete/delete[] Speicherklassen:

Mehr

Gebundene Typparameter

Gebundene Typparameter Gebundene Typparameter interface StringHashable { String hashcode(); class StringHashMap { public void put (Key k, Value v) { String hash = k.hashcode();...... Objektorientierte

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Java Kurs für Anfänger Einheit 4 Klassen und Objekte

Java Kurs für Anfänger Einheit 4 Klassen und Objekte Java Kurs für Anfänger Einheit 4 Klassen und Ludwig-Maximilians-Universität München (Institut für Informatik: Programmierung und Softwaretechnik von Prof.Wirsing) 13. Juni 2009 Inhaltsverzeichnis klasse

Mehr

Software Engineering Klassendiagramme Assoziationen

Software Engineering Klassendiagramme Assoziationen Software Engineering Klassendiagramme Assoziationen Prof. Adrian A. Müller, PMP, PSM 1, CSM Fachbereich Informatik und Mikrosystemtechnik 1 Lesen von Multiplizitäten (1) Multiplizitäten werden folgendermaßen

Mehr

Kapitel 4 Die Datenbank Kuchenbestellung Seite 1

Kapitel 4 Die Datenbank Kuchenbestellung Seite 1 Kapitel 4 Die Datenbank Kuchenbestellung Seite 1 4 Die Datenbank Kuchenbestellung In diesem Kapitel werde ich die Theorie aus Kapitel 2 Die Datenbank Buchausleihe an Hand einer weiteren Datenbank Kuchenbestellung

Mehr

In vergleichsbasierten Suchbäumen wird nicht in Schlüssel hineingeschaut.

In vergleichsbasierten Suchbäumen wird nicht in Schlüssel hineingeschaut. Binäre Suchbäume Tries (Folie 182, Seite 58 im Skript) In vergleichsbasierten Suchbäumen wird nicht in Schlüssel hineingeschaut. In Tries entspricht die ite Verzweigung dem iten Zeichen des Schlüssels.

Mehr

Einführung in die objektorientierte Programmierung mit Java. Klausur am 19. Oktober 2005

Einführung in die objektorientierte Programmierung mit Java. Klausur am 19. Oktober 2005 Einführung in die objektorientierte Programmierung mit Java Klausur am 19. Oktober 2005 Matrikelnummer: Nachname: Vorname: Semesteranzahl: Die Klausur besteht aus drei Frageblöcken zu den Inhalten der

Mehr

Klausur zur Einführung in die objektorientierte Programmierung mit Java

Klausur zur Einführung in die objektorientierte Programmierung mit Java Klausur zur Einführung in die objektorientierte Programmierung mit Java im Studiengang Informationswissenschaft Prof. Dr. Christian Wolff Professur für Medieninformatik Institut für Medien-, Informations-

Mehr

Von der UML nach C++

Von der UML nach C++ 22 Von der UML nach C++ Dieses Kapitel behandelt die folgenden Themen: Vererbung Interfaces Assoziationen Multiplizität Aggregation Komposition Die Unified Modeling Language (UML) ist eine weit verbreitete

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.)

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.) Lösungsmethoden gewöhnlicher Dierentialgleichungen Dgl) Allgemeine und partikuläre Lösung einer gewöhnlichen Dierentialgleichung Eine Dierentialgleichung ist eine Gleichung! Zum Unterschied von den gewöhnlichen

Mehr

Verkehrsteilnehmer. Beispiel: Wir betrachten die Modellierung von Handlungskomponenten wie Verkehrsteilnehmern und Straßen.

Verkehrsteilnehmer. Beispiel: Wir betrachten die Modellierung von Handlungskomponenten wie Verkehrsteilnehmern und Straßen. 7.6 Bedingte Rechte Manchmal sind Rechte nur unter bestimmten Voraussetzungen gültig. Diese Situation beschreiben wir -wie sonst auch üblich- mit bedingten Rechten. Beispiel: Wir betrachten die Modellierung

Mehr

Die Zukunft wird durch eine sogenannte Zukunftspräposition ausgedrückt. Im Arabischen gibt es auch noch den

