Oszilloskop I. Grundpraktikum II. Grundpraktikum II Oszilloskop I 1/10. Übungsdatum: Abgabetermin:

Größe: px
Ab Seite anzeigen:

Download "Oszilloskop I. Grundpraktikum II. Grundpraktikum II Oszilloskop I 1/10. Übungsdatum: 29.05.2001 Abgabetermin: 05.06.2001"

Transkript

1 Grundpraktikum II Oszilloskop I 1/10 Übungsdatum: Abgabetermin: Grundpraktikum II Oszilloskop I Gabath Gerhild Matr. Nr Mittendorfer Stephan Matr. Nr

2 Grundpraktikum II Oszilloskop I 2/10 GRUNDLAGEN Allgemeines über das Oszilloskop Oszilloskope sind im Bereich der Elektrotechnik eines der wichtigsten Messgeräte. Ihr Vorteil liegt darin, den zeitlichen Verlauf von Spannungen sichtbar zu machen. Das Haupteinsatzgebiet für diese Gerätegruppe ist die bildliche Darstellung der Augenblickswerte von Wechsel- und Mischspannungen. Sie lassen sich auch dann einsetzen, wenn andere physikalische Größen sichtbar gemacht werden sollen. Dabei werden alle zu messenden physikalischen Größen erst in proportionale Spannungen umgewandelt, da das Oszilloskop ja nur Spannungen anzeigen kann. Als Anzeigeorgan dient eine Elektronenstrahlröhre, die teilweise nach ihrem Erfinder als Braunsche Röhre bezeichnet wird. Der Elektronenstrahl im evakuierten Kolben trifft auf den Leuchtschirm auf und bewirkt an dieser Stelle ein punktförmiges Aufleuchten der Leuchtschicht. Der Strahl kann durch zwei senkrecht zueinanderstehende Ablenkplattenpaare auf jeden Punkt des Bildschirms gelenkt werden. Die horizontale Achse wird als x-achse und damit die waagrechte Ablenkung als X-Ablenkung bezeichnet. Bei der vertikalen Ablenkung wird von der Y-Ablenkung gesprochen. Elektronenstrahlröhre Die Elektronenstrahlröhre ist das Anzeigeorgan des Oszilloskops. In ihrem evakuierten Glaskolben befinden sich jeweils ein Elektrodensystem zur Erzeugung, zur Beschleunigung, zur Bündelung und zur Ablenkung des Elektronenstrahles sowie am Leuchtschirm. Die frei beweglichen Elektronen werden durch eine beheizte Kathode erzeugt. Die Kathode ist von einem Wehneltzylinder umgeben, durch dessen Spannung gegenüber der Kathode die Zahl der durch ein kleines Loch austretenden Elektronen gesteuert werden kann. Die Elektronen werden dann durch mehrere Elektroden, die auf einem positiven Potential liegen, in Richtung des Leuchtschirms beschleunigt. Dabei müssen sie das Fokussierungssystem durchlaufen. Die dadurch gebündelten Elektronen durchfliegen dann noch das X- und Y-Ablenksystem bevor sie am Leuchtschirm auftreffen. Je nach Spannung an diesen Plattenpaaren kann der Strahl auf jeden Punkt des Leuchtschirms abgelenkt werden. Der Punkt, auf den der Elektronenstrahl auftritt beginnt zu leuchten. Vertikal- oder Y-Ablenkung Die zu messende Spannung wird auf die Y-Eingangsbuchse des Oszilloskops, also auf einen der beiden Kanäle Ch1 oder Ch2 angeklemmt und gelangt von dort zunächst auf einen Abschwächer. Dieser ist in der Regel als Drehschalter ausgebildet. Er besitzt eine feste Stufenteilung, die bei modernen Geräten eine Folge hat. Von diesem gelangt das Messsignal auf den eigentlichen Y- Verstärker, an den die Y-Ablenkplatten angeschlossen sind. Die Amplitude hängt von der Amplitude des Messsignals und der Stellung des Abschwächers ab. Der Abschwächer bestimmt die Spannungsskala der y-achse. Die Skala in Y-Richtung wird in Volt/ Division angegeben.

3 Grundpraktikum II Oszilloskop I 3/10 AC/DC/GND In Stellung DC (= direct current = Gleichspannung) wird das an der Y-Eingangsbuchse liegende Signal direkt auf den Abschwächer-Eingang geführt und daher der Verlauf der Eingangsspannung auf dem Bildschirm unverändert wiedergegeben. Diese übliche Einstellung ist immer dann nachteilig, wenn eine kleinere Wechselspannung einer größeren Gleichspannung überlagert ist. Soll jedoch der Wechselspannungsanteil gemessen werden, so wird der Umschalter auf AC (= alternating current = Wechselspannung) eingestellt. Dabei wird ein Kondensator zwischen die Y-Eingangsbuchse und den Abschwächer geschaltet, der den Gleichspannungsanteil abblockt. Dadurch wird der Wechselspannungsanteil sichtbar. In Stellung GND (= ground = Erde) wird die Verbindung zwischen der Eingangsbuchse und dem Y-Verstärker unterbrochen und dieser intern direkt an Masse gelegt. Dadurch kann man die Null-Linie auf dem Bildschirm sichtbar machen, überprüfen und kalibrieren. Y-Position Mit diesem Drehknopf lässt sich die Spannungs-Nulllinie in vertikaler Richtung über den gesamten Bildschirm verschieben. Durch einen kurzgeschlossenen Eingang des Messkabels kann die Grundeinstellung vorgenommen werden, indem man die Nulllinie genau auf die x-achse einrichtet. Horizontal- oder X-Ablenkung Soll der Verlauf einer Signalspannung am Y-Eingang in Abhängigkeit von der Zeit darstellt werden, so muss sich der Elektronenstrahl zusätzlich mit gleich bleibender Geschwindigkeit von links nach rechts über den Bildschirm bewegen. Die hierfür notwendige Ablenkspannung wird in einem internen Zeitbasisgenerator erzeugt und im X-Verstärker, der die X-Ablenkplatten ansteuert, auf erforderliche Spannungswerte verstärkt. Dafür ist eine Sägezahnspannung notwendig. Diese Spannung steigt langsam linear an und fällt nach Erreichen des Höchstwertes sehr schnell wieder auf den Anfangswert zurück. Die Zeit, die bei der Sägezahnspannung für den Anstieg und das Zurückspringen auf den Anfangswert benötigt wird, ist die Periodendauer der Zeitablenkung. [Kritiker, subst. masc., Jemand, der sich rühmt, dass er schwer zufrieden zu stellen ist, weil niemand versucht, ihn zufrieden zu stellen] Zur X- Ablenkung bzw. zum Zeitbasisgenerator gehört noch die Triggereinrichtung (triggern = auslösen). Durch sie wird der Zeitbasisgenerator und damit die Ablenkung des Elektronenstrahles in X-Richtung gestartet. Bei der internen Triggerung wird der Triggerimpuls von der Messspannung abgeleitet. Der Zeitbasisschalter wird mit TIME bezeichnet. Er ist ebenso ein Drehschalter mit einer Folge. Die Schalterstellungen haben die Bezeichnung Zeiteinheit/Div. X-Position Mit diesem Drehknopf kann die Leuchtspur auf dem Leuchtschirm in horizontaler Richtung verschoben werden. Die Grundeinstellung wird vorgenommen, indem die Leuchtspur so verschoben wird, dass sie in einem kleinen Abstand vom linken und im gleichen Abstand vom rechten Leuchtschirmrand endet.

