Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt

Größe: px
Ab Seite anzeigen:

Download "Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt"

Transkript

1 2.4.5 Gauss-Test ud t-test für verbudee Stichprobe Zum Begriff der verbudee Stichprobe Verbudee Stichprobe: Vergleich zweier Merkmale X ud Y, die jetzt a deselbe Persoe erhobe werde. Vorsicht: Leicht zu verwechsel mit vorheriger Fragestellug! Beispiele: Evaluierug eier Schulugsmaßahme: X Y Puktezahl vor der Schulug Puktezahl ach der Schulug Autoritarismusscore vor/ach Projekt Klassisches Medizibeispiel: rechts/liks-vergleiche: Test zweier Salbe bei Ekzeme Split-Half Reliabilität vo aus viele Eizelfrage bestehede Scores 2 Iduktive Statistik 296

2 Ma köte auf zweierlei Arte vorgehe: a) Ma bestimmt zufällig zwei Gruppe, i der eie erhebt ma X, i der adere Y. Daach Vergleich der Mittelwerte wie im vorherige Kapitel beschriebe. b) Ma erhebt a jeder Perso beide Merkmale. 2 Iduktive Statistik 297

3 Kostruktio der Tests: Zum Teste vo Hypothese der Form X 1,...,X i.i.d. N (μ X,σ 2 X ) Y 1,...,Y i.i.d. N (μ Y,σ 2 Y ) 1 H 0 : μ X μ Y gege H 1 : μ X >μ Y 2 H 0 : μ X μ Y gege H 1 : μ X <μ Y 3 H 0 : μ X = μ Y gege H 1 : μ X μ Y betrachtet ma die Differez D i = X i Y i.für de Erwartugswert μ D gilt E μ D =E(D i )= ud für die Variaz σ 2 D (da ja X i ud Y i icht uabhägig sid) σ 2 D := Var(X i Y i ) = = 2 Iduktive Statistik 298

4 also σ 2 D = σ 2 X + σ 2 Y 2σ XY mit σ XY =Cov(X, Y ) Im Folgede sei immer ageomme, dass auch D i ormalverteilt ist ( multivariate Normalverteilug vo (X i,y i ) ). Wege D i N(μ D,σD 2 ) mit μ D = μ X μ Y ud σd 2 = σ2 X + σ2 Y 2σ XY sid obige Hypothese äquivalet zu de Hypothese 1 H 0 : μ D 0 gege H 1 : μ D > 0 2 H 0 : μ D 0 gege H 1 : μ D < 0 3 H 0 : μ D =0 gege H 1 : μ D 0, ud ma ka umittelbar die Tests aus awede. Sid die Variaze ubekat, so ka ma σ D aus de Differeze D i, i =1,..., schätze. Zur Prüfug ist da die t-verteilug herazuziehe. 2 Iduktive Statistik 299

5 2.4.6 χ 2 -Tests am Beispiel des χ 2 -Uabhägigkeitstests Tests basiered auf diskrete bzw. diskretisierte Merkmale. Grob gesproche eige sich χ 2 -Tests, um zu etscheide, ob eie empirische Verteilug sigifikat vo eier Modellverteilug abweicht. Haupttype: χ 2 -Uabhägigkeitstest: Weicht die empirische gemeisame Verteilug vo der uter Uabhägigkeit zu erwartede sigifikat ab? χ 2 -Apassugstest z.b. Abweichug vo der Gleichverteilug H 0 : P (X =1)=P (X =2)=P (X =3)= 1 3 χ 2 -Homogeitätstest: Gilt i k Subpopulatioe jeweils dieselbe Verteilug? 2 Iduktive Statistik 300

6 Hier ur ausführlicher: χ 2 -Uabhägigkeitstest I Beispiel eigebettet: 1. Aktive Stellug im öffetliche Lebe beeiflusst Kooperatiosbereitschaft im Iterview 2. Statistische Modelle: Zwei diskrete Merkmale X ud Y Y X Verbadsmitgliedschaft Kooperatiosbereitschaft (X 1,Y 1 ),...,(X,Y ) i.i.d. Stichprobe des zwei-dimesioale Merkmals (X, Y ). 3. Statistische Hypothese: H 0 : H 1 : Es herrscht Uabhägigkeit Es herrscht keie Uabhägigkeit 2 Iduktive Statistik 301

7 d.h. H 0 : P (X = x i,y = y i )= P (X = x i ) P (Y = y i ) gege H 1 : P (X = x i,y = y i ) P (X = x i ) P (Y = y i ) für alle Paare i, j für midestes ei Paar i, j 4. Festlege des Sigifikaziveaus 5. Testgröße ud kritische Regio Sesitive Testgröße: χ 2 -Abstad 2 Iduktive Statistik 302

8 Beobachtete Tafel der relative Häufigkeite: Y X/Y 1... m h 11 h 1m 1... h ij X. h k1 h km k... h 1... h m h 1 h k h ij absolute Häufigkeit des Ereigisses {X = x i } {Y = y i } i der Stichprobe h ij Schätzer für P (X = x i,y= y i ). Zu vergleiche mit der Uabhägigkeitstafel: h ij = h i h j, dem uter Uabhägigkeit ud gleiche Radverteiluge zu erwartede Besetzugszahle 2 Iduktive Statistik 303

9 Y X/Y 1... m h 1 h h i h j X. 2 k... h 1 h j h m h 1 h i h k 1 2 Iduktive Statistik 304

10 Teststatistik: T = k i=1 m j=1 ( h ij h i h j h i h j ) 2 = k i=1 m j=1 ( hj h i h j 2 ) 2 h i h j 2 = k i=1 m j=1 (f ij f i f j ) 2 f i f j T = alle Zelle (beobachtet erwartet) 2 Normierug Uter H 0 gehorcht T approximativ eier sogeate χ 2 Verteilug mit (k 1) (m 1) Freiheitsgrade. Kritische Regio: Je stärker H 0 verletzt ist, umso stärker weiche die beobachtete Häufigkeite h ij ud die uter Uabhägigkeit zu erwartede Häufigkeite h i h j 2 voeiader ab, d.h desto größer ist T. 2 Iduktive Statistik 305

11 Also kritische Regio aus große Werte vo T : KR =[z, ) wobei z so, dass P (T KR H 0 )=P (T z H 0 ) α z.b. χ 2 0.9(1) = χ (1) = χ (1) = Iduktive Statistik 306

12 Bsp Beobachtete Tabelle Uabhägigkeitstabelle ( ) hij : Mitglied ) ( hij : kooperativ ja ei ja ei kooperativ ja ei Mitglied ja ei Hier hat ma eie Freiheitsgrad, de (k 1) (m 1) = (2 1) (2 1) = 1 Bei α =0.1 erhält ma χ 2 1 α(1) = , also KR =[2.7055, ). 2 Iduktive Statistik 307