Die Zukunft wird durch eine sogenannte Zukunftspräposition ausgedrückt. Im Arabischen gibt es auch noch den Die Verben Allgemeines Die Verben werden im Arabisch konjugiert, wie uns das ja aus dem Deutschen geläufig ist. Allerdings kennt man im Arabischen nur zwei Zeitformen: Perfekt (Der Junge hat seinen Apfel

Mehr

Leseprobe. Wilhelm Kleppmann. Versuchsplanung. Produkte und Prozesse optimieren ISBN: 978-3-446-42033-5. Weitere Informationen oder Bestellungen unter

Leseprobe. Wilhelm Kleppmann. Versuchsplanung. Produkte und Prozesse optimieren ISBN: 978-3-446-42033-5. Weitere Informationen oder Bestellungen unter Leseprobe Wilhelm Kleppmann Versuchsplanung Produkte und Prozesse optimieren ISBN: -3-44-4033-5 Weitere Informationen oder Bestellungen unter http://www.hanser.de/-3-44-4033-5 sowie im Buchhandel. Carl

Mehr

13. Tutorium zu Programmieren

13. Tutorium zu Programmieren 13. Tutorium zu Programmieren Dennis Ewert Gruppe 6 Universität Karlsruhe Institut für Programmstrukturen und Datenorganisation (IPD) Lehrstuhl Programmierparadigmen WS 2008/2009 c 2009 by IPD Snelting

Mehr

Kapitel 9. Inner Classes. 9.1 Wiederholung: Iteratoren. Ausführen einer Operation auf allen Elementen einer Containerklasse

Kapitel 9. Inner Classes. 9.1 Wiederholung: Iteratoren. Ausführen einer Operation auf allen Elementen einer Containerklasse Kapitel 9 Inner Classes 9.1 Wiederholung: Iteratoren Ausführen einer Operation auf allen Elementen einer Containerklasse (zb Liste, Baum,...) vgl. map/f old in der funktionalen Programmierung. Aber: higher-order

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Java Einführung Umsetzung von Beziehungen zwischen Klassen. Kapitel 7

Java Einführung Umsetzung von Beziehungen zwischen Klassen. Kapitel 7 Java Einführung Umsetzung von Beziehungen zwischen Klassen Kapitel 7 Inhalt Wiederholung: Klassendiagramm in UML Java-Umsetzung von Generalisierung Komposition Assoziationen 2 Das Klassendiagramm Zweck

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Einführung in die Java- Programmierung

Einführung in die Java- Programmierung Einführung in die Java- Programmierung Dr. Volker Riediger Tassilo Horn riediger horn@uni-koblenz.de WiSe 2012/13 1 Wichtig... Mittags keine Pommes... Praktikum A 230 C 207 (Madeleine + Esma) F 112 F 113

Mehr

Algorithmen und Datenstrukturen 07

Algorithmen und Datenstrukturen 07 5. Dezember 2011 1 Besprechung Blatt 6 Fragen 2 Vererbung Allgemein abstract Interfaces 3 Unified Modeling Language (UML) Ablaufdiagramme Klassendiagramme Anwendungsfalldiagramme 4 Vorbereitung Blatt 7

Mehr

12. Vererbung. Prof. Dr. Markus Gross Informatik I für D-ITET (WS 03/04)

12. Vererbung. Prof. Dr. Markus Gross Informatik I für D-ITET (WS 03/04) 12. Vererbung Prof. Dr. Markus Gross Informatik I für D-ITET (WS 03/04)!Vererbung Konzept!Protected Section!Virtuelle Mitgliedsfunktionen!Verwendung von Vererbung Copyright: M. Gross, ETHZ, 2003 2 Vererbung!

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Tafelübung 04 Referenzen, Overloading, Klassen(hierarchien) Clemens Lang T2 18. Mai 2010 14:00 16:00, 00.152 Tafelübung zu AuD 1/13 Organisatorisches Nächster Übungstermin

Mehr

Vermittler (Mediator) Sabine Müller - Sven Richter - Jens Wagenbreth 03IN2-P-D

Vermittler (Mediator) Sabine Müller - Sven Richter - Jens Wagenbreth 03IN2-P-D Vermittler (Mediator) Sabine Müller - Sven Richter - Jens Wagenbreth 03IN2-P-D 1 1. EINLEITUNG... 3 2. ZWECK... 3 3. MOTIVATION... 3 4. ANWENDBARKEIT... 6 5. STRUKTUR... 6 6. TEILNEHMER... 7 7. INTERAKTION...