4 Grundpraktikum II Oszilloskop I 4/10 Triggerung Ein ruhig stehendes Bild ist nur dann zu erreichen, wenn die Aufzeichnung durch den Elektronenstrahl immer wieder exakt an der gleichen Stelle im periodischen Ablauf der Signalspannung beginnt. Die Triggerung steuert den Zeitbasisgenerator so, dass die erzeugte Sägezahnspannung für die X- Ablenkung immer wieder an der gleichen Stelle der periodischen Signalspannung startet. Die Triggerung ist somit von ihrer Funktion her der X-Ablenkung zugeordnet. Zweikanal-Oszilloskope Bei messtechnischen Untersuchungen ist es oft von großem Vorteil, wenn zwei Spannungsverläufe in zeitlich richtiger Zuordnung zueinander gleichzeitig auf dem Leuchtschirm sichtbar gemacht werden können. Zweikanaloszilloskope haben eine normale Einstrahl-Elektronenröhre. Die Ablenkung an den Y-Platten kann aber durch einen elektronischen Schalter fortlaufend von einem Signal auf das andere umgeschaltet werden. Dadurch sind die Lichtspuren beider Signale auf dem Leuchtschirm gleichzeitig sichtbar. Der Zeitbasisgenerator ist gleich wie beim Einkanal-Oszilloskop, wodurch die Triggerung nach dem Ya.- oder dem Yb.-Signal oder einem externen Triggersignal erfolgen kann. Bertriebsart ALT (= alternate = abwechselnd) Bei dieser Bertiebsart wird der elektronische Umschalter vom Zeitbasisgenerator gesteuert. Die Umschaltfrequenz ist dabei gleich der Frequenz der Sägezahn-Ablenkspannung. Auf diese Weise wird erreicht, dass z.b. in der 1., 3., 5. Periode das Ya-Signal und in der 2., 4., 6. Periode das Yb-Signal angezeigt wird. Ist die Ablenkfrequenz groß genug, sind auf dem Leuchtschirm beide Signale gleichzeitig sichtbar. Betriebsart CHOP (= chopped = zerhackt) Bei dieser Betriebsart erfolgt die Umschaltung des elektronischen Umschalters mit einer festen Frequenz, also unabhängig von der am Zeitbasisgenerator eingestellten Ablenkfrequenz. Die Umschaltfrequenz ist sehr hoch gegenüber der Frequenz des zu messenden Signals. Daher wird jeweils abwechselnd immer nur ein kleiner Ausschnitt des Ya-Signals und des Yb-Signals nacheinander auf dem Leuchtschirm angezeigt. Welche der beiden Betriebsarten für die Messung besser geeignet ist, lässt sich leicht am Bildschirm erkennen.

5 Grundpraktikum II Oszilloskop I 5/10 MESSUNG UND AUSWERTUNG Messung von Spannungen Gleichspannungen 1 Am Gleichspanungsgerät wurde eine Spannung von U 0 = 10V gewählt. Mit den beiden Y-Kanälen des Oszilloskops wurden die Gleichspannungen Y1 und Y2 bei verschiedenen Stellungen des Potentiometers gemessen. Als Kopplung wurde DC gewählt. Die Triggerung erfolgte im AUTO -Modus, da es im Normal - Modus zu keiner Auslösung kam. Als Zeitablenkung wurde 1ms gewählt., da oberhalb dieser Grenze kein ruhiges Bild zustandekam. Aus den gemessenen Spannungen kann nun leicht der Widerstandswert R x bei einer bestimmten Schalterstellung ermittelt werden. Es gilt folgender Zusammenhang: Y1 R + R x Y = R 2 x Aus obiger Gleichung lässt sich nun leicht der gesuchte Widerstand R x berechnen. Folgende Spannungen wurden gemessen und die dazugehörenden Widerstände ermittelt: Schleiferstellung Y1 [V] Y2[V] R x [kω] min ,0 mitte ,286 max Wechselspannung 2 Bei diesem Versuch wurden Spannungen an den Ausgängen 2, 8, 16 des Stufentransformators mit einem Voltmeter und den Oszilloskop gemessen. Als Kopplung kann man hier sowohl AC als auch DC verwenden. Weiters sind beide Triggereinstellungen zulässig. Am Voltmeter wird jener Messbereich gewählt, der zu messende Spannung am wenigstens übersteigt. Misst man beim Voltmeter im Gleichspannungsbereich so wird eine Spannung von 0V angezeigt, da der Wechselstrom ja ständig seine Richtung wechselt und die Trägheit der Anzeige zu groß ist, um das Auf- und Abschwellen des Wechselstromes anzeigen zu können. Wählt man die richtige Triggerung, so entsteht ein stehendes Bild. In unserem Fall ist es eine sinusförmige Funktion der Wechselspannung. Wird der Triggerpegel verändert, so erfolgt eine Verschiebung des Bildes. 1 Schaltplan siehe Anhang 1 bzw. Praktikumsunterlagen Oszillograf I Seite 1 2 Schaltplan siehe Anhang 1.1 bzw. Praktikumsunterlagen Oszillograf I Seite 2

6 Grundpraktikum II Oszilloskop I 6/10 Das Voltmeter zeigt stets Effektivwerte der Wechselspannung an. Das Oszilloskop hingegen zeigt die jeweiligen positiven und negativen Maximalwerte an. Aus diesem Grund sind die aus der Messung mit dem Oszilloskop gewonnen Werte in Effektivwerte umzurechnen: Y eff = 1, Y 1 2 In nachfolgender Tabelle sind die gemessenen Werte angeführt. U ST steht für die Spannung des Stufentransformators,U V für die Spannung am Voltmeter im Wechselspannungsbereich und Y 1 für die Spannung am Oszilloskop. Die effektive Spannung wird als Y 1,eff bezeichnet. U ST [V] U V [v] Messbereich [V] Y 1 [V] Y 1,eff [V] 2 2,0 5 3,0 2,12 8 8, ,0 8, ,0 17,68 Als sweep-time wurde ein Wert von 5ms/Div. gewählt. Für eine Periode der sinusförmigen Wechselspannung konnte so eine Periodendauer von 20 ms abgelesen werden. Dies entspricht der Netzfrequenz von 50 Hz. Wechselspannung und überlagerte Gleichspannung 3 Für diese Schaltung wird ein Gleichspannungsnetzgerät in Serie mit dem Stufentrafo geschalten. Die Spannung des Stufentrafos wurde konstant gelassen (2V) und die Gleichspannung variiert. Die Spannung wurde zusätzlich wieder mit einem Voltmeter gemessen, und zwar einerseits im Wechselspannungsbereich (U V,AC ) und andererseits im Gleichspannungsbereich (U V,DC ). Die Spannungen am Oszilloskop wurden mit einer AC-Kopplung (Y 1 ) und anschließend mit einer DC- Kopplung (Y 1,DC ) am Leuchtschirm dargestellt. Wie schon im vorigen Versuch wurde Zwecks der besseren Vergleichbarkeit die Spannung am Oszilloskop in einen Effektivwert umgewandelt. U ST [V] U 0 [v] U V,AC [v] U V,DC [v] Y 1 [V] Y 1,eff [V] Y 1,DC [V] , , , Schaltplan siehe Anhang 2 bzw. Praktikumsunterlagen Oszillograf I Seite 2

