Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme

Größe: px
Ab Seite anzeigen:

Download "Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme"

Transkript

1 Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh 3.Mai Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es um Methoden für das Lösen von konvexen Optimierungsproblemen mit Gleichungsnebenbedingungen der Form Minimiere f(x), so dass Ax = b, mit f : R n R konvex und zweimal stetig differenzierbar und A R p n mit Rang A = p < n. Ein Punkt x dom f ist optimal für (1) genau dann, wenn es ein v R p gibt, sodass gilt (1) Ax = b, f(x ) + A T v = 0. (2) Das Lösen des gleichungsbeschränkten Optimierungsproblems aus (1) ist also äquivalent dazu eine Lösung der KKT-Gleichungen aus (2) zu finden. Die erste Gleichung aus (2) Ax = b nennt man auch primale Zulässigkeitsbedingung und bei der zweiten Gleichung f(x ) + A T v = 0 spricht man von der dualen Zulässigkeitsbedingung. Konvexe quadratische Minimierung mit Gleichungsbeschränkungen Betrachten wir nun ein gleichungsbeschränktes konvexes Optimierungsproblem mit einer quadratischen Funktion: Minimiere f(x) = (1/2)x T P x + q T x + r, so dass Ax = b. Hierbei ist P S n + und A R p n. Die Optimalitätsbedingungen aus (2) für die quadratische Funktion sehen dann wie folgt aus: Ax = b, P x + q + A T v = 0. Seminar Konvexe Optimierung, FSS 2016, Universität Mannheim (3) 1

2 Dies können wir noch umschreiben in die Form [ ] [ ] [ ] P A T x q A 0 v =. (4) b Dieses System der (n + p) linearen Gleichungen mit (n + p) Variablen x, v nennt man das KKT -System für das gleichungsbeschränkte quadratische Optimierungsproblem aus (3). Die Koeffizientenmatrix nennt man auch die KKT -M atrix. 2 Das Newton-Verfahren mit Gleichungsbeschränkungen In diesem Abschnitt geht es um die Erweiterung des Newton-Verfahrens für den gleichungsbeschränkten Fall. Diese Methode funktioniert sehr ähnlich zu dem ungleichungsbeschränkten Fall, bis auf zwei wesentliche Unterschiede: Der Anfangspunkt muss zulässig sein, das heißt es gelten x dom f und Ax = b und weiterhin wird die Definition des Newton-Schrittes so verändert, dass die Gleichheitsbeschränkungen miteinbezogen werden. Wir werden insbesondere sicherstellen, dass der Newton-Schritt x nt eine zulässige Richtung darstellt, das bedeutet es gilt A x nt = 0. Der Newton-Schritt Um den Newton Schritt x nt für das gleichungsbeschränkte Problem an einem gültigen Punkt x herzuleiten ersetzen wir die Zielfunktion mit ihrer Taylorapproximation zweiter Ordnung nahe bei x. Dies ergibt dann die Form Minimiere f(x + v) = f(x) + f(x) T v + (1/2)v T 2 f(x)v, so dass A(x + v) = b, (5) mit der Variablen v. Dies ist möglich wegen dem folgendem Argument: L(x, λ) = f(x) + λ T (Ax b), L = f + A T λ, 2 L = 2 f. Unter den Voraussetzungen ist die zugehörige KKT-Matrix regulär. Wir definieren nun x nt als Lösung des konvexen quadratischen Problems aus (5). Analog zu (4) ist hier der Newton-Schritt x nt charakterisiert durch 2

3 [ 2 f(x) A T ] [ ] [ ] xnt f(x) =, (6) A 0 w 0 wobei w die zugehörige optimale duale Variable für das quadratische Problem ist. Weiter gilt A(x + x) = b, A x = b Ax, = 0, wenn x zulässig ist. Der Newton-Schritt ist nur für die Punkte definiert, für die die KKT-Matrix regulär ist. Das Newton-Dekrement Wir definieren das Newton-Dekrement λ für das gleichungsbeschränkte Problem genau wie für den ungleichungsbeschränkten Fall durch λ(x) = ( x T nt 2 f(x) x nt ) 1/2. (7) Das bedeutet, dass λ die Norm des Newton-Schrittes ist, die von der Hesse- Matrix bestimmt wird. Das Newton-Dekrement spielt eine entscheidende Rolle für das Abbruchkriterium des Newton-Verfahrens. Mit f(x+v) aus (5) gilt nun genau wie im ungleichungsbeschränkten Fall f(x) inf { f(x + v) A(x + v) = b} = λ(x) 2 /2. (8) Anschaulich bedeutet das, dass uns λ(x) 2 /2 eine Schätzung für f(x) p liefert, wobei p den optimalen Wert mit p = inf {f(x) Ax = b} = f(x ) bezeichnet. Damit dient uns λ(x) (oder auch ein Vielfaches von λ(x) 2 ) als Basis für ein gutes Abbruchkriterium unseres Verfahrens. Algorithmus (Newton-Verfahren zur gleichungsbeschränkten Minimierung). Gegeben sei ein Startpunkt x (0) dom f mit Ax (0) = b und Toleranz ɛ > 0. Wiederhole für k = 0, 1, Berechne den Newton-Schritt und das Newton-Dekrement x (k) nt, λ(x(k) ). 2. Abbruchkriterium. Abbrechen, falls λ 2 /2 ɛ gilt. 3. Line Search. Suche die Schrittweite t durch Backtracking Line Search. 3