Mehr

Einfache Varianzanalyse für abhängige

Einfache Varianzanalyse für abhängige Einfache Varianzanalyse für abhängige Stichproben Wie beim t-test gibt es auch bei der VA eine Alternative für abhängige Stichproben. Anmerkung: Was man unter abhängigen Stichproben versteht und wie diese

Mehr

die wichtigsten online-tools für augenoptiker websites

die wichtigsten online-tools für augenoptiker websites die wichtigsten online-tools für augenoptiker websites Warum online-tools für Ihre website nutzen? Ich brauche das nicht, ich verkauf Online keine Brillen. Diesen Satz haben wir schon oft gehört. Richtig

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHISCHE UIVERSITÄT MÜCHE Zentrum Mathematik PRF. R.R. JÜRGE RICHTER-GEBERT, VAESSA KRUMMECK, MICHAEL PRÄHFER Höhere Mathematik für Informatiker I (Wintersemester 003/004) Aufgabenblatt 1 (4. ktober 003)

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt 4

Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt 4 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter H. Schmitt David Farago, Christoph Scheben, Mattias Ulbrich Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt

Mehr

Mit Excel Strickvorlagen erstellen (GRUNDKURS)

Mit Excel Strickvorlagen erstellen (GRUNDKURS) Mit Excel Strickvorlagen erstellen (GRUNDKURS) Themen: Einstellen der Spaltenbreite Einfärben von Flächen Umranden oder Unterteilen von Flächen Strickschriften erstellen Zellen formatieren So geht s: Einstellen

Mehr

Java Kurs für Anfänger Einheit 5 Methoden

Java Kurs für Anfänger Einheit 5 Methoden Java Kurs für Anfänger Einheit 5 Methoden Ludwig-Maximilians-Universität München (Institut für Informatik: Programmierung und Softwaretechnik von Prof.Wirsing) 22. Juni 2009 Inhaltsverzeichnis Methoden

Mehr

Mit dem Tool Stundenverwaltung von Hanno Kniebel erhalten Sie die Möglichkeit zur effizienten Verwaltung von Montagezeiten Ihrer Mitarbeiter.

Mit dem Tool Stundenverwaltung von Hanno Kniebel erhalten Sie die Möglichkeit zur effizienten Verwaltung von Montagezeiten Ihrer Mitarbeiter. Stundenverwaltung Mit dem Tool Stundenverwaltung von Hanno Kniebel erhalten Sie die Möglichkeit zur effizienten Verwaltung von Montagezeiten Ihrer Mitarbeiter. Dieses Programm zeichnet sich aus durch einfachste

Mehr

Animationen erstellen

Animationen erstellen Animationen erstellen Unter Animation wird hier das Erscheinen oder Bewegen von Objekten Texten und Bildern verstanden Dazu wird zunächst eine neue Folie erstellt : Einfügen/ Neue Folie... Das Layout Aufzählung

Mehr

Testen mit JUnit. Motivation

Testen mit JUnit. Motivation Test First Design for Test in Eclipse (eigentlich: ) zu einer Klasse Beispiel zur Demonstration Ergänzungen Test First "Immer dann, wenn Du in Versuchung kommst, etwas wie eine print- Anweisung oder einen

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

Definition und Begriffe

Definition und Begriffe Merkblatt: Das Dreieck Definition und Begriffe Das Dreieck ist ein Vieleck. In der Ebene ist es die einfachste Figur, die von geraden Linien begrenzt wird. Ecken: Jedes Dreieck hat drei Ecken, die meist

Mehr

Qualität und Verlässlichkeit Das verstehen die Deutschen unter Geschäftsmoral!