7 Grundpraktikum II Oszilloskop I 7/10 Die folgenden Bilder zeigen zwei Oszilloskopbilder bei einer überlagerten Gleichspannung von 2V. Das linke Bild erhält man bei einer Kopplung auf AC, das rechte bei einer Kopplung auf DC. Im rechten Bild ist sehr leicht der Gleichspannungsanteil zu erkennen. Dieser Anteil verschiebt die Kurve um eine bestimmte Länge nach oben. Frequenzabhängigkeit der AC-Kopplung 4 Der Ausgang des Funktionsgenerators wurde mit den beiden Eingängen des Oszilloskops verbunden. Die Kopplung des Eingangs 1 wurde auf AC-Kopplung, die Kopplung des Eingangs 2 auf DC-Kopplung geschalten. Man definiert nun das Verhältnis V der beiden Größen: Y2 V = Y 1 Mit Hilfe des Funktionsgenerators konnte die Frequenz einer sinusförmigen Wechselspannung nun stufenweise verändert werden und man kam zu folgenden Messwerten: f [Hz] Y1 [V] Y2 [V] V = Y2 / Y1 1 1,4 7 5, , , , , , ,700 Die AC-Kopplung kann daher ab einer Frequenz von ca. 50Hz sinnvoll verwendet werden, da sich V dem Wert ausreichend genähert hat. 4 Schaltplan siehe Anhang 3 bzw. Praktikumsunterlagen Oszillograf I Seite 3

8 Grundpraktikum II Oszilloskop I 8/10 Messung von Zeiten, Frequenzen, Phasenverschiebungen Messen mit Tastköpfen Tastköpfe erhöhen den Eingangswiderstand eines Oszilloskopes um etwa einen Faktor 10 und verringern die Eingangskapazität um einen Faktor 10. Dadurch können Spannungssignale aus Quellen mit hohem Ausgangswiderstand speziell bei hohen Frequenzen mit wesentlich geringeren Fehlern gemessen werden. Bei der Verwendung von Tastköpfen ist darauf zu achten, dass die angezeigte Spannung mit 10 multipliziert werden muss. Vor einer Messung müssen Tastköpfe abgeglichen werden, d.h. ein regelbarer Kondensator wird so eingestellt, dass die Abschwächung des Tastkopfes frequenzunabhängig wird. Dazu wird der Tastkopf mit einem Kalibrierungssignal des Oszilloskopes verbunden, das eine exakte Rechteckspannung darstellt. Der regelbare Kondensator wird mit einem Schraubenzieher so eingestellt, dass am Schirm ein gutes Rechteck zu sehen ist. Bei falscher Kalibrierung erscheint am Schirm ein über- oder unterschwingendes Rechteck. 1) = Unterkompensation 2) = Überkompensation 3) = richtige Einstellung Frequenzgang und Phasenverschiebung einer Hochpass-Schaltung 5 Nachfolgende Schaltung wird in der Elektronik als Hochpass-Filter bezeichnet. Diese Schaltung wird beispielsweise bei der AC-Kopplung im Oszilloskop angewendet. Ein Hochpass-Filter besteht primär aus einem Widerstand (R=1 kω) und einem Kondensator (C=15 nf). Eigenschaften eines Hochpassfilters: Bei hohen Frequenzen ist die Verstärkung 1 und die Phasenverschiebung 0 Grad Bei der Grenzfrequenz ist die Verstärkung auf 1/ 2 gefallen, die Phasenverschiebung beträgt 45 Grad. Die Grenzfrequenz errechnet sich aus: f g = 1 2π RC Bei niedrigen Frequenzen steigt die Verstärkung proportional zu 1/f, die Phasenverschiebung geht von 90 Grad gegen 0 Grad. 5 Schaltplan siehe Anhang 4 bzw. Praktikumsunterlagen Oszillograf I Seite 4

9 Grundpraktikum II Oszilloskop I 9/10 Die Größe der Eingangsspannung wurde mit 4 Volt angenommen und während des gesamten Versuches nicht verändert. Mit dem Frequenzgenerator konnte nun die Frequenz variiert werden und die dazugehörigen Werte Y 2, die Phasenverschiebungen ϕ und die Verstärkungen V gemessen bzw. errechnet werden. f [khz] Y1 [V] Y2 [V] V [1] t [ms] ϕ [ ] f [khz] 0,1 4,1 0,001 0,000 2,5 90 0,1 0,3 4,1 0,0014 0,000 0,875 94,5 0,2 0,7 4,1 0,0023 0,001 0,35 88,2 0,4 1,5 4,1 0,0032 0,001 0,17 91,8 0,8 3 4,1 0,004 0,001 0, ,6 6 4,1 0,0064 0,002 0, ,6 3,2 10 4,1 0,01 0,002 0,008 28,8 6, ,1 0,095 0,023 0, ,72 12, ,1 0,28 0, ,1 0,5 0, ,1 0,68 0, Aus den nachfolgenden Diagrammen ist leicht zu erkennen, dass bei hohen Frequenzen die Verstärkung 1 und die Phasenverschiebung 0 Grad sind. Bei niedrigen Frequenzen steigt die Verstärkung proportional zu 1/f und die Phasenverschiebung geht gegen 90 Grad. Bei der Grenzfrequenz ist die Verstärkung auf 1/ 2 gefallen, die Phasenverschiebung bertägt 45 Grad. Wie man aus den beiden Kurven erkennen kann, tritt dies bei einer Frequenz von ca. 10 khz ein. Berechnung der Grenzfrequenz: 1 f g = = 10,61 khz 2π RC

10 Grundpraktikum II Oszilloskop I 10/10 Rechteckverhalten des Hochpass-Filters Verwendet wird jetzt ein rechteckförmiges Signal des Funktionsgenerators. Wählt man die Frequenz niedrig genug (f= 0,99 khz), so kann man die vollständige Lade- und Entladekurve des Kondensators sehen. Die Gleichung dieser Kurve lautet: Y t τ 2 = U0 e Im Versuch wird nun jene Zeit gemessen, in der Spannung Y 2 auf die Hälfte von U 0 abfällt. Aus obiger Gleichung lässt sich dann leicht die Relaxationszeit ausrechnen: t τ = 1 ln 2 Bei einer Zeit von 10µs ergibt sich ein Wert von 14,43 µs für die Relaxationszeit. Laut Theorie gilt aber auch: τ = R.C =15 µs

Oszilloskope. Fachhochschule Dortmund Informations- und Elektrotechnik. Versuch 3: Oszilloskope - Einführung

Oszilloskope. Fachhochschule Dortmund Informations- und Elektrotechnik. Versuch 3: Oszilloskope - Einführung Oszilloskope Oszilloskope sind für den Elektroniker die wichtigsten und am vielseitigsten einsetzbaren Meßgeräte. Ihr besonderer Vorteil gegenüber anderen üblichen Meßgeräten liegt darin, daß der zeitliche

Mehr

UET-Labor Analogoszilloskop 24.10.2002

UET-Labor Analogoszilloskop 24.10.2002 Inhaltsverzeichnis 1. Einleitung 2. Inventarverzeichnis 3. Messdurchführung 3.1 Messung der Laborspannung 24V 3.2 Messung der Periodendauer 3.3 Messung von Frequenzen mittels Lissajousche Figuren 4. Auswertung

Mehr

Inhaltsverzeichnis. 1. Einleitung

Inhaltsverzeichnis. 1. Einleitung Inhaltsverzeichnis 1. Einleitung 1.1 Das Analogoszilloskop - Allgemeines 2. Messungen 2.1 Messung der Laborspannung 24V 2.1.1 Schaltungsaufbau und Inventarliste 2.2.2 Messergebnisse und Interpretation

Mehr

Versuch 3. Frequenzgang eines Verstärkers

Versuch 3. Frequenzgang eines Verstärkers Versuch 3 Frequenzgang eines Verstärkers 1. Grundlagen Ein Verstärker ist eine aktive Schaltung, mit der die Amplitude eines Signals vergößert werden kann. Man spricht hier von Verstärkung v und definiert

Mehr

Das Oszilloskop. TFH Berlin Messtechnik Labor Seite 1 von 5. Datum: 05.01.04. von 8.00h bis 11.30 Uhr. Prof. Dr.-Ing.

