Eine zweidimensionale Stichprobe

Größe: px
Ab Seite anzeigen:

Download "Eine zweidimensionale Stichprobe"

Transkript

1 Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ). Beispiel Um die Kursentwicklung zweier Aktien auf mögliche Zusammenhänge (Korrelationen) zu prüfen, betrachtet man deren Kurse x i und y i an verschiedenen Handelstagen i: Handelstag i Kurs x i der 1. Aktie in Euro Kurs y i der 2. Aktie in Euro regression12.pdf, Seite 1

2 Ein Streudiagramm dient der Veranschaulichung der Daten einer zweidimensionalen Stickprobe. Jedes Wertepaar (x i, y i ) wird durch einen Punkt in der (x, y)ebene dargestellt. regression12.pdf, Seite 2

3 Streudiagramm einer zweidimensionalen Stichprobe mit gröÿerem Umfang (Beobachtung über einen längeren Zeitraum) regression12.pdf, Seite 3

4 Analyse einer zweidimensionalen Stichprobe Zunächst können Kenngröÿen wie Erwartungswerte x und y, empirische Varianzen s 2 x und s 2 y bzw. Standardabweichungen s x = s 2 x und s y = s y 2, Median, Quantile etc. jeweils getrennt für die xwerte und die y Werte bestimmt werden. Im Aktienbeispiel erhält man x = 55, s 2 x = 5, 6, s x 2, 37 sowie y = 95, s 2 y = 6 und s y 2, 45. regression12.pdf, Seite 4

5 Die empirische Kovarianz s xy ist ein Maÿ für die gegenseitige Abhängigkeit zwischen den x i und den y i : s xy = 1 ( ) (x 1 x) (y 1 y) (x n x) (y n y) n 1 Interpretation Wenn x i und y i in die gleiche Richtung vom Mittelwert abweichen, geht dieses Wertepaar mit einem positiven Vorzeichen in die empirische Kovarianz ein. Wertepaare, bei denen x i nach oben und y i nach unten abweicht (oder umgekehrt), gehen mit einem negativen Vorzeichen ein. Die Kovarianz ist > 0, wenn sich x i und y i tendenziell in die gleiche Richtung bewegen und < 0, wenn sie sich vorwiegend in entgegengesetzte Richtungen bewegen. regression12.pdf, Seite 5

6 Im Beispiel i x i y i x i x y i y (x i x) 2 (y i y) 2 (x i x) (y i y) Summe Mittel , 6 6 4, 8 in den ersten 4 Spalten Summe/6, in den letzten 3 Spalten Summe/5 Die letzte Zeile der Tabelle enthält: in der x i Spalte und der y i Spalte die Mittelwerte x = 55 und y = 95, in der (x i x) 2 Spalte und der (y i y) 2 Spalte die jeweiligen empirischen Varianzen s 2 x = 5, 6 und s 2 y = 6, in der letzten Spalte die empirische Kovarianz s xy = 4, 8. regression12.pdf, Seite 6

7 Satz Mit den empirischen Standardabweichungen s x und s y gilt s xy s x s y = s 2 x s 2 y s x s y s xy s x s y Bemerkung Der Satz ist analog zu der Aussage Cov(X, Y ) 2 V (X ) V (Y ) für Zufallsvariablen X und Y. Der Pearsonsche Korrelationskoezient oder empirische Korrelationskoezient ist deniert als r xy = s xy s x s y. Nach obigem Satz gilt 1 r xy 1. regression12.pdf, Seite 7

8 Im Beispiel ist r xy = s xy s 2 x s 2 y = 4, 8 5, 6 6 0, 828 Bemerkungen Allgemein gilt s yx = s xy und r yx = r xy. Dies folgt unmittelbar aus der Denition. s xy und r xy hängen (ebenso wie die Darstellung im Streudiagramm) nicht von der Reihenfolge der Wertepaare der Urliste ab. In Anwendungen wird die Urliste oft aufsteigend nach den x i sortiert (also x 1 x 2... x n ). r xy ist nicht deniert, wenn s 2 x = 0 oder s 2 y = 0. Dies ist genau dann der Fall, wenn alle xwerte gleich sind bzw. alle y Werte gleich sind. regression12.pdf, Seite 8

9 Korrelationskoezient und linearer Zusammenhang Es gilt r xy = 1 genau dann, wenn es Konstanten a > 0 und b R gibt mit y i = ax i + b für alle i. r xy = 1 genau dann, wenn es Konstanten a < 0 und b R gibt mit y i = ax i + b für alle i. Ist r xy = ±1, so liegen die Wertepaare im Streudiagramm somit auf einer Geraden. Ist r xy nahe 1 oder 1, so besteht ein annähernd linearer Zusammenhang. Allgemein spricht man von einer positiven Korrelation oder einem positiven linearen Zusammenhang, wenn r xy > 0 und von einer negativen Korrelation oder einem negativen linearen Zusammenhang, wenn r xy < 0. Im Beispiel sind die beiden Aktienkurse positiv korreliert. regression12.pdf, Seite 9