4 4. Update. x (k+1) := x (k) + t x (k) nt. Dieses Verfahren ist ein zulässiges Abstiegsverfahren, da alle Iterationen zulässig sind mit f(x (k+1) ) < f(x (k) ) (solange bis x (k) optimal ist). Das Newton-Verfahren setzt voraus, dass die KKT-Matrix für jedes x invertierbar ist. Konvergenzanalyse Alles was wir über die Konvergenz des Newton-Verfahrens für das unbeschränkte Problem kennen, lässt sich auch auf den beschränkten Fall übertragen. In der Praxis ist die Performance des Newton-Verfahrens im beschränkten Fall genau gleich zu der Performance des Newton-Verfahrens im unbeschränkten Fall. Sobald x (k) nahe bei x liegt, konvergiert es sehr schnell und mit einer hohen Genauigkeit innerhalb weniger Iterationen. Die Niveaumenge S = {x x domf, f(x) f(x (0) ), Ax = b} sei abgeschlossen, wobei x (0) domf Ax (0) = b erfüllt. Dies ist der Fall, wenn f abgeschlossen ist. Auf der Menge S gelte dann 2 f(x) MI und [ 2 f(x) A T ] 1 K, (9) A 0 2 das bedeutet, dass die Inverse der KKT-Matrix auf S gleichmäßig beschränkt ist, wobei die Inverse existieren muss, damit der Newton-Schritt in jedem Punkt von S definiert ist. Für x, x S genüge 2 f der Lipschitzbedingung 2 f(x) 2 f( x) 2 L x x 2. Mit obigen Annahmen lässt sich folgern, dass die eliminierte Zielfunktion f, zusammen mit dem zugehörigen Anfangspunkt z (0), mit x (0) = ˆx + F z (0), die notwendigen Annahmen für die Konvergenzanalyse des Newton-Verfahrens im unbeschränkten Problem erfüllen (wobei die Konstanten m, M und L unterschiedlich sind). Deshalb konvergiert das Newton-Verfahren mit Gleichungsbeschränkungen gegen x und v. 3 Das Newton-Verfahren für unzulässige Startwerte In diesem Abschnitt geht es um eine Verallgemeinerung des Newton-Verfahrens, welche uns erlaubt, mit unzulässigen Startwerten zu arbeiten. 4

5 Der Newton-Schritt für unzulässige Punkte Wie für das obige Newton-Verfahren beginnen wir mit den Optimalitätsbedingungen: Ax = b, f(x ) + A T v = 0. Der Unterschied hier ist, dass wir mit x den aktuellen Wert bezeichnen, von dem wir nicht annehmen, dass er zulässig ist. Wir nehmen jedoch an, dass gilt x domf. Das Ziel ist es, einen Schritt x zu finden, sodass x + x die Optimalitätsbedingungen mindestens approximativ erfüllt. Dafür ersetzen wir x durch x + x und v durch w in den Optimalitätsbedingungen. Mit der Approximation erster Ordnung für den Gradienten erhalten wir dann f(x + x) f(x) + 2 f(x) x, A(x + x) = b, f(x) + 2 f(x) x + A T w = 0. Wir erhalten nun also ein System von linearen Gleichungen für x und w, [ 2 f(x) A T ] [ ] [ ] x f(x) =. (10) A 0 w Ax b Der Unterschied zu der vorherigen Variante des Newton-Verfahrens aus (6) ist der zweite Ausdruck auf der rechten Seite, nämlich Ax b. Dies stellt den Vektor für das Residuum dar und verschwindet im Falle von zulässigem x. Falls x zulässig ist, wird (10) zu (6). Interpretation als Primal-Dual Newton-Schritt Wir können die Gleichungen aus (10) in Form eines Primal-Dual-Verfahrens für das gleichungsbeschränkte Problem interpretieren. Mit einem Primal-Dual- Verfahren meinen wir ein Verfahren, in dem wir sowohl die primale Variable x als auch die duale Variable v updaten, um die Optimalitätsbedingungen zu erfüllen (oder approximativ zu erfüllen). Wir bezeichnen die Optimalitätsbedingungen mit r(x, v ) = 0, wobei r : R n R p R n R p definiert wird durch r(x, v) = (r dual (x, v), r pri (x, v)). Dabei sind das duale Residuum und das primale Residuum wie folgt definiert: r dual (x, v) = f(x) + A T v, r pri (x, v) = Ax b. 5

6 Die Taylor-Approximation erster Ordnung von r nahe bei unserer aktuellen Schätzung y lautet r(y + z) r(y) + Dr(y)z = ˆr(y + z), wobei Dr(y) R (n+p) (n+p) die Ableitung von r ausgewertet an der Stelle y ist. Wir definieren den Primal-Dual Newton-Schritt y pd als den Schritt z, für den die Taylor-Approximation ˆr(y + z) verschwindet, das bedeutet, es gilt Dr(y) y pd = r(y). (11) Wir berücksichtigen hierbei sowohl x als auch v als Variablen, das heißt y pd = ( x pd, v pd ) gibt uns sowohl den primalen als auch den dualen Schritt. Berechnen wir die Ableitung von r, so können wir (11) in folgende Form umschreiben, [ 2 f(x) A T ] [ ] [ ] [ xpd rdual f(x) + A = = T ] v. (12) A 0 Ax b v pd Ersetzen wir v + v pd mit v +, so erhalten wir [ 2 f(x) A T ] [ ] [ ] xpd f(x) A 0 v + =, (13) Ax b welches exakt das gleiche System an Gleichungen wie in (10) darstellt. Damit erhalten wir für die Lösungen aus (10), (12) und (13) die folgenden Zusammenhänge, r pri x nt = x pd, w = v + = v + v pd. Zulässigkeitseigenschaft bei einem Vollschritt Der Newton-Schritt x nt hat per Konstruktion die Eigenschaft Dies gilt wegen folgender Argumentation: A(x + x nt ) = b. (14) x (k+1) = x (k) + t x (k), A x (k) = (Ax (k) b), Ax (k+1) = Ax (k) + t( Ax (k) + b), Ax (k+1) = Ax (k) tax (k) + tb. 6