Das Oszilloskop. TFH Berlin Messtechnik Labor Seite 1 von 5. Datum: 05.01.04. von 8.00h bis 11.30 Uhr. Prof. Dr.-Ing. TFH Berlin Messtechnik Labor Seite 1 von 5 Das Oszilloskop Ort: TFH Berlin Datum: 05.01.04 Uhrzeit: Dozent: Arbeitsgruppe: von 8.00h bis 11.30 Uhr Prof. Dr.-Ing. Klaus Metzger Mirko Grimberg, Udo Frethke,

Mehr

Technische Informatik Basispraktikum Sommersemester 2001

Technische Informatik Basispraktikum Sommersemester 2001 Technische Informatik Basispraktikum Sommersemester 2001 Protokoll zum Versuchstag 1 Datum: 17.5.2001 Gruppe: David Eißler/ Autor: Verwendete Messgeräte: - Oszilloskop HM604 (OS8) - Platine (SB2) - Funktionsgenerator

Mehr

Praktikum Elektronik 1. 1. Versuch: Oszilloskop, Einführung in die Meßpraxis

Praktikum Elektronik 1. 1. Versuch: Oszilloskop, Einführung in die Meßpraxis Praktikum Elektronik 1 1. Versuch: Oszilloskop, Einführung in die Meßpraxis Versuchsdatum: 0. 04. 00 Allgemeines: Empfindlichkeit: gibt an, welche Spannungsänderung am Y- bzw. X-Eingang notwendig ist,

Mehr

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Teilübung: Kondensator im Wechselspannunskreis Gruppenteilnehmer: Jakic, Topka Abgabedatum: 24.02.2006 Jakic, Topka Inhaltsverzeichnis 2HEA INHALTSVERZEICHNIS

Mehr

1. Oszilloskop. Das Oszilloskop besitzt zwei Betriebsarten: Schaltsymbol Oszilloskop

1. Oszilloskop. Das Oszilloskop besitzt zwei Betriebsarten: Schaltsymbol Oszilloskop . Oszilloskop Grundlagen Ein Oszilloskop ist ein elektronisches Messmittel zur grafischen Darstellung von schnell veränderlichen elektrischen Signalen in einem kartesischen Koordinaten-System (X- Y- Darstellung)

Mehr

Halbleiterbauelemente

Halbleiterbauelemente Mathias Arbeiter 20. April 2006 Betreuer: Herr Bojarski Halbleiterbauelemente Statische und dynamische Eigenschaften von Dioden Untersuchung von Gleichrichterschaltungen Inhaltsverzeichnis 1 Schaltverhalten

Mehr

Das Oszilloskop dient zur Messung von Spannungen die sich mit der Zeit verändern. Elektronenstrahl. Vertikalablenkplatten

Das Oszilloskop dient zur Messung von Spannungen die sich mit der Zeit verändern. Elektronenstrahl. Vertikalablenkplatten Das Oszilloskop dient zur Messung von Spannungen die sich mit der Zeit verändern. 14.1 Aufbau und Funktionsweise Aufbau: Vakuumröhre Elektronenstrahl Bildschirm Bildpunkt Elektronenstrahlquelle Horizontalablenkplatten

Mehr

Praktikum GEE Grundlagen der Elektrotechnik Teil 3

Praktikum GEE Grundlagen der Elektrotechnik Teil 3 Grundlagen der Elektrotechnik Teil 3 Jede Gruppe benötigt zur Durchführung dieses Versuchs einen USB-Speicherstick! max. 2GB, FAT32 Name: Studienrichtung: Versuch 11 Bedienung des Oszilloskops Versuch

Mehr

Bedienungsanleitung für das Tektronix Oszilloskop TDS 2002B

Bedienungsanleitung für das Tektronix Oszilloskop TDS 2002B Bedienungsanleitung für das Tektronix Oszilloskop TDS 2002B 1.0 Darstellen von Spannungsverläufen periodischer Signale Um das Gerät in Betrieb zu nehmen, schalten Sie es zunächst mit dem Netzschalter,

Mehr

Übungsaufgaben zum 2. Versuch. Elektronik 1 - UT-Labor

Übungsaufgaben zum 2. Versuch. Elektronik 1 - UT-Labor Übungsaufgaben zum 2. Versuch Elektronik 1 - UT-Labor Bild 2: Bild 1: Bild 4: Bild 3: 1 Elektronik 1 - UT-Labor Übungsaufgaben zum 2. Versuch Bild 6: Bild 5: Bild 8: Bild 7: 2 Übungsaufgaben zum 2. Versuch

Mehr

PW11 Wechselstrom II. Oszilloskop Einführende Messungen, Wechselstromwiderstände, Tiefpasse (Hochpass) 17. Januar 2007

PW11 Wechselstrom II. Oszilloskop Einführende Messungen, Wechselstromwiderstände, Tiefpasse (Hochpass) 17. Januar 2007 PW11 Wechselstrom II Oszilloskop Einführende Messungen, Wechselstromwiderstände, Tiefpasse (Hochpass) 17. Januar 2007 Andreas Allacher 0501793 Tobias Krieger 0447809 Mittwoch Gruppe 3 13:00 18:15 Uhr Dr.