13 Die Teststatistik T hat hier de Wert ( )2 ( )2 ( )2 t = 352 ( ( )2 )= Hier ist das Ergebis stark rudugsabhägig. Dies wäre ei Argumet, mit absolute Häufigkeite zu reche! (Bei Berechug am Computer sollte Rudugsfehler praktisch keie Rolle mehr spiele.) Testetscheidug: Da t = 1.98 / KR, ka die Nullhypothese icht abgeleht werde; ei Zusammehag zwische Aktivität im öffetliche Lebe ud der Kooperatiosbereitschaft kote zum Sigifikaziveau vo 10% icht achgewiese werde. 2 Iduktive Statistik 308

14 2.4.7 Zur praktische Awedug statistischer Tests Testetscheiduge ud Statistik-Software, p-wert Statistik-Software berechet meist de p-wert, also die Wahrscheilichkeit uter H 0 midestes eie so stark für die Alterative sprechede Wert zu erhalte, wie de tatsächlich beobachtete Wert der Teststatistik. Dies ist die Wahrscheilichkeit für de Fehler 1. Art, ma ka also sage: H 0 ka geau da abgeleht werde, we der p-wert kleier gleich dem vorgegebee Sigifikaziveaus ist. Also: das bisherige Kostruktiosprizip lautete: Nullhypothese ablehe, we Wert t vo T kr, wobei P (T kr H 0 ) α Üblicherweise: kr extreme Werte vo T, die gege H 0 spreche 2 Iduktive Statistik 309

15 Jetzt Sicht wechsel kokreter Wert t der Teststatistik Bereche P(T midestes so extrem gege H 0 spreched wie t) Ist diese Wahrscheilichkeit α, so ist der Bereich extremer als t als kritische Regio geeiget. Beispiel: zweiseitiger Test: H 0 : μ = μ 0 H 1 : μ μ 0 sehr kleie ud sehr große Werte spreche gege H 0 t 0 t Bei viele Tests ist hier aber Vorsicht gebote. Die vom Programm betrachtete Nullhypothese muss icht die tatsächlich iteressierede Nullhypothese sei! 2 Iduktive Statistik 310

16 Beim Gauss- ud t-test sid beispielsweise drei verschiedee Nullhypothese möglich: H 0 : μ μ 0, H 0 : μ = μ 0, H 0 : μ μ 0 SPSS gibt hier eie zweiseitige p-wert (2-tailed sigificace) a, der zur Hypothese H 0 : μ = μ 0 gege H 1 : μ μ 0 ud damit zur kritische Regio (, z 1 α 2 ) (z 1 α 2, ) gehört. Möchte ma dagege H 0 : μ μ 0 teste, so darf ma H 0 ablehe, falls 1. der Wert der Teststatistik kleier als 0 ist (also auf der richtige Seite liegt ) ud 2. falls gilt: p-wert 2 Sigifikaziveau. (aalog für H 0 : μ μ 0 ) 2 Iduktive Statistik 311

17 Nochmals detailierter: We jetzt ei eiseitiger Test vorliegt, da sid icht mehr beide Seite gege H 0 spreched, soder ur och eie. Z.B. H 0 : μ μ 0 gege H 1 : μ<μ 0 Situatio A: sehr kleie, aber icht mehr sehr große Werte spreche gege H 0 t 0 t SPSS berechet ach wie vor zweiseitige p-wert. Für de gesuchte p-wert gilt p-wert = zweiseitiger p-wert 2 2 Iduktive Statistik 312

18 Ma ka i dieser Situatio H 0 ablehe, falls p-wert α, also zweiseitiger p-wert 2α. Dabei muss vor eier zu schematische Vorgehesweise gewart werde. Wurde i derselbe Situatio H 0 : μ μ 0 gege H 1 : μ<μ 0 statt t der Wert t = t beobachtet, so ist der korrekte p-wert: P(T midestes so extrem wie t): Situatio B: 0 t ud H 0 darf keiesfalls abgeleht werde, Wahrscheilichkeit vo Fehlschluss deutlich größer als 50%. 2 Iduktive Statistik 313

19 SPSS berechet aber de zweiseitige p-wert: t 0 t Ma muss also, we recherisch gilt p-wert (zweiseitig) 2α och sicherstelle, dass der beobachtete Wert vo t auf der richtige Seite liegt, d.h. Situatio A ud icht Situatio B vorliegt. 2 Iduktive Statistik 314

20 Zur Hypothesewahl: Es sei ochmal dara eriert: Statistisch gesichert zur vorgegebee Fehlerwahrscheilichkeit ist ur die Ablehug der Nullhypothese. Hat ma die Wahl (bei eiseitige Tests), so setzt ma das, was ma zeige will, i die Alterativhypothese. 2 Iduktive Statistik 315

21 Dualität vo Test ud Kofidezitervall: Es herrscht H 0 : μ = μ 0 gege H 1 : μ μ 0. H 0 wird abgeleht, we X μ 0 σ X μ 0 >z 1 α 2 X >μ 0 + z 1 α 2 >z 1 α 2 oder X μ 0 σ < z 1 α 2 σ σ oder X μ0 < z 1 α 2 σ oder X <μ0 z 1 α 2 σ d.h. abgeleht werde alle Nullhypothese μ = μ 0 mit μ 0 < x z 1 α 2 σ oder μ 0 > x + z 1 α 2 σ 2 Iduktive Statistik 316

22 Vergleiche diese Ablehbereiche mit dem Kofidezitervall [ X z1+γ 2 σ ; X + z1+γ 2 ] σ. Passe α ud γ zusamme, gilt also z 1 α 2 = z1+γ, so sid diese Ausdrücke komplemetär: 2 1 α 2! = 1+γ 2 2 α = 1+γ γ = 1 α α =1 γ 2 Iduktive Statistik 317

23 Beispiel Normalverteilug: X ubekat, σ bekat T = X μ 0 σ Werte i der Mitte Kofidezitervall extreme Werte Test Dieses Beispiel ist verallgemeierbar. Es besteht geerell ei sehr eger Zusammehag zwische Tests ud Kofidezitervalle: Gegebe eie Pivotgröße T, besteht ei Kofidezitervall zum Vertrauesgrad γ geau aus all jee Werte ϑ 0 eies Parameters ϑ, bei dee die Hypothese H 0 : ϑ = ϑ 0 zum Sigifikaziveau α =1 γ icht abgeleht wurde. Eie praktische Kosequez daraus: Gegebe ei Kofidezitervall [A(X 1,...,X ),B(X 1,...,X )] 2 Iduktive Statistik 318