7 Für den Vollschritt t = 1 gilt dann schließlich Ax (k+1) = Ax (k) Ax (k) + b, = b, das heißt x (k+1) ist zulässig. Die x (k) bleiben danach für alle weiteren Iterationen zulässig. Der Algorithmus für das Newton-Verfahren bei unzulässigem Startwert Für den Algorithmus benutzen wir den Newton-Schritt x nt aus (10), mit x (0) domf, der nicht notwendigerweise Ax (0) = b erfüllen muss. Weiter benutzen wir den dualen Teil des Newton-Schrittes: v nt = w v, oder äquivalent dazu v nt = v pd. Algorithmus (Das Newton-Verfahren bei unzulässigem Startwert). Seien ein Startpunkt x domf, v, die Toleranz ɛ > 0, α (0, 1/2) und β (0, 1) gegeben. Wiederhole: 1. Berechne den primalen und den dualen Newton-Schritt x nt, v nt. 2. Backtracking Line Search auf r 2. t := 1. while r(x + t x nt, v + t v nt ) 2 > (1 αt) r(x, v) 2, t := βt. 3. Update. x := x + t x nt, v := v + t v nt. bis Ax = b und r(x, v) 2 ɛ. Der Algorithmus ist insgesamt sehr ähnlich zu dem Newton-Verfahren für zulässige Startwerte, aber dennoch gibt es einige Unterschiede: 1. Die Suchrichtungen beinhalten den Korrekturausdruck, welcher abhängig von dem primalen Residuum ist. 2. Die Line Search wird mit der Norm des Residuums statt mit dem Funktionswert von f durchgeführt. 7

8 3. Der Algorithmus terminiert, sobald primale Zulässigkeit erreicht ist und die Norm des (dualen) Residuums klein genug ( ɛ) ist. 4. Der Hauptvorteil dieses Verfahrens liegt in der Initialisierung, da wir bei dieser Variante des Newton-Verfahrens keinen zulässigen Startwert voraussetzen. Einen zulässigen Startpunkt zu berechnen würde zusätzlichen Aufwand bedeuten. Konvergenzanalyse Das Newton-Verfahren mit unzulässigem Startwert konvergiert gegen den optimalen Punkt, wenn einige bestimmte Annahmen erfüllt sind. Der Konvergenzbeweis ist ähnlich zu dem für das Standard-Newton-Verfahren. Es lässt sich zeigen, dass sobald das Residuum klein genug ist, die Zulässigkeit erreicht wird und die Konvergenz quadratisch erfolgt. Weiter lässt sich noch zeigen, dass die Norm des Residuums sich in jeder Iteration um einen bestimmten Betrag verringert, bevor die Region der quadratischen Konvergenz erreicht wird. Da die Norm des Residuums nicht negativ sein kann, bedeutet das, dass das Residuum in einer endlichen Anzahl an Schritten klein genug wird, um quadratische Konvergenz zu garantieren. Literatur [1] S. Boyd, L. Vandenberghe: Convex Optimization, erste Auflage, Cambridge University Press,

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Optimierung. Optimierung. Vorlesung 4 Newton und Quasi Newton Verfahren (Teil II) 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 4 Newton und Quasi Newton Verfahren (Teil II) 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 4 Newton und Quasi Newton Verfahren (Teil II) 1 Newton Verfahren Taylor Approximation 1. Ordnung von Newton Verfahren! 0 Setze 0und berechne Löse lineares Gleichungssystem für : 2

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2/ / Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung 6Das Newton-Verfahren

Mehr

Innere-Punkt-Methoden

Innere-Punkt-Methoden Innere-Punkt-Methoden Johannes Stemick 26.01.2010 Johannes Stemick () Innere-Punkt-Methoden 26.01.2010 1 / 28 Übersicht 1 Lineare Optimierung 2 Innere-Punkt-Methoden Path-following methods Potential reduction

Mehr

Das Subgradientenverfahren

Das Subgradientenverfahren Das Subgradientenverfahren Seminar Optimierung WS 05/06 Betreuer: Prof. F. Jarre von Jalo Liljo Das Subgradientenverfahren Das Ziel dieses Vortrags ist die Berechnung einer Lösung des unrestringierten

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Dr. Nico Düvelmeyer Freitag, 8. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 NLP Aufgabe KKT 2 Nachtrag

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

Kontinuierliche Optimierung

Kontinuierliche Optimierung Kontinuierliche Optimierung Markus Herrich Wintersemester 2018/19 ii Inhaltsverzeichnis 2 Optimalitäts- und Regularitätsbedingungen 1 2.1 Einleitung und Wiederholung.................... 1 2.2 Optimalitätsbedingungen

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

Konvexe Optimierungsprobleme

Konvexe Optimierungsprobleme von: Veronika Kühl 1 Konvexe Optimierungsprobleme Betrachtet werden Probleme der Form (P) min x C f(x) wobei f : C R eine auf C konvexe, aber nicht notwendigerweise differenzierbare Funktion ist. Ziel