10 Lineare Regression Im Fall r xy = 1 oder r xy = 1 ist y i = ax i + b mit a = y 2 y 1 x 2 x 1 und b = y 1 ax 1. Im allgemeinen Fall r xy < 1 eines nicht exakten linearen Zusammenhangs versucht man a und b zu bestimmen, sodass y i ax i + b möglichst gut für alle i gilt. Dabei wird die Methode der kleinsten Quadrate angewandt: Man sucht die Regressionsgerade y = f (x) = ax + b, für die der mittlere quadratische Fehler n ( ) 2 ( ) 2 ( ) 2 y k f (x k ) = y 1 f (x 1 ) y n f (x n ) k=1 minimal wird. regression12.pdf, Seite 10

11 Satz Die Regressionsgerade y = ax + b mit minimalem quadratischen Fehler erhält man mit a = r xy sy s x = s xy s 2 x und b = y a x. Beweisansatz: Für eine fest gewählte Stichprobe ist der quadratische Fehler eine Funktion in den zwei Variablen a und b. Durch ( Betrachten der partiellen ) Ableitungen erkennt man, dass diese im Punkt (a, b) = r xy sy, y r s xy sy x ein eindeutig x s x bestimmtes lokales Minimum hat, welches das globale Minimum sein muss, da die Funktion nach unten beschränkt ist. Im Beispiel erhält man a = 4,8 5,6 = 6 7 0, 86 und b = = , Die Regressionsgerade hat somit die Form y = f (x) = ax + b = 6 7 x regression12.pdf, Seite 11

12 Regressionsgerade im Beispiel regression12.pdf, Seite 12

13 Regressionsgerade bei gröÿerer Stichprobe regression12.pdf, Seite 13

14 Regressionsgerade geometrisch Die Regressionsgerade verläuft immer durch den Punkt (x, y), den Schwerpunkt des Streudiagramms. Die Steigung ist gegeben durch a = r xy sy s x. Bei positiver Korrelation ist sie also umso gröÿer, je stärker die beiden Variablen korreliert sind. Regressionsgeraden bei unterschiedlicher Anordnung der Datenpunkte regression12.pdf, Seite 14

15 Bemerkung Vertauscht man die Rollen von x und y, so lässt sich analog eine Regressionsgerade mit ã = rxy s 2 y Dabei wird n i=1 x = f (y) = ã y + b und b = x ã y berechnen. ( x i f 2 (y i )) minimiert. Im allgemeinen gilt jedoch nicht f = f 1, d. h. die beiden Regressionsgeraden gehen bei Vertauschung von x und y (geometrisch Spiegelung an der Winkelhalbierenden x = y) nicht ineinander über. regression12.pdf, Seite 15

16 Im Beispiel Regressionsgerade x = f (y) = 4 y 21 (blau), 5 die die Summe über (x i f (y i )) 2 (die Quadrate der horizontalen Abstände) minimiert. regression12.pdf, Seite 16

17 Vergleich der Regressionsgeraden regression12.pdf, Seite 17

18 Bemerkung In vielen Anwendungen ist es vorgegeben, welche der beiden Gröÿen einer zweidimensionalen Stichprobe als unabhängige Variable x und welche als abhängige Variable y zu modellieren ist. Dabei können die x i auch deterministische (nicht zufällige) Gröÿen sein. Wenn man z. B. die zeitliche Entwicklung einer Gröÿe y untersuchen möchte, so wählt man x i als Zeitpunkt und y i den Wert der betrachteten Gröÿe zum Zeitpunkt x i. regression12.pdf, Seite 18

19 Beispiel In einem Studiengang werden folgende Studentenzahlen beobachtet: Jahr x i Studierende y i Vermutet wird ein linearer Wachstumstrend der Studentenzahlen. Man berechnet die Mittelwerte x = 2012 und y = 160 sowie die Varianzen s 2 x = 2, 5, s 2 y = 13, 5 und s xy = 5, der Korrelationskoezient ist r xy 0, 86. Damit erhält man die Regressionsgerade y = f (x) = ax + b mit a = sxy = 2 und b = y a x = sx 2 Setzt man verschiedene xwerte in die Gleichung ein, so erhält man Prognosen für künftige Studentenzahlen: Jahr x Prognose f (x) regression12.pdf, Seite 19

20 Multivariate lineare Regression Bei der multivariaten linearen Regression werden m + 1 Merkmale betrachtet (die hier behandelte einfache Regression entspricht dem Fall m = 1). Dabei wird eines der Merkmale als lineare Funktion der übrigen m dargestellt, sodass der mittlere quadratische Fehler minimal wird. Im Fall m = 2 hat man z. B. eine Stichprobe, die aus Wertetripeln (x i, y i, z i ) besteht. Gesucht sind nun Konstanten a, b, c R, sodass mit z = f (x, y) = ax + by + c der Fehler n i=1 ( z i f (x i, y i )) 2 minimal wird. Die Koezienten a, b, c können mit Mitteln der linearen Algebra betsimmt werden. regression12.pdf, Seite 20