24 für ϑ, ka ma Hypothese der Form H 0 : ϑ = ϑ 0 umittelbar teste: 2 Iduktive Statistik 319

25 Bsp [Beispiel Wahlumfrage (Fortsetzug vo Bsp. 2.17)] = 500, x =46.5% Ateil Rot/Grü, γ = 95% Ma erhielt das Kofidezitervall [0.421; 0.508]. Da π =0.5 im Kofidezitervall liegt, ka die Hypothese π = 0.5 icht abgeleht werde. Bsp [Fortsetzug vo Bsp. 2.16] Ma iteressiert sich, ob gewisse Gummibärchepackuge geau die agegebee Füllmege vo 250g ethalte, möchte also H 0 : μ = 250g gege H 1 : μ 250g zu α = 0.05 teste. Hat ma zu γ = 0.95 das auf der t-verteilug beruhedes Kofidezitervall [ , ] erhalte, so ka obige Hypothese icht abgeleht werde, da der Wert 250 im Kofidezitervall liegt. 2 Iduktive Statistik 320

26 Sigifikaz versus Relevaz: Die übliche Testgröße häge vom Stichprobeumfag ab: Je größer, umso leichter ka ma eie Abweichug als sigifikat achweise. 1. Aus der Nichtsigifikaz eies Uterschieds ka icht otwedig geschlosse werde, dass kei ihaltlich relevater Uterschied vorliegt. Vielleicht war ur der Stichprobeumfag zu klei, um eie durchaus vorhadee Uterschied auch als sigifikat achweise zu köe. 2. Adererseits ka es sei, dass bei große Stichprobeumfäge selbst miimale Abweichuge sigifikat sid. Nicht jede statistisch sigifikate Abweichug ist daher auch ihaltlich relevat, weshalb Vorsicht bei der ihaltliche Iterpretatio gerade bei große Datesätze agebracht ist. X 1,...,X N(μ, σ 2 ) mit σ 2 =1 2 Iduktive Statistik 321

27 z.b. H 0 : μ 100 H 1 : μ>100 H 0 ablehe T z 1 α =1.65 X = ε T = X μ 0 ε = σ σ ε > 1.65 σ ε > 1.65 σ z.b. =10 = 100 ε>0.165 ε> Iduktive Statistik 322

28 Mögliche Auswege: Ergebisse kritisch betrachte. Betrachtug sogeater Effektstärkemaße. Utersuche statt der Hypothese μ A >μ B die Hypothese μ A >μ B + δ mit (ihaltlich) relevatem Uterschied δ. 2 Iduktive Statistik 323

29 Multiple Testprobleme: Gegebe sei ei rei zufälliger Datesatz mit 50 Variable ohe irgedeie Zusammehag. Ma testet alle Variablepaare auf eie Zusammehag Tests. ( ) 50 = Bei vorgegebeer Irrtumswahrscheilichkeit vo 5% gilt für die Azahl fälschlich verworfeer Nullhypothese X B(1225, 0.05) ud somit E(X) =61, 25. Im Durchschitt wird also mehr als 61 mal die Nullhypothese, dass kei Zusammehag besteht, verworfe. weige, sivolle Hypothese vorher ihaltlich überlege ud ur diese teste! 2 Iduktive Statistik 324

30 Es gibt Asätze, wie ma bei große Hypothesesysteme diesem Problem etkommt: Theorie des multiple Testes. Z.B. Boferroi-Adjustierug des Irrtumswahrscheilichkeit: Statt α betrachte ma α/azahl der Tests. Diese spezielle Korrektur ist aber meist überkoservativ ud ka durch bessere Korrekture ersetzt werde. 2 Iduktive Statistik 325

31 Nichtparametrische Tests Bis auf de χ 2 -Uabhägigkeits-Test baue alle Tests auf der (zumidestes approximative Gültigkeit der) Normalverteilugsaahme auf. Problematisch, z.b. bei kleie Stichprobeumfäge oder bei ordiale Date mit weige uterschiedliche Auspräguge. Hier ka die ureflektierte Awedug der Stadardtests zu krasse Fehlergebisse führe. Ei wichtiger Ausweg: ichtparametrische Tests = Verteilugsfreie Verfahre Hier wird die Iformatio i de Beobachtuge auf Räge, bzw. größer/kleier Vergleiche reduziert. Bekateste Beispiele: Wilcoxo-Test, Vorzeichetest. 2 Iduktive Statistik 326

2.4.1 Grundprinzipien statistischer Hypothesentests

2.4.1 Grundprinzipien statistischer Hypothesentests 86 2.4. Hypothesetests 2.4 Hypothesetests 2.4.1 Grudprizipie statistischer Hypothesetests Hypothese: Behauptug eier Tatsache, dere Überprüfug och aussteht (Leuter i: Edruweit, Trommsdorff: Wörterbuch der

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

Kapitel 5: Schließende Statistik

Kapitel 5: Schließende Statistik Kapitel 5: Schließede Statistik Statistik, Prof. Dr. Kari Melzer 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte

Mehr

Einstichprobentests für das arithmetische Mittel

Einstichprobentests für das arithmetische Mittel Eistichprobetests für das arithmetische Mittel H 0 : = 0 bzw. H 0 : 0 H 1 : 0 zweiseitiger Test) H 1 : 0 zweiseitiger Test) Uter Gültigkeit vo H 0 ist die achfolgede Teststatistik stadardormalverteilt.

Mehr

Die notwendigen Verteilungstabellen finden Sie z.b. hier:

Die notwendigen Verteilungstabellen finden Sie z.b. hier: Fakultät für Mathematik Istitute IAG ud IMO Prof. Dr. G. Kyureghya/Dr. M. Hödig Schätz- ud Prüfverfahre Die otwedige Verteilugstabelle fide Sie z.b. hier: http://www.ivwl.ui-kassel.de/kosfeld/lehre/zeitreihe/verteilugstabelle.pdf

Mehr

10. Testen von Hypothesen Seite 1 von 6

10. Testen von Hypothesen Seite 1 von 6 10. Teste vo Hypothese Seite 1 vo 6 10.1 Eiführug i das Teste vo Hypothese Eie Hypothese ist eie Vermutug bzw. Behauptug über die Wahrscheilichkeit eies Ereigisses. Mit Hilfe eies geeigete Tests (=Testverfahre)

Mehr

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik Statistik Kapitel 5: Schließede Statistik 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel 1» Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte der arithmetische

Mehr

Gütefunktion und Fehlerwahrscheinlichkeiten Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = Interpretation von Testergebnissen I