Mehr

Aktiver Bandpass. Inhalt: Einleitung

Aktiver Bandpass. Inhalt: Einleitung Aktiver Bandpass Inhalt: Einleitung Aufgabenstellung Aufbau der Schaltung Aktiver Bandpass Aufnahme des Frequenzgangs von 00 Hz bis 00 KHz Aufnahme deer max. Verstärkung Darstellung der gemessenen Werte

Mehr

Die Bedienelemente eines Oszilloskops

Die Bedienelemente eines Oszilloskops Oszilloskop Hameg HM 303-6 Grundsätzliche Bedienelemente Die Bedienelemente eines Oszilloskops (1) Bildschirm 8x10 DIV (2) [Power] Netzschalter (3) [Intens] Helligkeit (4) [Focus] Schärfe XY-Betrieb (1)

Mehr

Elektrische Messtechnik, Labor

Elektrische Messtechnik, Labor Institut für Elektrische Messtechnik und Messsignalverarbeitung Elektrische Messtechnik, Labor Messverstärker Studienassistentin/Studienassistent Gruppe Datum Note Nachname, Vorname Matrikelnummer Email

Mehr

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge Carl Hanser Verlag München 8 Schaltvorgänge Aufgabe 8.6 Wie lauten für R = 1 kω bei der Aufgabe 8.1 die Differenzialgleichungen und ihre Lösungen für die Spannungen u 1 und u 2 sowie für den Strom i? Aufgabe

Mehr

EO - Oszilloskop Blockpraktikum Frühjahr 2005

EO - Oszilloskop Blockpraktikum Frühjahr 2005 EO - Oszilloskop, Blockpraktikum Frühjahr 25 28. März 25 EO - Oszilloskop Blockpraktikum Frühjahr 25 Alexander Seizinger, Tobias Müller Assistent René Rexer Tübingen, den 28. März 25 Einführung In diesem

Mehr

Aufgaben Wechselstromwiderstände

Aufgaben Wechselstromwiderstände Aufgaben Wechselstromwiderstände 69. Eine aus Übersee mitgebrachte Glühlampe (0 V/ 50 ma) soll mithilfe einer geeignet zu wählenden Spule mit vernachlässigbarem ohmschen Widerstand an der Netzsteckdose

Mehr

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit R-C-Kreise durchgeführt am 07.06.200 von Matthias Dräger und Alexander Narweleit PHYSIKALISCHE GRUNDLAGEN Physikalische Grundlagen. Kondensator Ein Kondensator ist ein passives elektrisches Bauelement,

Mehr

Aufgabe 4.1.1. Bild 4.1. Bild 4.2. Themenbereich: Wechselstromtechnik Dreiphasenwechselstrom

Aufgabe 4.1.1. Bild 4.1. Bild 4.2. Themenbereich: Wechselstromtechnik Dreiphasenwechselstrom 4. Wechselstrom Aufgabe 4.1.1 Themenbereich: Wechselstromtechnik Dreiphasenwechselstrom Schaltungsbeschreibung: Es stehen die Anschlüsse eines symmetrischen Dreiphasenwechselstromnetzes zur Messung und

Mehr

Elektrische Logigsystem mit Rückführung

Elektrische Logigsystem mit Rückführung Mathias Arbeiter 23. Juni 2006 Betreuer: Herr Bojarski Elektrische Logigsystem mit Rückführung Von Triggern, Registern und Zählern Inhaltsverzeichnis 1 Trigger 3 1.1 RS-Trigger ohne Takt......................................

Mehr

1. Theorie: Kondensator:

1. Theorie: Kondensator: 1. Theorie: Aufgabe des heutigen Versuchstages war es, die charakteristische Größe eines Kondensators (Kapazität C) und einer Spule (Induktivität L) zu bestimmen, indem man per Oszilloskop Spannung und

Mehr

Aufgaben. 2.1. Leiten Sie die Formeln (9) und (10) her! Vorbetrachtungen. Der High-Fall

Aufgaben. 2.1. Leiten Sie die Formeln (9) und (10) her! Vorbetrachtungen. Der High-Fall Aufgaben 2.1. Leiten Sie die Formeln (9) und (10) her! Vorbetrachtungen I. Die open-collector-gatter auf der "in"-seite dürfen erst einen High erkennen, wenn alle open-collector-gatter der "out"-seite

Mehr

Comenius Schulprojekt The sun and the Danube. Versuch 1: Spannung U und Stom I in Abhängigkeit der Beleuchtungsstärke E U 0, I k = f ( E )

Comenius Schulprojekt The sun and the Danube. Versuch 1: Spannung U und Stom I in Abhängigkeit der Beleuchtungsstärke E U 0, I k = f ( E ) Blatt 2 von 12 Versuch 1: Spannung U und Stom I in Abhängigkeit der Beleuchtungsstärke E U 0, I k = f ( E ) Solar-Zellen bestehen prinzipiell aus zwei Schichten mit unterschiedlichem elektrischen Verhalten.

Mehr

Elektronenstrahloszilloskop

Elektronenstrahloszilloskop - - Axel Günther 0..00 laudius Knaak Gruppe 7 (Dienstag) Elektronenstrahloszilloskop Einleitung: In diesem Versuch werden die Ein- und Ausgangssignale verschiedener Testobjekte gemessen, auf dem Oszilloskop

Mehr

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2 Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Prof. Dr.-Ing. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2 Messungen mit dem Oszilloskop

Mehr

Elektrischer Widerstand

Elektrischer Widerstand In diesem Versuch sollen Sie die Grundbegriffe und Grundlagen der Elektrizitätslehre wiederholen und anwenden. Sie werden unterschiedlichen Verfahren zur Messung ohmscher Widerstände kennen lernen, ihren

Mehr

Copyright by EPV. 6. Messen von Mischspannungen. 6.1. Kondensatoren. 6.2. Brummspannungen

Copyright by EPV. 6. Messen von Mischspannungen. 6.1. Kondensatoren. 6.2. Brummspannungen Elektronische Schaltungen benötigen als Versorgungsspannung meistens eine Gleichspannung. Diese wird häufig über eine Gleichrichterschaltungen aus dem 50Hz-Wechselstromnetz gewonnen. Wie bereits in Kapitel

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Prof. Dr.-Ing. H. Heuermann

Prof. Dr.-Ing. H. Heuermann Hochfrequenztechnik WS 2007/08 Prof. Dr.-Ing. H. Heuermann Oszilloskope Autor: Jihad Lyamani 1 Geschichte und Entwicklung: Als erstes soll die Frage geklärt werden, warum man ein Oszilloskop erfunden hat

Mehr

Fachhochschule Kiel Fachbereich Informatik und Elektrotechnik Labor für Grundlagen der Elektrotechnik

Fachhochschule Kiel Fachbereich Informatik und Elektrotechnik Labor für Grundlagen der Elektrotechnik Fachhochschule Kiel Fachbereich Informatik und Elektrotechnik Labor für Grundlagen der Elektrotechnik Laborbericht zur Aufgabe Nr. 132 Messungen mit dem Oszilloskop Name: Name: Name: Bewertung: Bemerkungen

Mehr

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum A2

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum A2 U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A2 Versuch 3 - Gedämpfte freie Schwingung des RLC-Kreises 23. überarbeitete Auflage

Mehr

Arbeitspunkt einer Diode

Arbeitspunkt einer Diode Arbeitspunkt einer Diode Liegt eine Diode mit einem Widerstand R in Reihe an einer Spannung U 0, so müssen sich die beiden diese Spannung teilen. Vom Widerstand wissen wir, dass er bei einer Spannung von

Mehr

Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich

Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich André Grüneberg Janko Lötzsch Mario Apitz Friedemar Blohm Versuch: 19. Dezember 2001 Protokoll: 6. Januar

Mehr

Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen)

Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen) Der Kondensator Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen) Kondensatoren sind Bauelemente, welche elektrische Ladungen bzw. elektrische Energie

Mehr

Simulation LIF5000. Abbildung 1

Simulation LIF5000. Abbildung 1 Simulation LIF5000 Abbildung 1 Zur Simulation von analogen Schaltungen verwende ich Ltspice/SwitcherCAD III. Dieses Programm ist sehr leistungsfähig und wenn man weis wie, dann kann man damit fast alles