21 Verallgemeinerung auf nichtlinearen Zusammenhang Die lineare Regresion geht von einem linearen Zusammenhang zwischen x und y aus. Dieser ist jedoch in vielen Anwendungen nicht gegeben. Oft lässt sich dann trotzdem noch eine lineare Regression durchführen, indem man die Variablen geeignet transformiert. Beispiele Zwischen x und y wird ein Zusammenhang der Form y = b e ax vermutet. Hat man eine Stichprobe mit Wertepaaren (x i, y i ), so lässt sich eine lineare Regression für (x i, ln y i ) durchführen, welche Konstanten a, b liefert mit ln y i a x i + b y i e ax b mit b = e b. Wird ein quadratischer Zusammenhang y = ax 2 + bx + c vermutet, so lässt sich eine multivariate lineare Regression mit der dreidimensionalen Stichprobe (xi 2, x i, y i ) durchführen, welche a, b, c liefert mit y i a xi 2 + b x i + c. regression12.pdf, Seite 21

Geg.: Eine Menge von Elementen, z.b.

Geg.: Eine Menge von Elementen, z.b. 1.3 Zweidimensionale Häufigkeitsverteilungen Geg.: Eine Menge von Elementen, z.b. Schüler einer Schule Soldaten eines Bataillons Schrauben einer Stichprobe Tage eines Jahrhunderts Betrachtet werden zwei

Mehr

Didaktisches Seminar über Stochastik. Themen: ffl Korrelation von zwei Zufallsvariablen

Didaktisches Seminar über Stochastik. Themen: ffl Korrelation von zwei Zufallsvariablen Didaktisches Seminar über Stochastik Themen: ffl Gemeinsame Verteilung von zwei Zufallsvariablen ffl Lineare Regression ffl Korrelation von zwei Zufallsvariablen Michael Ralph Pape Mai 1998 1 1 GEMEINSAME

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik 2 für Naturwissenschaften Modul 202 Regressionsgerade und Korrelation Lernumgebung. Teil Hans Walser: Modul 202, Regressionsgerade und Korrelation. Lernumgebung. ii Inhalt Messwertpaare...

Mehr

Ausführliche Lösungen zu ausgewählten Aufgaben von ÜB 5 und 6. Streudiagramm

Ausführliche Lösungen zu ausgewählten Aufgaben von ÜB 5 und 6. Streudiagramm y Aufgabe 3 Ausführliche Lösungen zu ausgewählten Aufgaben von ÜB 5 und 6 a) Zur Erstellung des Streudiagramms zeichnet man jeweils einen Punkt für jedes Datenpaar (x i, y i ) aus der zweidimensionalen

Mehr

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n 3.2. Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare von Merkmalsausprägungen (x, y) Beispiele:

Mehr

Deskriptive Beschreibung linearer Zusammenhänge

Deskriptive Beschreibung linearer Zusammenhänge 9 Mittelwert- und Varianzvergleiche Mittelwertvergleiche bei k > 2 unabhängigen Stichproben 9.4 Beispiel: p-wert bei Varianzanalyse (Grafik) Bedienungszeiten-Beispiel, realisierte Teststatistik F = 3.89,

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 3 Anwendungen der Differentialrechnung 3.1 Lokale Maxima und Minima Definition 16: Sei f : D R eine Funktion von n Veränderlichen. Ein Punkt x heißt lokale oder relative Maximalstelle bzw. Minimalstelle

Mehr

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 1 Experiment zur Vererbungstiefe Softwaretechnik: die Vererbungstiefe ist kein guter Schätzer für den Wartungsaufwand

Mehr

Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II

Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II Statistik II Lineare Regressionsrechnung Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II - 09.06.2006 1 Mit der Kovarianz und dem Korrelationskoeffizienten können wir den statistischen

Mehr

i =1 i =2 i =3 x i y i 4 0 1

i =1 i =2 i =3 x i y i 4 0 1 Aufgabe (5+5=0 Punkte) (a) Bei einem Minigolfturnier traten 6 Spieler gegeneinander an. Die Anzahlen der von ihnen über das gesamte Turnier hinweg benötigten Schläge betrugen x = 24, x 2 = 27, x = 2, x

Mehr

18.2 Implizit definierte Funktionen

18.2 Implizit definierte Funktionen 18.2 Implizit definierte Funktionen Ziel: Untersuche Lösungsmengen von nichtlinearen Gleichungssystemen g(x) = 0 mit g : D R m, D R n, d.h. betrachte m Gleichungen für n Unbekannte mit m < n, d.h. wir

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9.