Gütefunktion und Fehlerwahrscheinlichkeiten Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = Interpretation von Testergebnissen I 6 Hypothesetests Gauß-Test für de Mittelwert bei bekater Variaz 6.3 Gütefuktio ud Fehlerwahrscheilichkeite Rechtsseitiger Test (µ 0 = 500) zum Sigifikaziveau α = 0.30 6 Hypothesetests Gauß-Test für de

Mehr

Tests statistischer Hypothesen

Tests statistischer Hypothesen KAPITEL 0 Tests statistischer Hypothese I der Statistik muss ma oft Hypothese teste, z.b. muss ma ahad eier Stichprobe etscheide, ob ei ubekater Parameter eie vorgegebee Wert aimmt. Zuerst betrachte wir

Mehr

Vl Statistische Prozess und Qualitätskontrolle und Versuchsplanung Übung 3

Vl Statistische Prozess und Qualitätskontrolle und Versuchsplanung Übung 3 Vl Statistische Prozess ud Qualitätskotrolle ud Versuchsplaug Übug 3 Aufgabe ) Die Schichtdicke X bei eier galvaische Beschichtug vo Autoteile sei ormalverteilt N(μ,σ ). 4 Teile werde galvaisch beschichtet.

Mehr

Wahrscheinlichkeit & Statistik Musterlösung Serie 13

Wahrscheinlichkeit & Statistik Musterlösung Serie 13 ETH Zürich FS 2013 D-MATH Has Rudolf Küsch Koordiator Blaka Horvath Wahrscheilichkeit & Statistik Musterlösug Serie 13 1. a) Die Nullhypothese lautet dass das echte Medikamet höchstes gleich gut ist wie

Mehr

6 Vergleich mehrerer unverbundener Stichproben

6 Vergleich mehrerer unverbundener Stichproben 6 Vergleich mehrerer uverbudeer Stichprobe 6.1 Die eifaktorielle Variazaalyse Die eifaktorielle Variazaalyse diet der Utersuchug des Eiflusses eier kategorieller (bzw. ichtmetrischer) Variable, die die

Mehr

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5 Vl Statistische Prozess- ud Qualitätskotrolle ud Versuchsplaug Übug 5 Aufgabe ) Sei p = P(A) die Wahrscheilichkeit für ei Ereigis A, dh., es gilt 0 p. Bereche Sie das Maximum der Fuktio f(p) = p(-p). Aufgabe

Mehr

3 Vergleich zweier unverbundener Stichproben

3 Vergleich zweier unverbundener Stichproben 3 Vergleich zweier uverbudeer Stichprobe 3. Der Zweistichprobe t-test Es wird vorausgesetzt, dass die beide Teilstichprobe x, x,..., x ud y, y,..., y jeweils aus (voeiader uabhägige) ormalverteilte Grudgesamtheite

Mehr

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0.

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0. 8 Apassugs- ud Uabhägigkeitstests Chi-Quadrat-Apassugstest 8.1 Beispiel: p-wert bei Chi-Quadrat-Apassugstest (Grafik) Auftragseigagsbeispiel, realisierte Teststatistik χ 2 = 12.075, p-wert: 0.0168 f χ

Mehr

3.2 Wilcoxon Rangsummentest

3.2 Wilcoxon Rangsummentest 3. Wilcoxo Ragsummetest Wir gehe davo aus, dass zwei Teilstichprobe x 1, x,..., x 1 ud y1, y,..., y vorliege, wobei die erste Teilstichprobe aus Realisieruge vo uabhägig ud idetisch stetig verteilte Zufallsvariable

Mehr

2.4 Grundprinzipien statistischer Hypothesentests. Wissenschaftlicher Fortschritt durch Falsifikation von Hypothesen

2.4 Grundprinzipien statistischer Hypothesentests. Wissenschaftlicher Fortschritt durch Falsifikation von Hypothesen .4 Grudprizipie statistischer Hypothesetests.4.1 Motivatio ud Hiführug Hypothese: Behauptug eier Tatsache, dere Überprüfug och aussteht (Leuter i: Edruweit, Trommsdorff: Wörterbuch der Soziologie (1989))

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

Tests für beliebige Zufallsvariable

Tests für beliebige Zufallsvariable Kapitel 10 Tests für beliebige Zufallsvariable 10.1 Der Chi-Quadrat-Apassugstest Sei x eie gaz beliebige Zufallsvariable, dere Dichtefuktio icht oder icht geau bekat ist. Beispiel: Es seie z.b. mittels

Mehr

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0.

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0. 8 Apassugs- ud Uabhägigkeitstests Chi-Quadrat-Apassugstest 81 Beispiel: p-wert bei Chi-Quadrat-Apassugstest (Grafik) Auftragseigagsbeispiel, realisierte Teststatistik χ 2 = 12075, p-wert: 00168 f χ 2 (4)

Mehr

3 Kritischer Bereich zum Niveau α = 0.10: K = (χ 2 k 1;1 α, + ) = (χ2 5;0.90, + ) = (9.236, + ) 4 Berechnung der realisierten Teststatistik:

3 Kritischer Bereich zum Niveau α = 0.10: K = (χ 2 k 1;1 α, + ) = (χ2 5;0.90, + ) = (9.236, + ) 4 Berechnung der realisierten Teststatistik: 8 Apassugs- ud Uabhägigkeitstests Chi-Quadrat-Apassugstest 81 Beispiel: p-wert bei Chi-Quadrat-Apassugstest (Grafik) Auftragseigagsbeispiel, realisierte Teststatistik χ 2 1275, p-wert: 168 8 Apassugs-

Mehr

14 Statistische Beziehungen zwischen nomi nalen Merkmalen

14 Statistische Beziehungen zwischen nomi nalen Merkmalen 14 Statistische Beziehuge zwische omi ale Merkmale 14.1 Der Chi Quadrat Test auf Uabhägigkeit für Vier Feldertafel 14.2 Der Chi Quadrat Test auf Uabhägigkeit für r s Kotigeztafel 14.3 Zusammmehagsmaße

Mehr

Statistische Tests zu ausgewählten Problemen

Statistische Tests zu ausgewählten Problemen Eiführug i die statistische Testtheorie Statistische Tests zu ausgewählte Probleme Teil : Tests für Erwartugswerte Statistische Testtheorie I Eiführug Beschräkug auf parametrische Testverfahre Beschräkug

Mehr

2. Repetition relevanter Teilbereiche der Statistik

2. Repetition relevanter Teilbereiche der Statistik . Repetitio Statistik Ökoometrie I - Peter Stalder. Repetitio relevater Teilbereiche der Statistik (Maddala Kapitel ) Zufallsvariable ud Wahrscheilichkeitsverteiluge Zufallsvariable X (stochastische Variable)

Mehr

Kapitel VI. Einige spezielle diskrete Verteilungen

Kapitel VI. Einige spezielle diskrete Verteilungen Kapitel VI Eiige spezielle diskrete Verteiluge D 6 (Hypergeometrische Verteilug) Eie Zufallsvariable X heißt hypergeometrisch verteilt, we sie folgede Wahrscheilichkeitsfuktio besitzt: M N M P ( X ) p

Mehr

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen.