Mehr

1. Frequenzverhalten einfacher RC- und RL-Schaltungen

1. Frequenzverhalten einfacher RC- und RL-Schaltungen Prof. Dr. H. Klein Hochschule Landshut Fakultät Elektrotechnik und Wirtschaftsingenieurwesen Praktikum "Grundlagen der Elektrotechnik" Versuch 4 Wechselspannungsnetzwerke Themen zur Vorbereitung: - Darstellung

Mehr

Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden

Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 2 Name: Pascal Hahulla Matrikelnr.: 207XXX Thema: Widerstände und Dioden Versuch durchgeführt

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

EO Oszilloskop. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April 2007. 1 Einführung 2

EO Oszilloskop. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April 2007. 1 Einführung 2 EO Oszilloskop Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Oszilloskop........................ 2 2.2 Auf- und Entladevorgang

Mehr

Lasertechnik Praktikum. Nd:YAG Laser

Lasertechnik Praktikum. Nd:YAG Laser Lasertechnik Praktikum Nd:YAG Laser SS 2013 Gruppe B1 Arthur Halama Xiaomei Xu 1. Theorie 2. Messung und Auswertung 2.1 Justierung und Beobachtung des Pulssignals am Oszilloskop 2.2 Einfluss der Verstärkerspannung

Mehr

Induktivitätsmessung bei 50Hz-Netzdrosseln

Induktivitätsmessung bei 50Hz-Netzdrosseln Induktivitätsmessung bei 50Hz-Netzdrosseln Ermittlung der Induktivität und des Sättigungsverhaltens mit dem Impulsinduktivitätsmeßgerät DPG10 im Vergleich zur Messung mit Netzspannung und Netzstrom Die

Mehr

Physik III - Anfängerpraktikum- Versuch 302

Physik III - Anfängerpraktikum- Versuch 302 Physik III - Anfängerpraktikum- Versuch 302 Sebastian Rollke (103095) und Daniel Brenner (105292) 15. November 2004 Inhaltsverzeichnis 1 Theorie 2 1.1 Beschreibung spezieller Widerstandsmessbrücken...........

Mehr

TONHÖHE UND LAUTSTÄRKE

TONHÖHE UND LAUTSTÄRKE TONHÖHE UND LAUTSTÄRKE 1 Funktionsgenerator 1 Oszilloskop, Zweikanal 1 Lautsprecher Verbindungsleitungen Range Function LOUD SPEAKER Der Stativreiter wird am Stativfuß H-Form befestigt. An ihm wird die

Mehr

Fachhochschule Köln Cologne University of Applied Sciences Campus Gummersbach. Dipl.-Ing. (FH), B.Eng. Aline Kamp

Fachhochschule Köln Cologne University of Applied Sciences Campus Gummersbach. Dipl.-Ing. (FH), B.Eng. Aline Kamp Fachhochschule Köln Cologne University of Applied Sciences Campus Gummersbach Dipl.-Ing. (FH), B.Eng. Aline Kamp INHALT 1. Die Spannungsquellen... 3 1.2 Die Gleichspannungsquelle / DC Power Supply... 3

Mehr

Messtechnik-Praktikum. Spektrumanalyse. Silvio Fuchs & Simon Stützer. c) Berechnen Sie mit FFT (z.b. ORIGIN) das entsprechende Frequenzspektrum.

Messtechnik-Praktikum. Spektrumanalyse. Silvio Fuchs & Simon Stützer. c) Berechnen Sie mit FFT (z.b. ORIGIN) das entsprechende Frequenzspektrum. Messtechnik-Praktikum 10.06.08 Spektrumanalyse Silvio Fuchs & Simon Stützer 1 Augabenstellung 1. a) Bauen Sie die Schaltung für eine Einweggleichrichtung entsprechend Abbildung 1 auf. Benutzen Sie dazu

Mehr

Versuchsprotokoll zum Versuch Nr.9 Messungen mit dem Elektronenstrahl-Oszilloskop vom 05.05.1997

Versuchsprotokoll zum Versuch Nr.9 Messungen mit dem Elektronenstrahl-Oszilloskop vom 05.05.1997 In diesem Versuch geht es darum, mit einem modernen Elektronenstrahloszilloskop verschiedene Messungen durch zuführen. Dazu kommen folgende Geräte zum Einsatz: Gerät Bezeichnung/Hersteller Inventarnummer

Mehr

TP 6: Windenergie. 1 Versuchsaufbau. TP 6: Windenergie -TP 6.1- Zweck der Versuche:...

TP 6: Windenergie. 1 Versuchsaufbau. TP 6: Windenergie -TP 6.1- Zweck der Versuche:... TP 6: Windenergie -TP 6.1- TP 6: Windenergie Zweck der ersuche: 1 ersuchsaufbau Der Aufbau des Windgenerators und des Windkanals (Abb.1) erfolgt mit Hilfe der Klemmreiter auf der Profilschiene. Dabei sind

Mehr

Messung elektrischer Größen Bestimmung von ohmschen Widerständen

Messung elektrischer Größen Bestimmung von ohmschen Widerständen Messtechnik-Praktikum 22.04.08 Messung elektrischer Größen Bestimmung von ohmschen Widerständen Silvio Fuchs & Simon Stützer 1 Augabenstellung 1. Bestimmen Sie die Größen von zwei ohmschen Widerständen

Mehr

6 Wechselstrom-Schaltungen

6 Wechselstrom-Schaltungen für Maschinenbau und Mechatronik Carl Hanser Verlag München 6 Wechselstrom-Schaltungen Aufgabe 6.1 Durch ein Grundeintor C = 0,47 µf an der Sinusspannung U = 42 V fließt ein Sinusstrom mit dem Effektivwert

Mehr

Technical Note Nr. 101

Technical Note Nr. 101 Seite 1 von 6 DMS und Schleifringübertrager-Schaltungstechnik Über Schleifringübertrager können DMS-Signale in exzellenter Qualität übertragen werden. Hierbei haben sowohl die physikalischen Eigenschaften

Mehr

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L Versuch E 1: PHASENVERSCHIEBUNG IM WECHSELSTROMKREIS Stichworte: Elektronenstrahloszillograph Komplexer Widerstand einer Spule und eines Kondensators Kirchhoffsche Gesetze Gleichungen für induktiven und

Mehr

Geneboost Best.- Nr. 2004011. 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist.

Geneboost Best.- Nr. 2004011. 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist. Geneboost Best.- Nr. 2004011 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist. An den BNC-Ausgangsbuchsen lässt sich mit einem störungsfreien

Mehr

E 1 - Grundversuche Elektrizitätslehre

E 1 - Grundversuche Elektrizitätslehre Universität - GH Essen Fachbereich 7 - Physik PHYSIKALISCHES PRAKIKUM FÜR ANFÄNGER Versuch: E 1 - Grundversuche Elektrizitätslehre Mit diesem Versuch sollen Sie in die Messung elektrischer Grundgrößen

Mehr

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3.

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3. Elektrizitätslehre Gleich- und Wechselstromkreise Wechselstromwiderstände LD Handblätter Physik P3.6.3. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen Versuchsziele

Mehr

Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung

Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung Grundlagen der Elektrotechnik Aufgabe Die gezeichnete Schaltung enthält folgende Schaltelemente:.0kΩ, ω.0kω, ω 0.75kΩ, /ωc.0k Ω, /ωc.3kω. Die gesamte Schaltung nimmt eine Wirkleistung P mw auf. C 3 C 3

Mehr

Fachbereich Physik Dr. Wolfgang Bodenberger

Fachbereich Physik Dr. Wolfgang Bodenberger UniversitätÉOsnabrück Fachbereich Physik Dr. Wolfgang Bodenberger Der Transistor als Schalter. In vielen Anwendungen der Impuls- und Digital- lektronik wird ein Transistor als einfacher in- und Aus-Schalter

Mehr

Von den vielen Möglichkeiten der Diagrammdarstellungen in MATHCAD sollen einige gezeigt werden.