Qualität und Verlässlichkeit Das verstehen die Deutschen unter Geschäftsmoral! Beitrag: 1:43 Minuten Anmoderationsvorschlag: Unseriöse Internetanbieter, falsch deklarierte Lebensmittel oder die jüngsten ADAC-Skandale. Solche Fälle mit einer doch eher fragwürdigen Geschäftsmoral gibt

Mehr

Tutorium zur Mikroökonomie II WS 02/03 Universität Mannheim Tri Vi Dang. Aufgabenblatt 3 (KW 44) (30.10.02)

Tutorium zur Mikroökonomie II WS 02/03 Universität Mannheim Tri Vi Dang. Aufgabenblatt 3 (KW 44) (30.10.02) Tutorium zur Mikroökonomie II WS 02/03 Universität Mannheim Tri Vi Dang Aufgabenblatt 3 (KW 44) (30.10.02) Aufgabe 1: Preisdiskriminierung dritten Grades (20 Punkte) Ein innovativer Uni-Absolvent plant,

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

SEP 114. Design by Contract

SEP 114. Design by Contract Design by Contract SEP 114 Design by Contract Teile das zu entwickelnde Programm in kleine Einheiten (Klassen, Methoden), die unabhängig voneinander entwickelt und überprüft werden können. Einheiten mit

Mehr

Einführung in die Programmierung

Einführung in die Programmierung : Inhalt Einführung in die Programmierung Wintersemester 2008/09 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering Fakultät für Informatik TU Dortmund - mit / ohne Parameter - mit / ohne Rückgabewerte

Mehr

Wir machen neue Politik für Baden-Württemberg

Wir machen neue Politik für Baden-Württemberg Wir machen neue Politik für Baden-Württemberg Am 27. März 2011 haben die Menschen in Baden-Württemberg gewählt. Sie wollten eine andere Politik als vorher. Die Menschen haben die GRÜNEN und die SPD in

Mehr

Klassendiagramm. (class diagram)

Klassendiagramm. (class diagram) : Klassendiagramm http:///topic95.html Klassendiagramm (class diagram) Klassendiagramm Objektdiagramm Komponentendiagramm Kompositionsstrukturdiagramm Verteilungsdiagramm Einstieg Paketdiagramm Aufbau

Mehr

Studentische Lösung zum Übungsblatt Nr. 7

Studentische Lösung zum Übungsblatt Nr. 7 Studentische Lösung zum Übungsblatt Nr. 7 Aufgabe 1) Dynamische Warteschlange public class UltimateOrderQueue private Order[] inhalt; private int hinten; // zeigt auf erstes freies Element private int

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

4 Vererbung, Polymorphie

4 Vererbung, Polymorphie 4 Vererbung, Polymorphie Jörn Loviscach Versionsstand: 21. März 2014, 22:57 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html This work

Mehr

Wie Sie mit Mastern arbeiten

Wie Sie mit Mastern arbeiten Wie Sie mit Mastern arbeiten Was ist ein Master? Einer der großen Vorteile von EDV besteht darin, dass Ihnen der Rechner Arbeit abnimmt. Diesen Vorteil sollten sie nutzen, wo immer es geht. In PowerPoint

Mehr

UML Klassendiagramm. Igor Karlinskiy, Mikhail Gavrish

UML Klassendiagramm. Igor Karlinskiy, Mikhail Gavrish UML Klassendiagramm Igor Karlinskiy, Mikhail Gavrish Agenda Wichtigste Eigenschaften Syntaktische Elemente mit entsprechendem C++ Code Analysemodell Designmodell Quellen 2 Klassendiagramm gibt die Möglichkeit,

Mehr

Statuten in leichter Sprache

Statuten in leichter Sprache Statuten in leichter Sprache Zweck vom Verein Artikel 1: Zivil-Gesetz-Buch Es gibt einen Verein der selbstbestimmung.ch heisst. Der Verein ist so aufgebaut, wie es im Zivil-Gesetz-Buch steht. Im Zivil-Gesetz-Buch

Mehr

VIII: Vererbung. Unterklassen einer Klasse. Vererbung von Methoden und Instanzvariablen. Überschreiben von Methoden

VIII: Vererbung. Unterklassen einer Klasse. Vererbung von Methoden und Instanzvariablen. Überschreiben von Methoden VIII: Vererbung Unterklassen einer Klasse Vererbung von Methoden und Instanzvariablen Überschreiben von Methoden Vererbung als Realisierung einer is-a Beziehung. Informatik I VIII: Vererbung 259 Beispiel:

Mehr

DAS PARETO PRINZIP DER SCHLÜSSEL ZUM ERFOLG

DAS PARETO PRINZIP DER SCHLÜSSEL ZUM ERFOLG DAS PARETO PRINZIP DER SCHLÜSSEL ZUM ERFOLG von Urs Schaffer Copyright by Urs Schaffer Schaffer Consulting GmbH Basel www.schaffer-consulting.ch Info@schaffer-consulting.ch Haben Sie gewusst dass... >

Mehr

Institut für Programmierung und Reaktive Systeme 25. August 2014. Programmier-Labor. 04. + 05. Übungsblatt. int binarysearch(int[] a, int x),

Institut für Programmierung und Reaktive Systeme 25. August 2014. Programmier-Labor. 04. + 05. Übungsblatt. int binarysearch(int[] a, int x), Technische Universität Braunschweig Dr. Werner Struckmann Institut für Programmierung und Reaktive Systeme 25. August 2014 Programmier-Labor 04. + 05. Übungsblatt Aufgabe 21: a) Schreiben Sie eine Methode

Mehr

Plotten von Linien ( nach Jack Bresenham, 1962 )

Plotten von Linien ( nach Jack Bresenham, 1962 ) Plotten von Linien ( nach Jack Bresenham, 1962 ) Ac Eine auf dem Bildschirm darzustellende Linie sieht treppenförmig aus, weil der Computer Linien aus einzelnen (meist quadratischen) Bildpunkten, Pixels

Mehr

Das ist Paul. Paul liebt seine Schuhe. Und Paul besitzt viele Schuhe.

Das ist Paul. Paul liebt seine Schuhe. Und Paul besitzt viele Schuhe. in Geld-fuer-alte-Schuhe.de Das ist Paul. Paul liebt seine Schuhe. Und Paul besitzt viele Schuhe. Viel zu viele Schuhe. Sein Schuhschrank platzt aus allen Nähten. Paul überlegt, was er mit seinen alten

Mehr

Fachgebiet Informationssysteme Prof. Dr.-Ing. N. Fuhr. Programmierung Prof. Dr.-Ing. Nobert Fuhr. Übungsblatt Nr. 6

Fachgebiet Informationssysteme Prof. Dr.-Ing. N. Fuhr. Programmierung Prof. Dr.-Ing. Nobert Fuhr. Übungsblatt Nr. 6 Gudrun Fischer Sascha Kriewel programmierung@is.informatik.uni-duisburg.de Anmeldung zur Klausur! Übungsblatt Nr. 6 Um an der Klausur teilzunehmen, müssen sich Studierende der angewandten Informatik in

Mehr

Programmierkurs Java

Programmierkurs Java Programmierkurs Java Dr. Dietrich Boles Aufgaben zu UE16-Rekursion (Stand 09.12.2011) Aufgabe 1: Implementieren Sie in Java ein Programm, das solange einzelne Zeichen vom Terminal einliest, bis ein #-Zeichen

Mehr

Deutliche Mehrheit der Bevölkerung für aktive Sterbehilfe

Deutliche Mehrheit der Bevölkerung für aktive Sterbehilfe Allensbacher Kurzbericht 6. Oktober 2014 Deutliche Mehrheit der Bevölkerung für aktive Sterbehilfe Zwei Drittel sind für die Erlaubnis aktiver Sterbehilfe, 60 Prozent für die Zulassung privater Sterbehilfe-Organsationen.

Mehr

EinfÅhrung in die objektorientiere Programmierung (OOP) unter Delphi 6.0. EDV Kurs 13/2

EinfÅhrung in die objektorientiere Programmierung (OOP) unter Delphi 6.0. EDV Kurs 13/2 EinfÅhrung in die objektorientiere Programmierung (OOP) unter Delphi 6.0 EDV Kurs 13/2 Inhaltsverzeichnis 1 Objekte... 1 2 Klassen... 3 2.1 Beziehungen zwischen Klassen... 4 2.1.1 Vererbung... 4 2.1.2

Mehr