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen. 3. Variazaalyse Die Variazaalyse mit eier quatitative abhägige Variable ud eier oder mehrerer qualitativer uabhägiger Variable wird auch als ANOVA (Aalysis of Variace) bezeichet. Mit eier Variazaalyse

Mehr

Korrelationsanalyse zwischen kategorischen Merkmalen. Kontingenztabellen. Chi-Quadrat-Test

Korrelationsanalyse zwischen kategorischen Merkmalen. Kontingenztabellen. Chi-Quadrat-Test Kotigeztabelle. Chi-Quadrat-Test Korrelatiosaalyse zwische kategorische Merkmale Beispiel 1 ohe Frau 8 75 1 Ma 48 49 97 76 14? Häufigkeitstabelle (Kotigeztabelle): eie tabellarische Darstellug der gemeisame

Mehr

2 Induktive Statistik

2 Induktive Statistik Kapitel 2 Iduktive Statistik Seite 19 2 Iduktive Statistik 2.1 Grudprizipie der iduktive Statistik 2.2 Puktschätzug 2.2.1 Schätzfuktioe Defiitio 2.1 Sei X 1,...,X i.i.d. Stichprobe. Eie Fuktio heißt Schätzer

Mehr

Auszüge der nichtparametrischen Statisik

Auszüge der nichtparametrischen Statisik Empirische Wirtschaftsforschug - 1 - Auszüge der ichtparametrische Statisik Kapitel 1: Räge ud lieare Ragstatistike Aahme, Defiitioe ud Eigeschafte (1.1) Aahme: (a) (b) Die Date x 1,, x sid midestes ordial.

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR MATHEMATISCHE STOCHASTIK WS 005/06 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Klausur Wahrscheilichkeitstheorie ud Statistik vom 9..006 Musterlösuge Aufgabe A: Gegebe sei eie Urliste

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

(a) Richtig, die Varianz ist eine Summe quadratischer Größen.

(a) Richtig, die Varianz ist eine Summe quadratischer Größen. Aufgabe 1 (10 Pukte) Welche der folgede Aussage sid richtig? (a) Richtig, die Variaz ist eie Summe quadratischer Größe. (b) Falsch, die Abweichug ordialer Merkmale vom Media ist icht defiiert - also auch

Mehr

4 Schwankungsintervalle Schwankungsintervalle 4.2

4 Schwankungsintervalle Schwankungsintervalle 4.2 4 Schwakugsitervalle Schwakugsitervalle 4. Bemerkuge Die bekate Symmetrieeigeschaft Φ(x) = 1 Φ( x) bzw. Φ( x) = 1 Φ(x) für alle x R überträgt sich auf die Quatile N p der Stadardormalverteilug i der Form

Mehr

Formelsammlung Mathematik

Formelsammlung Mathematik Formelsammlug Mathematik 1 Fiazmathematik 1.1 Reterechug Sei der Zissatz p%, der Zisfaktor q = 1 + p 100. Seie R die regelmäßig zu zahlede Rate, die Laufzeit. Edwert: Barwert: achschüssig R = R q 1 q 1

Mehr

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 1. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug ergibt sich aus de Grezwertsätze. Grezwertsätze sid Aussage über eie Zufallsvariable für de Fall, dass die Azahl

Mehr

2.3 Kontingenztafeln und Chi-Quadrat-Test

2.3 Kontingenztafeln und Chi-Quadrat-Test 2.3 Kotigeztafel ud Chi-Quadrat-Test Die Voraussetzuge a die Date i diesem Kapitel sid dieselbe, wie im voragegagee Kapitel, ur dass die Stichprobe hier aus Realisieruge vo kategorielle Zufallsvariable

Mehr

Kontingenztabellen. Chi-Quadrat-Test. Korrelationsanalyse zwischen kategorischen Merkmalen. 1. Unabhängigkeitstest

Kontingenztabellen. Chi-Quadrat-Test. Korrelationsanalyse zwischen kategorischen Merkmalen. 1. Unabhängigkeitstest Kotigeztabelle. Chi-Quadrat-Test KAD 1.11. 1. Uabhägigkeitstest. Apassugstest. Homogeitätstest Beispiel 1 ohe Frau 8 75 1 Ma 48 49 97 76 14? Korrelatiosaalyse zwische kategorische Merkmale Häufigkeitstabelle

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürge Seger INDUKTIVE STATISTIK Wahrscheilichkeitstheorie, Schätz- ud Testverfahre ÜBUNG. - LÖSUNGEN. ypothesetest für die Dicke vo Plättche Die Dicke X vo Plättche, die auf eier bestimmte Maschie

Mehr

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung .3. Prozetuale Häufigkeitsverteilug (HV) Die prozetuale Häufigkeitsverteilug erlaubt de Vergleich vo Auswertuge, dee uterschiedliche Stichprobegröße zugrude liege. Es köe auch uterschiedliche Stichprobegröße

Mehr

h a 2 b 1 h a1 b 2 h a1 b 1 h a1. h a 2. h.b1 h ij h 11 h 12 h 21 a b h. j h 1. h 2. h.1 a b h i. =h i1 h i2... h i m h. j =h 1j h 2j... h k j h.

h a 2 b 1 h a1 b 2 h a1 b 1 h a1. h a 2. h.b1 h ij h 11 h 12 h 21 a b h. j h 1. h 2. h.1 a b h i. =h i1 h i2... h i m h. j =h 1j h 2j... h k j h. Kotigeztabelle / Kreuztabelle für 2 diskrete /omialskalierte Variable ethält: 1. absolute gemeisame Häufigkeite h 11 h 12 h 21 für Kombiatioe vo zwei Merkmale / Variable a b steht also für mit jeweils

Mehr

Übungen mit dem Applet erwartungstreu

Übungen mit dem Applet erwartungstreu Übuge mit dem Applet erwartugstreu Visualisierug vo erwartugstreu Begriffe ud statischer Hitergrud. Visualisieruge mit dem Applet..3. Zufallsstreuug der Eizelwerte...3. Mittelwerte 3.3 Variaz. 4.4 Variaz

Mehr

Musterlösung für die Klausur zur Vorlesung Stochastik I im WiSe 2014/2015

Musterlösung für die Klausur zur Vorlesung Stochastik I im WiSe 2014/2015 Musterlösug für die Klausur zur Vorlesug Stochastik I im WiSe 204/205 Teil I wahr falsch Aussage Gilt E[XY ] = E[X]E[Y ] für zwei Zufallsvariable X ud Y mit edlicher Variaz, so sid X ud Y uabhägig. Für