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Grundlagen der Nichtlinearen Optimierung. Klausur zur Vorlesung WS 2008/09

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Grundlagen der Nichtlinearen Optimierung. Klausur zur Vorlesung WS 2008/09 ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Obige Angaben sind richtig: Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT

Mehr

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Aufgaben zur nicht-linearen Optimierung Teil II Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Aufgabe 5 Bestimmen

Mehr

NICHTRESTRINGIERTE OPTIMIERUNG

NICHTRESTRINGIERTE OPTIMIERUNG 3 NICHTRESTRINGIERTE OPTIMIERUNG Die Aufgabe, mit der wir uns im Folgen beschäftigen werden, ist die Lösung von Minimierungsproblemen der Form minimiere f(x) in R n, (3.1) wobei f : R n R eine gegebene

Mehr

Newton- und und Quasi-Newton-Methoden in der Optimierung. János Mayer

Newton- und und Quasi-Newton-Methoden in der Optimierung. János Mayer Newton- und und Quasi-Newton-Methoden in der Optimierung János Mayer 1 GLIEDERUNG Newton-Methode für nichtlineare Gleichungen nichtlineare Gleichungssysteme freie Minimierung. Quasi-Newton-Methoden für

Mehr

Optimale Steuerung 1

Optimale Steuerung 1 Optimale Steuerung 1 Kapitel 6: Nichtlineare Optimierung unbeschränkter Probleme Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) Beispiel: Parameteranpassung für Phasengleichgewicht

Mehr

Das Gradientenverfahren

Das Gradientenverfahren Das Gradientenverfahren - Proseminar: Algorithmen der Nichtlinearen Optimierung - David Beisel December 10, 2012 David Beisel Das Gradientenverfahren December 10, 2012 1 / 28 Gliederung 0 Einführung 1

Mehr

VIII Inhaltsverzeichnis 4 Innere - Punkte - Methoden für Lineare Programme Exkurs: Newton -Verfahren,Konvergenzraten Anwendung:

VIII Inhaltsverzeichnis 4 Innere - Punkte - Methoden für Lineare Programme Exkurs: Newton -Verfahren,Konvergenzraten Anwendung: Inhaltsverzeichnis 1 Einleitung... 1 1.1 Modellbildung,mathematische Formulierung............... 1 1.2 Nichtlineare Programme................................. 2 1.3 Einteilung von nichtlinearen Programmen...

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Typische Prüfungsfragen Die folgenden Fragen dienen lediglich der Orientierung und müssen nicht den tatsächlichen Prüfungsfragen entsprechen. Auch Erkenntnisse aus den

Mehr

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Eine kurze Einführung in Quasi Newton Verfahren

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Eine kurze Einführung in Quasi Newton Verfahren Ergänzungen zu dem Buch Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben von Carl Geiger und Christian Kanzow (Springer Verlag, 1999) Eine kurze Einführung in Quasi Newton Verfahren

Mehr

KAPITEL 3. Konvexe Funktionen

KAPITEL 3. Konvexe Funktionen KAPITEL 3 Konvexe Funktionen Sei F R n ein Definitionsbereich und f : F R eine Funktion. Unter dem Epigraphen von f versteht man die Menge epif = {(x, z) R n+1 x F, z R, z f(x)}. Man nennt f konvex, wenn

Mehr

Seminarvortrag: Trust-Region-Verfahren

Seminarvortrag: Trust-Region-Verfahren Seminarvortrag: Trust-Region-Verfahren Helena Klump Universität Paderborn Dezember 2012 Helena Klump 1 / 22 Trust-Region-Verfahren Problemstellung Sei die Funktion f : R n R gegeben. Betrachtet wird das

Mehr

Das Trust-Region-Verfahren

Das Trust-Region-Verfahren Das Trust-Region-Verfahren Nadine Erath 13. Mai 2013... ist eine Methode der Nichtlinearen Optimierung Ziel ist es, das Minimum der Funktion f : R n R zu bestimmen. 1 Prinzip 1. Ersetzen f(x) durch ein

Mehr

Wiederholung: Iterative Verfahren

Wiederholung: Iterative Verfahren Wiederholung: Iterative Verfahren Vorlesung Inverse Probleme 22.12.2011 Inhalt Landweber-Iteration Nichtlineare Probleme Konjugierte Gradientenmethoden Landweber-Iteration T Tx = T y äquivalente Fixpunktgleichung

Mehr

Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen

Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen Dr. Abebe Geletu Ilmenau University of Technology Department of Simulation and Optimal Processes

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

Globale Newton Verfahren

Globale Newton Verfahren Betrachten: System von n nichtlinearen Gleichungen: F : D R n, F C 1 D Gesucht: x D, sodass F x =0. Vorher: Bedingungen für Startwert wie z.b. x x 0 2 / garantieren die Konvergenz des lokalen Newton-Verfahrens

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 6/7 837 Aufgabe Punkte): Gegeben sei das lineare Gleichungssystem Ax = b mit A = 6 3 und

Mehr

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung Operations Research Rainer Schrader Konvexe Funktionen Zentrum für Angewandte Informatik Köln 4. Juni 2007 1 / 84 2 / 84 wir haben uns bereits mit linearen Optimierungsproblemen beschäftigt wir werden

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS/ / Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung 6Das Newton-Verfahren

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

Optimalitätsbedingungen

Optimalitätsbedingungen Optimalitätsbedingungen Nadja Irmscher 28. Mai 2010 1 Nachweis von Suboptimalität und Abbruchkriterien Über das gegebene Programm minimiere f 0 (x) über x D sodass f i (x) 0, i = 1,..., m h i (x) = 0,