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Januar 2011 BOOTDATA11.GDT: 250 Beobachtungen für die Variablen...

Mehr

Probeklausur zu Mathematik 3 für Informatik

Probeklausur zu Mathematik 3 für Informatik Gunter Ochs Juli 0 Probeklausur zu Mathematik für Informatik Lösungshinweise wie immel ohne Galantie auf Fehreleiheit Sei f ln a Berechnen Sie die und die Ableitung f und f Mit der Produktregel erhält

Mehr

Kapitel XI - Korrelationsrechnung

Kapitel XI - Korrelationsrechnung Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Kapitel XI - Korrelationsrechnung Markus Höchstötter Uni Karlsruhe Karlsruhe, SS 2008 Kapitel XI - Korrelationsrechnung

Mehr

Statistik für Naturwissenschaftler

Statistik für Naturwissenschaftler Hans Walser Statistik für Naturwissenschaftler 3000 2500 KVG-Leistungen pro versicherte Person Durchschnitt Schweiz JU TI NE VD GE BS BL 2000 FR SO ZH TG AG BE VS SH SZGL SG 500 OW LU ZG GR UR AR Anzahl

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2010 Karlsruher Institut für Technologie Priv.-Doz. Dr. D. Kadelka Klausur Wahrscheinlichkeitstheorie und Statistik vom 14.9.2010 Musterlösungen Aufgabe 1: Gegeben sei eine Urliste

Mehr

Statistik. Ronald Balestra CH St. Peter

Statistik. Ronald Balestra CH St. Peter Statistik Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch 17. Januar 2010 Inhaltsverzeichnis 1 Statistik 1 1.1 Beschreibende Statistik....................... 1 1.2 Charakterisierung von Häufigkeitsverteilungen...........

Mehr

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem

Mehr

Übersicht Teil 1 - deskriptive Statistik

Übersicht Teil 1 - deskriptive Statistik 1 Übersicht Teil 1 - deskriptive Statistik x = (x 1, x,, x n ) Stichprobe vom Umfang n Die x i heißen Stichprobenwerte Alle unterschiedlichen Werte, die unter den x i vorkommen, nennt man Merkmalswerte

Mehr

6Korrelationsanalyse:Zusammengangsanalysestetiger Merkmale

6Korrelationsanalyse:Zusammengangsanalysestetiger Merkmale 6Korrelationsanalyse:Zusammengangsanalysestetiger Merkmale Jetzt betrachten wir bivariate Merkmale (X, Y ), wobei sowohl X als auch Y stetig bzw. quasi-stetig und mindestens ordinalskaliert, typischerweise

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

(f(xi ) y i ) 2. minimal ist: man will also die Summe der quadratischen Abweichungen minimieren ... f(x i ) y i, i=1 (t x i) 2

(f(xi ) y i ) 2. minimal ist: man will also die Summe der quadratischen Abweichungen minimieren ... f(x i ) y i, i=1 (t x i) 2 Mathematik für Biologen, Biotechnologen und Biochemiker Lineare Regression Gegeben seien Datenpaare (, ), (, ),, ( n, n ) Wir stellen die Frage, ob sich die Zahlen i als Werte einer linearen Funktion i

Mehr

Allgemeine Chemie Computer Praktikum Frühjahrssemester Regressions-Tutorial Lineare und nicht-lineare Regression

Allgemeine Chemie Computer Praktikum Frühjahrssemester Regressions-Tutorial Lineare und nicht-lineare Regression 1 Einführung Allgemeine Chemie Computer Praktikum Frühjahrssemester Regressions-Tutorial Lineare und nicht-lineare Regression Datenauswertung In einem naturwissenschaftlichen Experiment werden Sie meist

Mehr

Karl Entacher. FH-Salzburg

Karl Entacher. FH-Salzburg Ahorn Versteinert Bernhard.Zimmer@fh-salzburg.ac.at Statistik @ HTK Karl Entacher FH-Salzburg karl.entacher@fh-salzburg.ac.at Beispiel 3 Gegeben sind 241 NIR Spektren (Vektoren der Länge 223) zu Holzproben

Mehr

Bivariate Regressionsanalyse

Bivariate Regressionsanalyse Universität Bielefeld 15. März 2005 Kovarianz, Korrelation und Regression Kovarianz, Korrelation und Regression Ausgangspunkt ist folgende Datenmatrix: Variablen 1 2... NI 1 x 11 x 12... x 1k 2 x 21 x

Mehr

Regression und Korrelation

Regression und Korrelation Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandeltdie VerteilungeinerVariablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem dagegen

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 8.-10. Januar 2010 BOOTDATA.GDT: 250 Beobachtungen für die Variablen... cm:

Mehr

Bitte bearbeite zunächst alle Aufgaben bevor du einen Blick in die Lösungen wirfst.