Mehr

Kapitel 6 : Punkt und Intervallschätzer

Kapitel 6 : Punkt und Intervallschätzer 7 Kapitel 6 : Pukt ud Itervallschätzer Puktschätzuge. I der Statistik wolle wir Rückschlüsse auf das Wahrscheilichkeitsgesetz ziehe, ach dem ei vo us beobachtetes Zufallsexperimet abläuft. Hierzu beobachte

Mehr

Der Vergleich eines Stichprobenmittelwertes mit einem Populationsmittelwert

Der Vergleich eines Stichprobenmittelwertes mit einem Populationsmittelwert Der Vergleich eies Stichprobemittelwertes mit eiem Populatiosmittelwert Am Beispiel des Falschspielers habe wir - uterstützt durch Ketisse über die Eigeschafte der Biomialverteilug - erstmals gesehe, welche

Mehr

Konfidenzintervalle. Praktische Übung Stochastik SS 2017 Lektion 10 1

Konfidenzintervalle. Praktische Übung Stochastik SS 2017 Lektion 10 1 Kofidezitervalle Praktische Übug Stochastik SS 017 Lektio 10 1 Kofidezitervalle Geerelle Aahme: Parametrisches Modell (P ϑ ) ϑ Θ Beobachtuge X 1,..., X u.i.v. ach P ϑ mit ubekatem ϑ Θ Grudidee: Schätzer

Mehr

3. Grundbegrie der Schätztheorie

3. Grundbegrie der Schätztheorie Statistik, Abschitt 3. 3. Grudbegrie der Schätztheorie I der kormatorische Statistik will ma uter aderem auf Grud eier Stichprobe vom Umfag Iformatioe über ubekate Parameter θ der Verteilug F der zugrudeliegede

Mehr

( ), der genau auf der Geraden ( ) 2 ( ) #( ) 8. Lineare Regression. = f i. Nach der Summe der kleinsten. mx i

( ), der genau auf der Geraden ( ) 2 ( ) #( ) 8. Lineare Regression. = f i. Nach der Summe der kleinsten. mx i 8. Lieare Regressio 8.1. Die Methode der kleiste Quadrate Regressiosgerade bzw. Ausgleichsgerade sid eie Auswertug vo statistische Messdate. Ziel dieses Verfahres ist es, Beziehuge zwische zwei Merkmale

Mehr

Grundlagen der Biostatistik und Informatik

Grundlagen der Biostatistik und Informatik Vergleich vo mehrere Stichprobe Grudlage der Biostatisti ud Iformati Hypotheseprüfuge III., Nichtparametrische Methode dr László Smeller Semmelweis Uiversität 0 Vergleich vo mehrere Stichprobe Boferroi

Mehr

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters:

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters: . Schätzverfahre. Puktschätzug wirtschaftlicher Kezahle Allgemei: Puktschätzug eies Parameters: Ermittlug eies Schätzwertes für eie ubekate Parameter eier Zufallsvariable i der Grudgesamtheit mit Hilfe

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meihardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-31 (Meihardt) Sprechstude jederzeit ach Vereibarug Forschugsstatistik I Dr. Malte Persike persike@ui-maiz.de http://psymet03.sowi.ui-maiz.de/

Mehr

Übungen zu QM III Mindeststichprobenumfang

Übungen zu QM III Mindeststichprobenumfang Techische Hochschule Köl Fakultät für Wirtschafts- ud Rechtswisseschafte Prof. Dr. Arreberg Raum 221, Tel. 39 14 jutta.arreberg@th-koel.de Übuge zu QM III Mideststichprobeumfag Aufgabe 12.1 Sie arbeite

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Statistik ud Wahrscheilichkeitsrechug Übug 6 3.03.20 Ihalt der heutige Übug Aufgabe D.7: Reche mit Zufallsvariable Erwartugswert- ud Variazoperator Statistik ud Wahrscheilichkeitsrechug

Mehr

So lösen Sie die Gleichung für den Korrelationskoeffizienten

So lösen Sie die Gleichung für den Korrelationskoeffizienten 8. Lieare Regressio 8.1. Die Methode der kleiste Quadrate Regressiosgerade bzw. Ausgleichsgerade sid eie Auswertug vo statistische Messdate. Dabei sid Datepukte ( x 1, y 1 ),( x 2, y 2 ), ( x, y ) gegebe.

Mehr

Stochastik - Lösung (BSc D-MAVT / BSc D-MATH / BSc D-MATL)

Stochastik - Lösung (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Prof. Dr. M. Schweizer ETH Zürich Witer 28 Stochastik - Lösug (BSc D-MAVT / BSc D-MATH / BSc D-MATL). (6 Pukte) a) (2 Pukte) Wir defiiere die Ereigisse K {die Perso ist krak} ud T {der Test ist positiv}.

Mehr

Schätzen von Populationswerten

Schätzen von Populationswerten Schätze vo Populatioswerte SS00 7.Sitzug vom.06.00 Schätze vo Populatioswerte Ziel: Ermöglichug vo Aussage über die Grudgesamtheit ahad vo Stichprobedate Logische Methode: Iduktiosschluß Grudlage des Iduktiosschlusses:

Mehr

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung Prof. Dr. V. Schmidt WS 200/20 G. Gaiselma, A. Spettl 7.02.20 Lösugsvorschlag Probeklausur zur Elemetare Wahrscheilichkeitsrechug Hiweis: Der Umfag ud Schwierigkeitsgrad dieser Probeklausur muss icht dem

Mehr

Übungen Abgabetermin: Freitag, , 10 Uhr THEMEN: Testtheorie

Übungen Abgabetermin: Freitag, , 10 Uhr THEMEN: Testtheorie Uiversität Müster Istitut für Mathematische Statistik Stochastik WS 203/204, Blatt Löwe/Heusel Aufgabe (4 Pukte) Übuge Abgabetermi: Freitag, 24.0.204, 0 Uhr THEMEN: Testtheorie Die Sollstärke der Rohrwäde

Mehr

Testen statistischer Hypothesen

Testen statistischer Hypothesen Kapitel 9 Teste statistischer Hypothese 9.1 Eiführug, Sigifiaztests Sigifiaztest für µ bei der ormalverteilug bei beatem σ = : X i seie uabhägig ud µ, ) verteilt, µ sei ubeat. Stelle eie Hypothese über

Mehr

Diplomvorprüfung Stochastik

Diplomvorprüfung Stochastik Uiversität Karlsruhe TH Istitut für Stochastik Prof. Dr. N. Bäuerle Name: Vorame: Matr.-Nr.: Diplomvorprüfug Stochastik 10. Oktober 2006 Diese Klausur hat bestade, wer midestes 16 Pukte erreicht. Als Hilfsmittel