Mehr

Ausgleichsproblem. Definition (1.0.3)

Ausgleichsproblem. Definition (1.0.3) Ausgleichsproblem Definition (1.0.3) Gegeben sind n Wertepaare (x i, y i ), i = 1,..., n mit x i x j für i j. Gesucht ist eine stetige Funktion f, die die Wertepaare bestmöglich annähert, d.h. dass möglichst

Mehr

Inhaltsverzeichnis. Teil I Lineare Programmierung

Inhaltsverzeichnis. Teil I Lineare Programmierung Inhaltsverzeichnis 1 Einleitung................................................ 1 1.1 Modellbildung, mathematische Formulierung............... 1 1.2 Nichtlineare Programme.................................

Mehr

Kapitel 4: Nichtlineare Nullstellenprobleme

Kapitel 4: Nichtlineare Nullstellenprobleme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 4: Nichtlineare Nullstellenprobleme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 2015 HM: Numerik (SS

Mehr

6.8 Newton Verfahren und Varianten

6.8 Newton Verfahren und Varianten 6. Numerische Optimierung 6.8 Newton Verfahren und Varianten In den vorherigen Kapiteln haben wir grundlegende Gradienten-basierte Verfahren kennen gelernt, die man zur numerischen Optimierung von (unbeschränkten)

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

KAPITEL 10 DIE INNERE-PUNKTE-METHODE

KAPITEL 10 DIE INNERE-PUNKTE-METHODE KAPITEL DIE INNERE-PUNKTE-METHODE F. VALLENTIN, A. GUNDERT Vorteile: + Löst effizient lineare Programme (in Theorie und Praxis) + erweiterbar (zu einer größeren Klasse von Optimierungsproblemen) + einfach

Mehr

Optimierung. Florian Jarre Josef Stoer. Springer

Optimierung. Florian Jarre Josef Stoer. Springer 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Florian Jarre Josef Stoer Optimierung Springer Inhaltsverzeichnis

Mehr

Schnittebenenverfahren von Gomory. Stefan Allescher 30. Juni 2005

Schnittebenenverfahren von Gomory. Stefan Allescher 30. Juni 2005 Schnittebenenverfahren von Gomory Stefan Allescher 30. Juni 2005 Inhaltsverzeichnis 1. Grundprinzip 2. Das Verfahren von Gomory 2.1. Vorgehen 2.2. Beweis der Endlichkeit 2.3. Algorithmische Durchführung

Mehr

Numerische Ableitung

Numerische Ableitung Numerische Ableitung Die Ableitung kann angenähert werden durch den Differentenquotient: f (x) f(x + h) f(x) h oder f(x + h) f(x h) 2h für h > 0, aber h 0. Beim numerischen Rechnen ist folgendes zu beachten:

Mehr

Sattelpunkte und Optimalitätsbedingungen bei restringierten Optimierungsproblemen

Sattelpunkte und Optimalitätsbedingungen bei restringierten Optimierungsproblemen Sattelpunkte und Optimalitätsbedingungen bei restringierten Optimierungsproblemen Sandro Grunert WS 08/09 Seminar Optimierung Technische Universität Chemnitz Inhaltsverzeichnis 2 Inhaltsverzeichnis 0 Grundlegende

Mehr

3 Nichtlineare Gleichungssysteme

3 Nichtlineare Gleichungssysteme 3 Nichtlineare Gleichungsssteme 3.1 Eine Gleichung in einer Unbekannten Problemstellung: Gegeben sei die stetige Funktion f(). Gesucht ist die Lösung der Gleichung f() = 0. f() f() a) f ( ) 0 b) f ( )

Mehr

Mathematik für Bioinformatik und Systembiologie. - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz

Mathematik für Bioinformatik und Systembiologie. - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz Mathematik für Bioinformatik und Systembiologie - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz WS 2009/10 Universität Freiburg Dieses Vorlesungsskript ist auf der Basis von Vorlesungen

Mehr

Näherungsverfahren zur Bestimmung der Nullstelle α sind iterativ, d.h. sie liefern eine Folge {x (k) } k=0 mit α = lim x (k). (3.0.

Näherungsverfahren zur Bestimmung der Nullstelle α sind iterativ, d.h. sie liefern eine Folge {x (k) } k=0 mit α = lim x (k). (3.0. 3 Nullstellenbestimmung von Funktionen Sei x f(x) eine reellwertige Funktion, definiert auf einem Intervall I = [a, b] R. suchen Nullstellen der Funktion f, d.h. Wir finde α R so, das f(α) = 0. (3.0.1)

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 3/) Kapitel : Optimierung ohne Nebenbedingungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom. Oktober 3) Gliederung

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 3/4) Kapitel : Optimierung ohne Nebenbedingungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom. Oktober 3) Gliederung

Mehr

a) Die Householder-Transformation, welche den ersten Spaltenvektor a 1 = der Matrix A auf , a 1 αe A = QR, A k =: Q k R k, A k+1 := R k Q k.

a) Die Householder-Transformation, welche den ersten Spaltenvektor a 1 = der Matrix A auf , a 1 αe A = QR, A k =: Q k R k, A k+1 := R k Q k. Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. W. Reichel Sommersemester 00 7.07.00 MODULPRÜFUNG Numerische Methoden (Höhere Mathematik IV für die Fachrichtung Meteorologie bzw.