Bitte bearbeite zunächst alle Aufgaben bevor du einen Blick in die Lösungen wirfst. Übungsblatt 2 - Varianz, Standardabweichung, Kovarianz Das zweite Übungsblatt umfasst die Themen Varianz, Standardabweichung und Kovarianz. Hinter den Aufgaben steht wie gewohnt in Klammern die durchschnittliche

Mehr

Statistik I. 1. Klausur Wintersemester 2010/2011 Hamburg, Art der Anmeldung: STiNE FlexNow Zulassung unter Vorbehalt

Statistik I. 1. Klausur Wintersemester 2010/2011 Hamburg, Art der Anmeldung: STiNE FlexNow Zulassung unter Vorbehalt Statistik I 1. Klausur Wintersemester 2010/2011 Hamburg, 11.02.2011 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................ Vorname:.............................................................................

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr

6 Korrelations- und Regressionsanalyse: Zusammenhangsanalyse stetiger Merkmale

6 Korrelations- und Regressionsanalyse: Zusammenhangsanalyse stetiger Merkmale 6 Korrelations- und Regressionsanalyse: Zusammenhangsanalyse stetiger Merkmale 397 6.1 Korrelationsanalyse Jetzt betrachten wir bivariate Merkmale (X, Y ), wobei sowohl X als auch Y stetig bzw. quasi-stetig

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Beschreibende Statistik mit Excel R

Beschreibende Statistik mit Excel R Beschreibende Statistik mit Excel R 1 Allgemeines Formeln beginnen immer mit einem Gleichheitszeichen. Formeln können keine, eine oder mehrere sogenannten Argumente haben. Falls eine Funktion mehr als

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun http://blog.ruediger-braun.net Heinrich-Heine-Universität Düsseldorf 10. Dezember 2014 1 Datenpaare Korrelation 2 Lineare Regression Problemstellung Beispiel

Mehr

Regression. Leonardo da Vinci (1452-1519) formulierte folgende Zusammenhänge:

Regression. Leonardo da Vinci (1452-1519) formulierte folgende Zusammenhänge: Regression Leonardo da Vinci (142-119) formulierte folgende Zusammenhänge: 1. Die Körpergröße ist gleich der Spannweite der Arme. 2. Die Höhe einer knienden Person ist 3 4 der Körpergröße. 3. Die Handlänge

Mehr

Regression und Korrelation (Gurtner)

Regression und Korrelation (Gurtner) Regression und Korrelation (Gurtner) Oft muss man Trends verlängern. Dazu nimmt man die Daten einer Entwicklung, legt eine passende Kurve durch und verlängert die Kurve in die Zukunft. Hier verwenden wir

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik Deskriptive Statistik: Ziele Daten zusammenfassen durch numerische Kennzahlen. Grafische Darstellung der Daten. Quelle: Ursus Wehrli, Kunst aufräumen 1 Modell vs. Daten Bis jetzt

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

Statistik Klausur Wintersemester 2013/2014 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN!

Statistik Klausur Wintersemester 2013/2014 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Statistik 1 A 2. Klausur Wintersemester 2013/2014 Hamburg, 18.03.2014 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................

Mehr

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung

Mehr

Extrema multivariater Funktionen

Extrema multivariater Funktionen Extrema multivariater Funktionen Ist f (x ) ein Minimum (Maximum) einer stetig differenzierbaren skalaren Funktion f auf einer Umgebung U von x, so gilt grad f (x ) = (0,..., 0) t. Extrema multivariater

Mehr

Statistik Klausur Wintersemester 2013/2014 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN!

Statistik Klausur Wintersemester 2013/2014 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Statistik 1 2. Klausur Wintersemester 2013/2014 Hamburg, 18.03.2014 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................ Vorname:.............................................................................

Mehr

Hochschule Darmstadt FB Mathematik und Naturwissenschaften. Statistik. für Wirtschaftsingenieure (B.Sc.) Sommersemester 2017

Hochschule Darmstadt FB Mathematik und Naturwissenschaften. Statistik. für Wirtschaftsingenieure (B.Sc.) Sommersemester 2017 für Wirtschaftsingenieure (B.Sc.) Sommersemester 017 Dr. rer. nat. habil. E-mail: adam-georg.balogh@h-da.de 1 Hochschule Darmstadt, Fachbereich MN Sommersemester 017 Testklausur zur Vorlesung Wirtschaftsstatistik

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden in Quantitative Methoden Mag. Dipl.Ing. Dr. Pantelis Christodoulides & Mag. Dr. Karin Waldherr SS 2011 Christodoulides / Waldherr in Quantitative Methoden- 2.VO 1/47 Historisches Regression geht auf Galton

Mehr

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG Statistische Methoden In der vorliegenden fiktiven Musterstudie wurden X Patienten mit XY Syndrom (im folgenden: Gruppe XY) mit Y Patienten eines unauffälligem

Mehr

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5 Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Bivariater Zusammenhang bei metrischen Variablen: Regression und Korrelation