Mehr

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen Testumfag für die Ermittlug ud Agabe vo Fehlerrate i biometrische Systeme Peter Uruh SRC Security Research & Cosultig GmbH peter.uruh@src-gmbh.de Eileitug Biometrische Systeme werde durch zwei wichtige

Mehr

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

Körpergröße x Häufigkeit in [m] 1.50 1.60 1 1.60 1.70 5 1.70 1.80 49 1.80 1.90 53 1.90 2.00 15 2.00 2.10 1

Körpergröße x Häufigkeit in [m] 1.50 1.60 1 1.60 1.70 5 1.70 1.80 49 1.80 1.90 53 1.90 2.00 15 2.00 2.10 1 8 Kofidezitervalle 1 Kapitel 8: Kofidezitervalle A: Beispiele Beispiel 1: Im WS 2000/01 wurde im Rahme der Statistik Vorlesug 124 Studete u.a. zu ihrer Körpergröße befragt. Ma erhielt folgedes Ergebis:

Mehr

n 2(a + bx i y i ) = 0 und i=1 n 2(a + bx i y i )x i = 0 i=1 gilt. Aus diesen beiden Gleichungen erhalten wir nach wenigen einfachen Umformungen

n 2(a + bx i y i ) = 0 und i=1 n 2(a + bx i y i )x i = 0 i=1 gilt. Aus diesen beiden Gleichungen erhalten wir nach wenigen einfachen Umformungen Regressio Dieser Text rekapituliert die i der Aalsis ud Statistik wohlbekate Methode der kleiste Quadrate, auch Regressio geat, zur Bestimmug vo Ausgleichsgerade Regressiosgerade ud allgemei Ausgleichpolome.

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Empirische Wirtschaftsforschug ud Ökoometrie Dr. Rolad Füss Statistik II: Schließede Statistik SS 2007 6. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug

Mehr

Anwendung für Mittelwerte

Anwendung für Mittelwerte Awedug für Mittelwerte Grudgesamtheit Stichprobeziehug Zufalls- Stichprobe... "wahre", ubekate Mittelwert der Grudgesamtheit icht zufällig?... beobachtete Mittelwert zufällig Statistik für SoziologIe 1

Mehr

3. Einführung in die Statistik

3. Einführung in die Statistik 3. Eiführug i die Statistik Grudlegedes Modell zu Date: uabhägige Zufallsgröße ; : : : ; mit Verteilugsfuktio F bzw. Eizelwahrscheilichkeite p ; : : : ; p r i de Aweduge: kokrete reale Auspräguge ; : :

Mehr

,,, xn. 3. Intervallschätzungen Zufallsstichproben und Stichprobenfunktionen Zufallsstichproben. Zufallsvariablen mit

,,, xn. 3. Intervallschätzungen Zufallsstichproben und Stichprobenfunktionen Zufallsstichproben. Zufallsvariablen mit 3. Itervallschätzuge 3.1. Zufallsstichprobe ud Stichprobefuktioe 3.1.1 Zufallsstichprobe 1 Sei eie Zufallsvariable ud seie gemeisamer Verteilug,,,, Zufallsvariable mit - da heiße 1,,, Zufallsstichprobe

Mehr

X X Schätzen von Vertrauensintervallen Schwankungsintervall

X X Schätzen von Vertrauensintervallen Schwankungsintervall .. Schätze vo Vertrauesitervalle..1. Schwakugsitervall Beispiel: X = Betrag vo Geldüberweisuge, ormalverteilt, µ = 5000, = 1000 Zufallsstichprobe mit = 100, Schätzer für µ: X X Gesucht: Itervall, i dem

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Has Walser Mathematik 2 für Naturwisseschafte 2 3 3 4 6 4 5 0 0 5 6 5 20 5 6 Modul 209 Tabelle Has Walser: Modul 209, Tabelle ii Ihalt Fakultäte... 2 Biomialkoeffiziete... 2 3 Biomische Verteilug... 3

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

Ulrich Stein Fehlerrechnung

Ulrich Stein Fehlerrechnung Fehlerrechug Verteilug vo Messwerte Mittelwert Stadardabweichug Stadardfehler Rude vo Messwerte Darstellug vo Messwerte (Stellezahl) Fehlerfortpflazug Messergebisse Messug physikalische Realität Messgerät,

Mehr

Wirksamkeit, Effizienz. Beispiel: Effizienz. Mittlerer quadratischer Fehler (MSE) Konsistenz im quadratischen Mittel

Wirksamkeit, Effizienz. Beispiel: Effizienz. Mittlerer quadratischer Fehler (MSE) Konsistenz im quadratischen Mittel 3 arameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez 3 arameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Beispiel: Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische

Mehr

Statistik II für Studierende der Soziologie und Nebenfachstudierende

Statistik II für Studierende der Soziologie und Nebenfachstudierende 2.4.3 Typische Tests I: Tests auf Lageparameter Hier werden exemplarisch nur wenige, ausgewählte Test, die typisch sind, besprochen. Das Grundprinzip ist bei anderen Tests analog. Aufgabe: Konstruiere

Mehr

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung MaMaEuSch Maagemet Mathematics for Europea Schools http://www.mathematik.uikl.de/ mamaeusch Grudgesamtheitsaaylse ud Stichprobe. Betrachtuge zur Stichprobefidug Paula Lagares Justo Puerto 1 MaMaEuSch 2

Mehr

Schätzen von Populationswerten

Schätzen von Populationswerten Schätze vo Populatioswerte 7.Sitzug 35 Seite, SoSe 003 Schätze vo Populatioswerte Ziel: Ermöglichug vo Aussage über die Grudgesamtheit ahad vo Stichprobedate Logische Methode: Iduktiosschluss Grudlage

Mehr

V. Tests bez. zweier Verteilungsfunktionen

V. Tests bez. zweier Verteilungsfunktionen 7 V. Tests bez. zweier Verteilugsfuktioe Seie X ud Y zwei uabhägige oralverteilte Zufallsvariable, für die zwei kokrete Stichprobe x, x,..., x bzw. y, y,..., y it de Ufäge bzw vorliege. a) X ud Y seie

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Statistik ud Wahrscheilichkeitsrechug Übug 9 1 Ihalt der heutige Übug Statistik ud Wahrscheilichkeitsrechug Iformatioe zur Testatprüfug Besprechug der der Hausübug

Mehr

Grundsätzlich sollen Varianz bzw. Standardabweichung Maße dafür sein, wie stark eine Verteilung um ihren Erwartungswert streut.