Mehr

Das Lagrange-duale Problem

Das Lagrange-duale Problem Das Lagrange-duale Problem Tobias Kulke 29. April 2010 1 Einführung Für jedes Paar (λ, ν) mit λ 0 liefert die Langrange-duale Funktion ( ) p g(λ, ν) = inf L(x, λ, ν) = inf f 0 (x) + λ i f i (x) + ν i h

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Nichtlineare Gleichungssysteme Jetzt: Numerische Behandlung nichtlinearer GS f 1 (x 1,..., x n ) =0. f n (x 1,..., x n ) =0 oder kurz f(x) = 0 mit f : R n R n Bemerkung: Neben dem direkten Entstehen bei

Mehr

Modulprüfung Numerische Mathematik 1

Modulprüfung Numerische Mathematik 1 Prof. Dr. Klaus Höllig 18. März 2011 Modulprüfung Numerische Mathematik 1 Lösungen Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. 1. Die Trapezregel

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Numerisches Lösen von Gleichungen

Numerisches Lösen von Gleichungen Numerisches Gesucht ist eine Lösung der Gleichung f(x) = 0. Das sverfahren ist eine numerische Methode zur Bestimmung einer Nullstelle. Es basiert auf dem Zwischenwertsatz: Satz (1.1.1) Zwischenwertsatz:

Mehr

Inexakte Newton Verfahren

Inexakte Newton Verfahren Kapitel 3 Inexakte Newton Verfahren 3.1 Idee inexakter Newton Verfahren Wir betrachten weiterhin das nichtlineare Gleichungssystem F (x) = mit einer zumindest stetig differenzierbaren Funktion F : R n

Mehr

Der CG-Algorithmus (Zusammenfassung)

Der CG-Algorithmus (Zusammenfassung) Der CG-Algorithmus (Zusammenfassung) Michael Karow Juli 2008 1 Zweck, Herkunft, Terminologie des CG-Algorithmus Zweck: Numerische Berechnung der Lösung x des linearen Gleichungssystems Ax = b für eine

Mehr

Nullstellen von algebraischen Gleichungen

Nullstellen von algebraischen Gleichungen Kapitel 2 Nullstellen von algebraischen Gleichungen 2.1 Vorbemerkungen Suche Lösung der Gleichung f(x) = 0 (2.1) Dies ist die Standardform für eine Dimension. - typisch nichtlineare Gleichung, sonst elementar

Mehr

6. Numerische Lösung des. Nullstellenproblems

6. Numerische Lösung des. Nullstellenproblems 6. Numerische Lösung des Nullstellenproblems 1 Problemstellung Zwischenwertsatz: Sei f : [a,b] R stetig und c R mit f(a) c f(b) oder f(b) c f(a). Dann gibt es ein x [a,b] mit f(x) = c. Frage: Wie lässt

Mehr

Die Lagrange-duale Funktion

Die Lagrange-duale Funktion Die Lagrange-duale Funktion Gregor Leimcke 21. April 2010 1 Die Lagrangefunktion Wir betrachten das allgemeine Optimierungsproblem wobei minimiere f 0 über D sodass f i 0, i = 1,..., m 1.1 D = h i = 0,

Mehr

FK WMS: Wirtschaftsmathematik 2, Einheit 7/8

FK WMS: Wirtschaftsmathematik 2, Einheit 7/8 FK WMS: Wirtschaftsmathematik 2, Einheit 7/8 Markus Sinnl 1 markus.sinnl@univie.ac.at http://homepage.univie.ac.at/markus.sinnl basierend auf Folien von Dr. Ivana Ljubic, Mag. Christian Spreitzer und Mag.

Mehr

Wiederholung von Linearer Algebra und Differentialrechnung im R n

Wiederholung von Linearer Algebra und Differentialrechnung im R n Wiederholung von Linearer Algebra und Differentialrechnung im R n 1 Lineare Algebra 11 Matrizen Notation: Vektor x R n : x = x 1 x n = (x i ) n i=1, mit den Komponenten x i, i {1,, n} zugehörige Indexmenge:

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische

Mehr

12. Trennungssätze für konvexe Mengen 83

12. Trennungssätze für konvexe Mengen 83 12. Trennungssätze für konvexe Mengen 83 C_1 C_2 a Abbildung 12.4. Trennung konvexer Mengen durch eine Hyperebene mit Normalenvektor a Dann ist int(c) nicht leer (warum?) und [als Minkowski-Summe von C

Mehr

Nichtlineare Optimierungsprobleme mit Komplexität

Nichtlineare Optimierungsprobleme mit Komplexität Definition eines Nichtlinearen Optimierungsproblemes (NLP) min f (x) bzw. min f (x) s.d. x S x S wobei die zulässige Menge S R n typischerweise definiert ist durch S {x R n : h(x) =, c(x) } für Gleichungs-

Mehr

Inverse und implizite Funktionen

Inverse und implizite Funktionen Kapitel 8 Inverse und implizite Funktionen Josef Leydold Mathematik für VW WS 2017/18 8 Inverse und implizite Funktionen 1 / 21 Inverse Funktion Sei f : D f R n W f R m, x y f(x). Eine Funktion f 1 : W

Mehr

5 Numerische Mathematik

5 Numerische Mathematik 6 5 Numerische Mathematik Die Numerische Mathematik setzt sich aus mehreren Einzelmodulen zusammen Für alle Studierenden ist das Modul Numerische Mathematik I: Grundlagen verpflichtend In diesem Modul