Bivariater Zusammenhang bei metrischen Variablen: Regression und Korrelation Bivariater Zusammenhang bei metrischen Variablen: Regression und Korrelation PEΣO 12. November 2001 Von der Tabellenanalyse zur Regression Die bivariate Verteilung zweier metrischer Variablen kann konzeptionell

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Korrelationsanalysen Kreuztabellen und χ²-test Themen Korrelation oder Lineare Regression? Korrelationsanalysen - Pearson, Spearman-Rang, Kendall s Tau

Mehr

Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik

Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik INSTITUT FÜR STOCHASTIK WS 2007/08 UNIVERSITÄT KARLSRUHE Blatt 1 Dr. B. Klar Übungen zur Vorlesung Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik Musterlösungen

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Statistik II: Signifikanztests /2

Statistik II: Signifikanztests /2 Medien Institut : Signifikanztests /2 Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Korrelation 2. Exkurs: Kausalität 3. Regressionsanalyse 4. Key Facts 2 I

Mehr

Eine Firma will den Zusammenhang zwischen Werbungskosten und Absatz untersuchen. Dazu nimmt sie zunächst eine Stichprobe dieser beiden Merkmale

Eine Firma will den Zusammenhang zwischen Werbungskosten und Absatz untersuchen. Dazu nimmt sie zunächst eine Stichprobe dieser beiden Merkmale Wirtschaftswissenschaftliches Zentrum 4 Universität Basel Statistik Dr. Thomas Zehrt Regression Motivation Eine Firma will den Zusammenhang zwischen Werbungskosten und Absatz untersuchen. Dazu nimmt sie

Mehr

Deskriptive Statistik. (basierend auf Slides von Lukas Meier)

Deskriptive Statistik. (basierend auf Slides von Lukas Meier) Deskriptive Statistik (basierend auf Slides von Lukas Meier) Deskriptive Statistik: Ziele Daten zusammenfassen durch numerische Kennzahlen. Grafische Darstellung der Daten. Quelle: Ursus Wehrli, Kunst

Mehr

Kapitel X - Lineare Regression

Kapitel X - Lineare Regression Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel X - Lineare Regression Deskriptive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh Agenda 1 Untersuchung

Mehr

Inverse und implizite Funktionen

Inverse und implizite Funktionen Kapitel 8 Inverse und implizite Funktionen Josef Leydold Mathematik für VW WS 2017/18 8 Inverse und implizite Funktionen 1 / 21 Inverse Funktion Sei f : D f R n W f R m, x y f(x). Eine Funktion f 1 : W

Mehr

Goethe-Universität Frankfurt

Goethe-Universität Frankfurt Goethe-Universität Frankfurt Fachbereich Wirtschaftswissenschaft PD Dr. Martin Biewen Dr. Ralf Wilke Sommersemester 2006 Klausur Statistik II 1. Alle Aufgaben sind zu beantworten. 2. Bitte runden Sie Ihre

Mehr

Biomathematik für Mediziner, Klausur SS 2000 Seite 1

Biomathematik für Mediziner, Klausur SS 2000 Seite 1 Biomathematik für Mediziner, Klausur SS 2000 Seite 1 Aufgabe 1: Bei der Diagnose einer bestimmten Krankheit mit einem speziellen Diagnoseverfahren werden Patienten, die tatsächlich an der Krankheit leiden,

Mehr

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg Graphische Repräsentation von Kontingenztabellen Beispiel Autounfälle Verletzung leicht

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

Versuchsplanung und multivariate Statistik Sommersemester 2018

Versuchsplanung und multivariate Statistik Sommersemester 2018 Versuchsplanung und multivariate Statistik Sommersemester 2018 Vorlesung 11: Lineare und nichtlineare Modellierung I Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 6.6.2018

Mehr

BIOMETRIE I - KLINISCHE EPIDEMIOLOGIE

BIOMETRIE I - KLINISCHE EPIDEMIOLOGIE BIOMETRIE I - KLINISCHE EPIDEMIOLOGIE Wintersemester 2003/04 - Übung zur Vorlesung Biometrie I Ein Lösungsvorschlag von Christian Brockly Lösungsvorschlag zur Übung Biometrie I Bei diesem Dokument handelt

Mehr

TEIL 12: BIVARIATE ANALYSE FÜR METRISCH SKALIERTE VARIABLEN

TEIL 12: BIVARIATE ANALYSE FÜR METRISCH SKALIERTE VARIABLEN TEIL 12: BIVARIATE ANALYSE FÜR METRISCH SKALIERTE VARIABLEN GLIEDERUNG Bivariate Analyse für metrisch skalierte Variablen Grundlagen Streudiagramme und Visualisierungen von Zusammenhängen Positive lineare

Mehr

1 Multivariate Zufallsvariablen

1 Multivariate Zufallsvariablen 1 Multivariate Zufallsvariablen 1.1 Multivariate Verteilungen Definition 1.1. Zufallsvariable, Zufallsvektor (ZV) Sei Ω die Ergebnismenge eines Zufallsexperiments. Eine (univariate oder eindimensionale)