Grundsätzlich sollen Varianz bzw. Standardabweichung Maße dafür sein, wie stark eine Verteilung um ihren Erwartungswert streut. Eie Iterpretatiosfrage habe ich zu eiem Beispiel das i der der letzte Vorlesug behadelt wurde: Auf Folie.7 zur Variaz. Dort wird ei Beispiel eier stetige Zufallsvariable geat (Warte a eier S-Bah-Haltestelle).

Mehr

Kapitel 9: Schätzungen

Kapitel 9: Schätzungen - 73 (Kapitel 9: chätzuge) Kapitel 9: chätzuge Betrachte wir folgedes 9. Beispiel : I eiem Krakehaus wurde Date über Zwilligsgeburte gesammelt. Bei vo 48 Paare hatte die beide Zwillige verschiedees Geschlecht.

Mehr

Wahrscheinlichkeit & Statistik

Wahrscheinlichkeit & Statistik Wahrscheilichkeit & Statistik created by Versio: 3. Jui 005 www.matheachhilfe.ch ifo@matheachhilfe.ch 079 703 7 08 Mege als Sprache der Wahrscheilichkeitsrechug, Begriffe, Grudregel Ereigisraum: Ω Ω Mege

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik für Iformatiker -- 9 Folge -- 6.1.215 1 Folge: Defiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reihefolge wichtig,

Mehr

Musterlösung. Prüfung Statistik Herbstsemester 2011

Musterlösung. Prüfung Statistik Herbstsemester 2011 Prüfug Statistik Herbstsemester 2011 Musterlösug 1. 9 Pukte Lukas ud Markus habe bisher immer Feiste Mii-Brezel 100g des Herstellers Gammelbrot ud Söhe zum Züi gegesse. Vom städige Hugerklage vo Markus

Mehr

Übung zur Vorlesung Statistik I WS Übungsblatt 8

Übung zur Vorlesung Statistik I WS Übungsblatt 8 Übug zur Vorlesug Statistik I WS 2013-2014 Übugsblatt 8 9. Dezember 2013 Aufgabe 25 (4 Pukte): Sei X B(, p) eie biomial verteilte Zufallsvariable. Schreibe Sie i R eie Fuktio PWert, die für jedes Ergebis

Mehr

Wahrscheinlichkeitsrechnung & Statistik - Ergänzung zum Skript

Wahrscheinlichkeitsrechnung & Statistik - Ergänzung zum Skript Wahrscheilichkeitsrechug & Statistik - Ergäzug zum Skript Prof. Schweizer 9. Oktober 008 Mitschrift: Adreas Steiger Warug: Wir sid sicher dass diese Notize eie Mege Fehler ethalte. Betrete der Baustelle

Mehr

(4) = 37,7 % mit 37,7 % Wahrscheinlichkeit sind es höchstens 4 Fahrräder, das ist recht hoch; man kann also die Behauptung nicht wirklich ablehnen.

(4) = 37,7 % mit 37,7 % Wahrscheinlichkeit sind es höchstens 4 Fahrräder, das ist recht hoch; man kann also die Behauptung nicht wirklich ablehnen. Schülerbuchseite 98 1 Lösuge vorläufig IV Beurteilede Statistik S. 98 p S. 1 p w a t Tabelle Tabelle dowloadbar im Iteretauftritt 1 Teste vo Hypothese 1 a) Erwartugswert μ = 5 ud Stadardabweichug σ = 1,6;

Mehr

Kurvenanpassung durch Regression (3) Ac nichtlineare Regression/Linearisierung -

Kurvenanpassung durch Regression (3) Ac nichtlineare Regression/Linearisierung - Kurveapassug durch Regressio (3) Ac 207 - ichtlieare Regressio/Liearisierug - Für Probleme, die eie icht lieare ( ud icht polyomiale) Apassugsfuktio ahelege, ist eie direkte Berechug ach der Methode der

Mehr

Aufgabe 5: Grundlagen Wahr keit, Satz von Bayes und Binomialverteilung

Aufgabe 5: Grundlagen Wahr keit, Satz von Bayes und Binomialverteilung Klausur: Statistik Jürge Meisel Zugelassee Hilfsmittel: icht progr. Tascherecher Bearbeitugszeit: 60 Miute Amerkug zur Bearbeitug: Die Klausur besteht aus isgesamt 6 Aufgabe. Sie müsse ur 5 davo bearbeite.

Mehr

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit - 18 - (Kapitel 3 : Bedigte Wahrscheilichkeite ud Uabhägigkeit) Kapitel 3: Bedigte Wahrscheilichkeite ud Uabhägigkeit Wird bei der Durchführug eies stochastische Experimets bekat, daß ei Ereigis A eigetrete

Mehr

Stochastik - Lösung (BSc D-MAVT / BSc D-MATH / BSc D-MATL)

Stochastik - Lösung (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Prof. Dr. M. Schweizer ETH Zürich Sommer 8 Stochastik - Lösug (BSc D-MAVT / BSc D-MATH / BSc D-MATL). (6 Pukte) a) (.5 Pukte) Wir defiiere die Ereigisse D = die ähmaschie bekommt eie kleie Defekt} ud U

Mehr

2.2.1 Lagemaße. Exkurs: Quantile. und n. p n

2.2.1 Lagemaße. Exkurs: Quantile. und n. p n Ekurs: Quatile Ausgagspukt : Geordete Urliste Jeder Wert p, mit 0 < p

Mehr

Evaluation & Forschungsstrategien

Evaluation & Forschungsstrategien Evaluatio & Forschugsstrategie WS2/2 Prof. Dr. G. Meihardt Johaes Guteberg Uiversität Maiz Prizipie des statistische Schliesses Samplig - Modellvorstellug Populatio Samplig Stichprobe Kewerte x Theoretische

Mehr

Diskrete Zufallsvariablen

Diskrete Zufallsvariablen Erste Beispiele diskreter Verteiluge Diskrete Zufallsvariable Beroulli-Verteilug Eie diskrete Zufallsvariable heißt beroulliverteilt mit arameter p, falls sie die Wahrscheilichkeitsfuktio p,, f ( ) ( )

Mehr

6. Grenzwertsätze. 6.1 Tschebyscheffsche Ungleichung

6. Grenzwertsätze. 6.1 Tschebyscheffsche Ungleichung 6. Grezwertsätze 6.1 Tschebyscheffsche Ugleichug Sofer für eie Zufallsvariable X die Verteilug bekat ist, lässt sich die Wahrscheilichkeit dafür bestimme, dass X i eiem bestimmte Itervall liegt. Wie ist

Mehr

SUCHPROBLEME UND ALPHABETISCHE CODES

SUCHPROBLEME UND ALPHABETISCHE CODES SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich

Mehr