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

3 Differenzierbarkeit und Ableitung (Differentialrechnung I)

3 Differenzierbarkeit und Ableitung (Differentialrechnung I) 3 Differenzierbarkeit und Ableitung (Differentialrechnung I) 31 Differenzierbarkeit und Ableitung von Funktionen einer Variablen Definition 31 Es sei M R, f : M R und a M Wenn der Funktionsgrenzwert f(x)

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Vektoranalysis Funktionen mehrerer Variabler Wir untersuchen allgemein vektorwertige Funktionen von vektoriellen Argumenten, wobei zunächst nur reelle Vektoren zugelassen seien. Speziell betrachten wir:

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Optimierung: Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Optimierungsprobleme Optimierung Suche nach dem Maximum oder Minimum

Mehr

Inverse und implizite Funktionen

Inverse und implizite Funktionen Kapitel 8 Inverse und implizite Funktionen Josef Leydold Mathematik für VW WS 2017/18 8 Inverse und implizite Funktionen 1 / 21 Inverse Funktion Sei f : D f R n W f R m, x y = f(x). Eine Funktion f 1 :

Mehr

Überblick. Kapitel 7: Anwendungen der Differentialrechnung

Überblick. Kapitel 7: Anwendungen der Differentialrechnung Überblick Kapitel 7: Anwendungen der Differentialrechnung 1 Beispiel 1: Kapitel 7.1: Implizites Differenzieren 1 Beispiel 1: Steigung der Tangente Kapitel 7.1: Implizites Differenzieren 2 Beispiel 1: Steigung

Mehr

Dualität bei konvexer Optimierung

Dualität bei konvexer Optimierung Dualität bei konvexer Optimierung Seminar zur Numerik I im SS 2016 Laslo Hunhold 10. Mai 2016 Ausarbeitung zum Seminarvortrag vom 2. Mai 2016 Mathematisches Institut Mathematisch-Naturwissenschaftliche

Mehr

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit A Analysis, Woche 9 Mehrdimensionale Differentialrechnung I A 9. Differenzierbarkeit A3 =. (9.) Definition 9. Sei U R m offen, f : U R n eine Funktion und a R m. Die Funktion f heißt differenzierbar in

Mehr

Inhaltsverzeichnis. Innere-Punkte-Verfahren 3. Inhaltsverzeichnis 1

Inhaltsverzeichnis. Innere-Punkte-Verfahren 3. Inhaltsverzeichnis 1 Inhaltsverzeichnis 1 Inhaltsverzeichnis Innere-Punkte-Verfahren 3 1 Theoretische Grundlagen 3 1.1 Die KKT-Bedingungen........................... 3 1.2 Der zentrale Pfad.............................. 4

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

Inhalt Kapitel I: Nichtlineare Gleichungssysteme

Inhalt Kapitel I: Nichtlineare Gleichungssysteme Inhalt Kapitel I: Nichtlineare Gleichungssysteme I Nichtlineare Gleichungssysteme I. Nullstellenbestimmung von Funktionen einer Veränderlichen I.2 I.3 Newton-Verfahren Kapitel I (UebersichtKapI) 3 Bisektionsverfahren

Mehr

Sattelpunkte und Optimalitätsbedingungen bei restringierten Optimierungsproblemen

Sattelpunkte und Optimalitätsbedingungen bei restringierten Optimierungsproblemen Sattelpunkte und Optimalitätsbedingungen bei restringierten Optimierungsproblemen Sandro Grunert WS 08/09 Seminar Optimierung Technische Universität Chemnitz 1 Inhaltsverzeichnis 0 Grundlegende Situation

Mehr

Bemerkung 2.1: Das Newtonverahren kann auch als sequential quad. minimization verstanden werden: 2.1 Ein globalisiertes Newtonverfahren

Bemerkung 2.1: Das Newtonverahren kann auch als sequential quad. minimization verstanden werden: 2.1 Ein globalisiertes Newtonverfahren Kapitel 2 Newtonverfahren Ziel: Bestimmung von Nullstellen von f (=stationärer Punkt). Dies geschieht mit dem Newtonverfahren. x k+1 = x k ( 2 f (x k )) 1 f (x k ) (2.1) Bemerkung 2.1: Das Newtonverahren

Mehr

Die Lagrange - duale Optimierungsaufgabe und ihre geometrische Interpretation

Die Lagrange - duale Optimierungsaufgabe und ihre geometrische Interpretation und ihre geometrische Interpretation Vortrag von Elisabeth Zschorlich 09.12.2008 Inhaltsverzeichnis 1 Die Lagrange - duale Optimierungsaufgabe 2 1.1 Einführung...................................... 2 1.2

Mehr

Die Tangentialebene. {(x, y, z) z = f(x 0, y 0 )+ f x (x 0, y 0 )(x x 0 )+ f. y (x 0, y 0 )(y y 0 )}

Die Tangentialebene. {(x, y, z) z = f(x 0, y 0 )+ f x (x 0, y 0 )(x x 0 )+ f. y (x 0, y 0 )(y y 0 )} Die Tangentialebene Der Graph der linearen Approximation ist Tangentialebene an den Graph der Funktion. In Symbolen: Es sei D R 2. Es sei f : D R, (x, y) f(x, y) differenzierbar. Dann ist {(x, y, z) z

Mehr

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben Ergänzungen zu dem Buch Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben von Carl Geiger und Christian Kanzow (Springer Verlag, 1999) Das Nelder Mead Verfahren Sei f : R n R eine (nicht