Mehr

Anhang B. Regression

Anhang B. Regression Anhang B Regression Dieser Anhang rekapituliert die in der Analysis und Statistik wohlbekannte Methode der kleinsten Quadrate, auch Regression genannt, zur Bestimmung von Ausgleichsgeraden Regressionsgeraden

Mehr

Lösungsvorschläge zur Klausur Beschreibende Statistik und Wirtschaftsstatistik (Sommersemester 2013)

Lösungsvorschläge zur Klausur Beschreibende Statistik und Wirtschaftsstatistik (Sommersemester 2013) Lösungsvorschläge zur Klausur Beschreibende Statistik und Wirtschaftsstatistik (Sommersemester 203) Aufgabe (9 Punkte) Ein metrisches Merkmal X sei in einer Grundgesamtheit vom Umfang n = 200 diskret klassiert.

Mehr

3 Korrelation und Regression

3 Korrelation und Regression 3 KORRELATION UND REGRESSION 3 Korrelation und Regression Sind zwei Zufallsvariable X und Y unabhängig, so gibt es keinerlei Wechselwirkung zwischen ihnen. Ist ein funktionaler Zusammenhang = f( zwischen

Mehr

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte Kapitel 8 Parameter multivariater Verteilungen 8.1 Erwartungswerte Wir können auch bei mehrdimensionalen Zufallsvariablen den Erwartungswert betrachten. Dieser ist nichts anderes als der vektor der Erwartungswerte

Mehr

Wie kann ich überprüfen, welche Verteilung meinen Daten zu Grunde liegt? Chi-Quadrat-Test auf Normalverteilung

Wie kann ich überprüfen, welche Verteilung meinen Daten zu Grunde liegt? Chi-Quadrat-Test auf Normalverteilung Wie kann ich überprüfen, welche Verteilung meinen Daten zu Grunde liegt? Chi-Quadrat-Test auf Normalverteilung T. Kießling: Fortgeschrittene Fehlerrechnung - Korrelation 5.04.018 Vorlesung 03-1 Chi-Quadrat-Test:

Mehr

Zusammenhänge zwischen metrischen Merkmalen

Zusammenhänge zwischen metrischen Merkmalen Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl

Mehr

ad Physik A VL2 (11.10.2012)

ad Physik A VL2 (11.10.2012) ad Physik A VL2 (11.10.2012) korrigierte Varianz: oder: korrigierte Stichproben- Varianz n 2 2 2 ( x) ( xi ) n 1 i1 1 n 1 n i1 1 Begründung für den Vorfaktor : n 1 Der Mittelwert der Grundgesamtheit (=

Mehr

Mathematik für Biologen und Chemiker Prof. Scheltho - Übungen Mathe 2

Mathematik für Biologen und Chemiker Prof. Scheltho - Übungen Mathe 2 Mathematik für Biologen und Chemiker Prof. Scheltho - Übungen Mathe 2 Fortsetzung der komlexen Zahlen : 9. Radizieren und Potenzen a) Berechnen Sie (1+i) 20 und geben Sie das Resultat als Polarkoordinaten

Mehr

Pearson- Korrelationskoeffizienten höherer Grade

Pearson- Korrelationskoeffizienten höherer Grade Pearson- Korrelationskoeffizienten höherer Grade Dipl.- Ing. Björnstjerne Zindler, M.Sc. Erstellt: 13. März 2014 Letzte Revision: 16. März 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Der Lineare Korrelationskoeffizient

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 3 1 Inhalt der heutigen Übung Vorrechnen der Hausübung B.7 Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben C.1: Häufigkeitsverteilung C.2: Tukey

Mehr

Kapitel 1 Beschreibende Statistik

Kapitel 1 Beschreibende Statistik Beispiel 1.25: fiktive Aktienkurse Zeitpunkt i 0 1 2 Aktienkurs x i 100 160 100 Frage: Wie hoch ist die durchschnittliche Wachstumsrate? Dr. Karsten Webel 53 Beispiel 1.25: fiktive Aktienkurse (Fortsetzung)

Mehr

6 Korrelationsanalyse: Zusammenhangsanalyse stetiger. Merkmale

6 Korrelationsanalyse: Zusammenhangsanalyse stetiger. Merkmale 6 Korrelationsanalyse: Zusammenhangsanalyse stetiger Merkmale 6.1 Korrelationsanalyse Jetzt betrachten wir bivariate Merkmale (X, Y ), wobei sowohl X als auch Y stetig bzw. quasi-stetig und mindestens