Von den vielen Möglichkeiten der Diagrammdarstellungen in MATHCAD sollen einige gezeigt werden. 5. Diagramme mit MATHCAD Von den vielen Möglichkeiten der Diagrammdarstellungen in MATHCAD sollen einige gezeigt werden. 5.. Erstellen eines Diagramms Das Erstellen eines Diagramms verläuft in mehreren

Mehr

Konfiguration der Messkanäle. Konfiguration der Zeitachse. Abb. 3: Konfigurationsmenü des Sensoreingangs A. Abb. 4: Messparameter Konfigurationsmenü

Konfiguration der Messkanäle. Konfiguration der Zeitachse. Abb. 3: Konfigurationsmenü des Sensoreingangs A. Abb. 4: Messparameter Konfigurationsmenü Anleitung zum Programm CASSY Lab für den Versuch E12 Starten Sie das Programm CASSY Lab durch Doppelklick auf das Icon auf dem Windows- Desktop. Es erscheint ein Fenster mit Lizensierungsinformationen,

Mehr

Lösungen zu Kapazitäten / Kondensatoren

Lösungen zu Kapazitäten / Kondensatoren Ein- und Ausschaltvorgänge mit Kapazitäten A47: (869, 870) Ein Kondensator von µf wird über einen Widerstand von 3 MΩ auf eine Spannung von 50 V geladen. Welche Werte hat der Ladestrom a) 0,3 s, b), s,

Mehr

Skalierung des Ausgangssignals

Skalierung des Ausgangssignals Skalierung des Ausgangssignals Definition der Messkette Zur Bestimmung einer unbekannten Messgröße, wie z.b. Kraft, Drehmoment oder Beschleunigung, werden Sensoren eingesetzt. Sensoren stehen am Anfang

Mehr

am Funktionsgenerator

am Funktionsgenerator FACHBEREICH PHYSIK Elektronik Praktikum Frequenzsweep sweep.tex KB 20061127 am Funktionsgenerator Mit dem Sweep-Modus ermöglicht der Funktionsgenerator eine schnelle Übersicht über das Frequenzverhalten

Mehr

Praktikumsbericht Nr.6

Praktikumsbericht Nr.6 Praktikumsbericht Nr.6 bei Pro. Dr. Flabb am 29.01.2001 1/13 Geräteliste: Analoge Vielachmessgeräte: R i = Relativer Eingangswiderstand ür Gleichspannung Gk = Genauigkeitsklasse Philips PM 2503 Gk.1 R

Mehr

Anleitung für einen Frequenzsweep zur Audio-Analyse

Anleitung für einen Frequenzsweep zur Audio-Analyse Anleitung für einen Frequenzsweep zur Audio-Analyse Diese Anleitung bezieht sich auf HP 8903B Audio Analyzer und den Servogor 750 X-Y Schreiber. Mithilfe dieser Anleitung sollen Studenten in der Lage sein

Mehr

Klasse : Name : Datum :

Klasse : Name : Datum : von Messgeräten; Messungen mit Strom- und Spannungsmessgerät Klasse : Name : Datum : Will man mit einem analogen bzw. digitalen Messgeräte Ströme oder Spannungen (evtl. sogar Widerstände) messen, so muss

Mehr

Aufgabenbeschreibung Oszilloskop und Schaltkreise

Aufgabenbeschreibung Oszilloskop und Schaltkreise Aufgabenbeschreibung Oszilloskop und Schaltkreise Vorbereitung: Lesen Sie den ersten Teil der Versuchsbeschreibung Oszillograph des Anfängerpraktikums, in dem die Funktionsweise und die wichtigsten Bedienungselemente

Mehr

Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik. Praktikum Elektrotechnik und Antriebstechnik

Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik. Praktikum Elektrotechnik und Antriebstechnik FH D FB 4 Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik Elektro- und elektrische Antriebstechnik Prof. Dr.-Ing. Jürgen Kiel Praktikum Elektrotechnik und Antriebstechnik Versuch

Mehr

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Physikalisches Praktikum Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert E 0 Ohmsches Gesetz & nnenwiderstand (Pr_Ph_E0_nnenwiderstand_5, 30.8.2009).

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Erstellen von x-y-diagrammen in OpenOffice.calc

Erstellen von x-y-diagrammen in OpenOffice.calc Erstellen von x-y-diagrammen in OpenOffice.calc In dieser kleinen Anleitung geht es nur darum, aus einer bestehenden Tabelle ein x-y-diagramm zu erzeugen. D.h. es müssen in der Tabelle mindestens zwei

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Messung von c und e/m Autor: Noé Lutz Assistent:

Mehr

Dabei ist der differentielle Widerstand, d.h. die Steigung der Geraden für. Fig.1: vereinfachte Diodenkennlinie für eine Si-Diode

Dabei ist der differentielle Widerstand, d.h. die Steigung der Geraden für. Fig.1: vereinfachte Diodenkennlinie für eine Si-Diode Dioden - Anwendungen vereinfachte Diodenkennlinie Für die meisten Anwendungen von Dioden ist die exakte Berechnung des Diodenstroms nach der Shockley-Gleichung nicht erforderlich. In diesen Fällen kann

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

C04 Operationsverstärker Rückkopplung C04

C04 Operationsverstärker Rückkopplung C04 Operationsverstärker ückkopplung 1. LITEATU Horowitz, Hill The Art of Electronics Cambridge University Press Tietze/Schenk Halbleiterschaltungstechnik Springer Dorn/Bader Physik, Oberstufe Schroedel 2.

Mehr

EM-Wellen. david vajda 3. Februar 2016. Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören:

EM-Wellen. david vajda 3. Februar 2016. Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören: david vajda 3. Februar 2016 Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören: Elektrische Stromstärke I Elektrische Spannung U Elektrischer Widerstand R Ladung Q Probeladung q Zeit t Arbeit

Mehr

Oszillographenmessungen im Wechselstromkreis

Oszillographenmessungen im Wechselstromkreis Praktikum Grundlagen der Elektrotechnik Versuch: Oszillographenmessungen im Wechselstromkreis Versuchsanleitung. Allgemeines Eine sinnvolle Teilnahme am Praktikum ist nur durch eine gute Vorbereitung auf

Mehr

= {} +{} = {} Widerstand Kondensator Induktivität

= {} +{} = {} Widerstand Kondensator Induktivität Bode-Diagramme Selten misst man ein vorhandenes Zweipolnetzwerk aus, um mit den Daten Amplituden- und Phasengang zu zeichnen. Das kommt meistens nur vor wenn Filter abgeglichen werden müssen oder man die

Mehr

Grundlagenpraktikum Elektrotechnik Teil 1 Versuch 4: Reihenschwingkreis

Grundlagenpraktikum Elektrotechnik Teil 1 Versuch 4: Reihenschwingkreis ehrstuhl ür Elektromagnetische Felder Friedrich-Alexander-Universität Erlangen-Nürnberg Vorstand: Pro. Dr.-Ing. Manred Albach Grundlagenpraktikum Elektrotechnik Teil Versuch 4: eihenschwingkreis Datum:

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Ausarbeitung zum Versuch Wechselstromwiderstände Versuch 9 des physikalischen Grundpraktikums Kurs I, Teil II an der Universität Würzburg Sommersemester 005 (Blockkurs) Autor: Moritz Lenz Praktikumspartner:

Mehr

Praktikum Physik. Protokoll zum Versuch: Wechselstromkreise. Durchgeführt am 08.12.2011. Gruppe X

Praktikum Physik. Protokoll zum Versuch: Wechselstromkreise. Durchgeführt am 08.12.2011. Gruppe X Praktikum Physik Protokoll zum Versuch: Wechselstromkreise Durchgeführt am 08.12.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das

Mehr

Erfahrungen mit Hartz IV- Empfängern

Erfahrungen mit Hartz IV- Empfängern Erfahrungen mit Hartz IV- Empfängern Ausgewählte Ergebnisse einer Befragung von Unternehmen aus den Branchen Gastronomie, Pflege und Handwerk Pressegespräch der Bundesagentur für Arbeit am 12. November

Mehr

E X P E R T E N V O R L A G E

E X P E R T E N V O R L A G E Nullserie 205 Pos. Analysieren und Ausmessen Qualifikationsverfahren Multimediaelektroniker/in EFZ Teilprüfung E X P E R T E N V O R L A G E Zeit 90 Minuten für 2 Aufgaben Notenskala Maximale Punktezahl:

Mehr

Schriftliche Abschlussprüfung Physik Realschulbildungsgang

Schriftliche Abschlussprüfung Physik Realschulbildungsgang Sächsisches Staatsministerium für Kultus Schuljahr 1992/93 Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Physik Realschulbildungsgang

Mehr

Kennlinienaufnahme elektronische Bauelemente

Kennlinienaufnahme elektronische Bauelemente Messtechnik-Praktikum 06.05.08 Kennlinienaufnahme elektronische Bauelemente Silvio Fuchs & Simon Stützer 1 Augabenstellung 1. a) Bauen Sie eine Schaltung zur Aufnahme einer Strom-Spannungs-Kennlinie eines

Mehr

10.0 Quick Start mit AT89LP2052 Elliptecmotor Kit

10.0 Quick Start mit AT89LP2052 Elliptecmotor Kit 10.0 Quick Start mit AT89LP2052 Elliptecmotor Kit Dieses Kapitel beschreibt die Inbetriebnahme und den ersten Test mit dem AT89LP2052 Elliptecmotor Kit. Eine einfache Access Software für die Steuerung

Mehr

Frequenzgang eines RC-Tiefpasses (RC-Hochpasses)

Frequenzgang eines RC-Tiefpasses (RC-Hochpasses) 51 Frequenzgang eines RC-Tiepasses (RC-Hochpasses) EBll-2 Augabe In dieser Übung soll ein RC-Tiepaß bzw. wahlweise eln RC- Hochpaß mit R = 10 kq und C = 22 nf augebaut und Deßtechnisch untersucht werden.

Mehr

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W Sie haben für diesen 50 Minuten Zeit. Die zu vergebenen Punkte sind an den Aufgaben angemerkt. Die Gesamtzahl beträgt 20 P + 1 Formpunkt. Bei einer Rechnung wird auf die korrekte Verwendung der Einheiten

Mehr

Bei Aufgaben, die mit einem * gekennzeichnet sind, können Sie neu ansetzen.

Bei Aufgaben, die mit einem * gekennzeichnet sind, können Sie neu ansetzen. Name: Elektrotechnik Mechatronik Abschlussprüfung E/ME-BAC/DIPL Elektronische Bauelemente SS2012 Prüfungstermin: Prüfer: Hilfsmittel: 18.7.2012 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr. Frey Taschenrechner

Mehr

GEVITAS Farben-Reaktionstest

GEVITAS Farben-Reaktionstest GEVITAS Farben-Reaktionstest GEVITAS Farben-Reaktionstest Inhalt 1. Allgemeines... 1 2. Funktionsweise der Tests... 2 3. Die Ruhetaste und die Auslösetaste... 2 4. Starten der App Hauptmenü... 3 5. Auswahl

Mehr

Zahlen auf einen Blick

Zahlen auf einen Blick Zahlen auf einen Blick Nicht ohne Grund heißt es: Ein Bild sagt mehr als 1000 Worte. Die meisten Menschen nehmen Informationen schneller auf und behalten diese eher, wenn sie als Schaubild dargeboten werden.

Mehr

auf, so erhält man folgendes Schaubild: Temperaturabhängigkeit eines Halbleiterwiderstands

auf, so erhält man folgendes Schaubild: Temperaturabhängigkeit eines Halbleiterwiderstands Auswertung zum Versuch Widerstandskennlinien und ihre Temperaturabhängigkeit Kirstin Hübner (1348630) Armin Burgmeier (1347488) Gruppe 15 2. Juni 2008 1 Temperaturabhängigkeit eines Halbleiterwiderstands

Mehr

R C2 R B2 R C1 C 2. u A U B T 1 T 2 = 15 V. u E R R B1

R C2 R B2 R C1 C 2. u A U B T 1 T 2 = 15 V. u E R R B1 Fachhochschule Gießen-Friedberg,Fachbereich Elektrotechnik 1 Elektronik-Praktikum Versuch 24: Astabile, monostabile und bistabile Kippschaltungen mit diskreten Bauelementen 1 Allgemeines Alle in diesem

Mehr

ELEXBO A-Car-Engineering

ELEXBO A-Car-Engineering 1 Aufgabe: -Bauen Sie alle Schemas nacheinander auf und beschreiben Ihre Feststellungen. -Beschreiben Sie auch die Unterschiede zum vorherigen Schema. Bauen Sie diese elektrische Schaltung auf und beschreiben

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Aufgabensammlung. a) Berechnen Sie den Basis- und Kollektorstrom des Transistors T 4. b) Welche Transistoren leiten, welche sperren?

Aufgabensammlung. a) Berechnen Sie den Basis- und Kollektorstrom des Transistors T 4. b) Welche Transistoren leiten, welche sperren? Aufgabensammlung Digitale Grundschaltungen 1. Aufgabe DG Gegeben sei folgende Schaltung. Am Eingang sei eine Spannung von 1,5V als High Pegel und eine Spannung von 2V als Low Pegel definiert. R C = 300Ω;

Mehr

Berechnung der Erhöhung der Durchschnittsprämien

Berechnung der Erhöhung der Durchschnittsprämien Wolfram Fischer Berechnung der Erhöhung der Durchschnittsprämien Oktober 2004 1 Zusammenfassung Zur Berechnung der Durchschnittsprämien wird das gesamte gemeldete Prämienvolumen Zusammenfassung durch die

Mehr

Didaktik der Physik Demonstrationsexperimente WS 2006/07

Didaktik der Physik Demonstrationsexperimente WS 2006/07 Didaktik der Physik Demonstrationsexperimente WS 2006/07 Messung von Widerständen und ihre Fehler Anwendung: Körperwiderstand Hand-Hand Fröhlich Klaus 22. Dezember 2006 1. Allgemeines zu Widerständen 1.1

Mehr