Mehr

Probeklausur zur Analysis 2, SoSe 2017

Probeklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 21717 Fakultät 4 - Mathematik und Naturwissenschaften Prof N V Shcherbina Dr T P Pawlaschyk wwwkanauni-wuppertalde Probeklausur zur Analysis 2, SoSe 217 Hinweis Die Lösungen

Mehr

Nullstellenberechnung von nichtlinearen Funktionen

Nullstellenberechnung von nichtlinearen Funktionen Kapitel 3 Nullstellenberechnung von nichtlinearen Funktionen In dieser Vorlesung wird nur die Nullstellenberechnung reeller Funktionen einer reellen Variablen f : R R betrachtet. Man nennt die Nullstellen

Mehr

Übung 5, Analytische Optimierung

Übung 5, Analytische Optimierung Übung 5, 5.7.2011 Analytische Optimierung Aufgabe 5.1 Bei der Herstellung von Konserven werden für Boden und Deckel bzw. für den Konservenmantel verschiedene Materialien verwendet, die g 1 = bzw. g 2 =

Mehr

Wirtschaftsmathematik Formelsammlung

Wirtschaftsmathematik Formelsammlung Wirtschaftsmathematik Formelsammlung Binomische Formeln Stand März 2019 (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) (a b) = a 2 b 2 Fakultät (Faktorielle) n! = 1 2 3 4 (n 1) n Intervalle

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

NEXTLEVEL im WiSe 2011/12

NEXTLEVEL im WiSe 2011/12 Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani NEXTLEVEL im WiSe 2011/12 Vorlesung 5, Teil 2 Linearisierung, einige Eigenschaften differenzierbarer Funktionen Die ins Netz gestellten Kopien

Mehr

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2. MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw

Mehr

Mathematik für Anwender. Testklausur mit Lösungen

Mathematik für Anwender. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 4. Januar 0 Prof. Dr. H. Brenner Mathematik für Anwender Testklausur mit en Dauer: Zwei volle Stunden + 0 Minuten Orientierung, in denen noch nicht geschrieben werden

Mehr

5 Quadriken. K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f = 0} wobei a, b, c, d, e, f reelle Zahlen sind mit (a, b, c) (0, 0, 0).

5 Quadriken. K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f = 0} wobei a, b, c, d, e, f reelle Zahlen sind mit (a, b, c) (0, 0, 0). 5 Quadriken Kegelschnitte Ein Kegelschnitt ist eine Teilmenge K R 2, welche durch eine quadratische Gleichung in zwei Unbestimmten beschrieben werden kann: x K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f =

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Numerische Verfahren der nicht-linearen Optimierung Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Outline Line

Mehr

4 Differenzierbarkeit einer konjugierten Funktion

4 Differenzierbarkeit einer konjugierten Funktion 4 Differenzierbarkeit einer konjugierten Funktion (Eingereicht von Corinna Vits) 4.1 Differenzierbarkeit 1.Ordnung Theorem 4.1.1: Sei f ConvR n strikt konvex. Dann ist int dom und f ist stetig differenzierbar

Mehr

10. Die Berücksichtigung nicht vorzeichenbeschränkter Variablen

10. Die Berücksichtigung nicht vorzeichenbeschränkter Variablen 10. Die Berücksichtigung nicht vorzeichenbeschränkter Variablen Bisher haben wir immer vorausgesetzt, dass alle Variablen eines LOP der Bedingung x i 0 liegen. Im Folgenden wollen wir auch sogenannte freie

Mehr

Diplom VP Informatik/Numerik 9. September 2000 / Seite 1. Aufgabe 1: L-R-Zerlegung, Nachiteration / Ly = b. y = Rx = y.

Diplom VP Informatik/Numerik 9. September 2000 / Seite 1. Aufgabe 1: L-R-Zerlegung, Nachiteration / Ly = b. y = Rx = y. Diplom VP Informatik/Numerik 9 September 2000 / Seite 1 1 Pivotisierung : 2 L-R-Zerlegung von A: 3 Vorwärtseinsetzen: (pivotisierung) Aufgabe 1: L-R-Zerlegung, Nachiteration A A = 4 2 10 2 6 9 2 1 6 L

Mehr

7. Nichtlineare Gleichngssysteme. Problem 7: Sei f : R n R n stetig. Löse f(x) = 0.

7. Nichtlineare Gleichngssysteme. Problem 7: Sei f : R n R n stetig. Löse f(x) = 0. 7. Nichtlineare Gleichngssysteme Problem 7: Sei f : R n R n stetig. Löse f(x) = 0. Das Gleichungssystem f(x) = 0 lässt sich in die Fixpunktgleichung x = φ(x) umschreiben, wobei φ : D R n R n. Beispielsweise

Mehr

Seminar Ausgewählte Kapitel des Operations Research Die Allgegenwärtigkeit von Lagrange (Teil 1)

Seminar Ausgewählte Kapitel des Operations Research Die Allgegenwärtigkeit von Lagrange (Teil 1) Seminar Ausgewählte Kapitel des Operations Research Die Allgegenwärtigkeit von Lagrange (Teil 1) Anna Raaz 21.12.2007 Einführung Die Relaxierung von Lagrange wird in der stochastischen Optimierung meistens

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Vortrag 20: Kurze Vektoren in Gittern

Vortrag 20: Kurze Vektoren in Gittern Seminar: Wie genau ist ungefähr Vortrag 20: Kurze Vektoren in Gittern Kerstin Bauer Sommerakademie Görlitz, 2007 Definition und Problembeschreibung Definition: Gitter Seien b 1,,b k Q n. Dann heißt die

Mehr