Mehr

Biomathematik für Mediziner, Klausur WS 2000/2001 Seite 1

Biomathematik für Mediziner, Klausur WS 2000/2001 Seite 1 Biomathematik für Mediziner, Klausur WS 2000/2001 Seite 1 Aufgabe 1: Von 2 gleichartigen Maschinen eines pharmazeutischen Betriebes stellt die erste 40% und die zweite 60% der Produkte her. Dabei verursacht

Mehr

TEIL 12: BIVARIATE ANALYSE FÜR METRISCH SKALIERTE VARIABLEN

TEIL 12: BIVARIATE ANALYSE FÜR METRISCH SKALIERTE VARIABLEN TEIL 12: BIVARIATE ANALYSE FÜR METRISCH SKALIERTE VARIABLEN Bivariate Analyse für metrisch skalierte Variablen Grundlagen Verfahren für metrische Daten nutzen den vollen mathematischen Informationsgehalt

Mehr

Verfahren zur Überprüfung von Zusammenhangshypothesen

Verfahren zur Überprüfung von Zusammenhangshypothesen Verfahren zur Überprüfung von Zusammenhangshypothesen 0. Allgemeines Wir haben uns bisher mit Unterschiedshypothesen beschäftigt (Unterschiede von Stichproben in Bezug auf abhängige Variablen). Im Folgenden

Mehr

Demokurs. Modul Vertiefung der Wirtschaftsmathematik Vertiefung der Statistik

Demokurs. Modul Vertiefung der Wirtschaftsmathematik Vertiefung der Statistik Demokurs Modul 3741 Vertiefung der Wirtschaftsmathematik und Statistik Kurs 41 Vertiefung der Statistik 15. Juli 010 Seite: 14 KAPITEL 4. ZUSAMMENHANGSANALYSE gegeben, wobei die Stichproben(ko)varianzen

Mehr

Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung

Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung Abgaben: 61 / 234 Maximal erreichte Punktzahl: 6 Minimal erreichte Punktzahl: 2 Durchschnitt: 5 Frage 1 (Diese Frage haben ca. 5% nicht beantwortet.)

Mehr

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell 1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 3. Vorlesung Dr. Jochen Köhler 1 Inhalte der heutigen Vorlesung Ziel: Daten Modellbildung Probabilistisches Modell Wahrscheinlichkeit von Ereignissen Im ersten

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Mathematische Stochastik WS 2006/2007 Universität Karlsruhe 12. Februar 2007 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Aufgabe 1 (15 Punkte) Klausur zur Vorlesung Statistik für Biologen

Mehr

2 Regressionsgerade und Korrelation

2 Regressionsgerade und Korrelation 17 2 Regressionsgerade und Korrelation In diesem Kapitel wird gezeigt, wie man üperprüfen kann, ob zwei Datensätze zusammenhängen und wie sich ein allfälliger (linearer) Zusammenhang quantitativ beschreiben

Mehr

Mathematische Statistik. Zur Notation

Mathematische Statistik. Zur Notation Mathematische Statistik dient dazu, anhand von Stichproben Informationen zu gewinnen. Während die Wahrscheinlichkeitsrechnung Prognosen über das Eintreten zufälliger (zukünftiger) Ereignisse macht, werden

Mehr

Statistik. Rainer Hauser. Dezember 2012

Statistik. Rainer Hauser. Dezember 2012 Statistik Rainer Hauser Dezember 2012 1 Einleitung 1.1 Population und Merkmale Gegeben ist eine Population (oder Grundgesamtheit), und die Frage ist, welche Elemente dieser Population ein bestimmtes Merkmal

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Drittvariablenkontrolle in der linearen Regression: Trivariate Regression

Drittvariablenkontrolle in der linearen Regression: Trivariate Regression Drittvariablenkontrolle in der linearen Regression: Trivariate Regression 14. Januar 2002 In der Tabellenanalyse wird bei der Drittvariablenkontrolle für jede Ausprägung der Kontrollvariablen eine Partialtabelle

Mehr

Biometrieübung 10 Lineare Regression. 2. Abhängigkeit der Körpergröße von der Schuhgröße bei Männern

Biometrieübung 10 Lineare Regression. 2. Abhängigkeit der Körpergröße von der Schuhgröße bei Männern Biometrieübung 10 (lineare Regression) - Aufgabe Biometrieübung 10 Lineare Regression Aufgabe 1. Düngungsversuch In einem Düngeversuch mit k=9 Düngungsstufen x i erhielt man Erträge y i. Im (X, Y)- Koordinatensystem

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 21. Oktober 2010 1 Datenpaare Korrelation Lineare Regression Regression im exponentiellen Modell Datenpaare Häufig

Mehr

Musterlösung zur Übungsklausur Statistik

Musterlösung zur Übungsklausur Statistik Musterlösung zur Übungsklausur Statistik WMS15B Oettinger 9/216 Aufgabe 1 (a) Falsch: der Modus ist die am häufigsten auftretende Merkmalsausprägung in einer Stichprobe. (b) Falsch: die beiden Größen sind

Mehr

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19 Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist

Mehr