Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen

Größe: px
Ab Seite anzeigen:

Download "Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen"

Transkript

1 Kurvendiskussion Ganzrationale Funktion Aufgaben und Klemens Fersch 9. August 0 Inhaltsverzeichnis Ganzrationale Funktion Quadratische Funktionen f x) = ax + bx + c 8. Aufgaben Kubische Funktionen f x) = ax 3 + bx + cx + d 3. Aufgaben Funktionen. Grades f x) = ax + bx 3 + cx + dx + e 5. Aufgaben Funktionen höheren Grades 3 5. Aufgaben Ganzrationale Funktion 373. Terme aufstellen Aufgaben

2 Ganzrationale Funktion Ganzrationale Funktion f x) =, 5 x + 5 x f x) = x x + f 3 x) = x ) 3 f x) = 0, xx + )x ) f 5 x) = 0, 03x + 3) x ) f x) = x + ) f 7 x) = 0, 05x )x ) f 8 x) = x x ) Formen der Polynomfunktion - ganzrationalen Funktion Summendarstellung der Polynomfunktion f x) = a n x n + a n x n + a n x n... + a x + a 0 oder f x) = ax n + bx n + cx n... Die höchste Potenz n) gibt den Grad der Polynomfunktion an. Produkdarstellung faktorisierte Form) der Polynomfunktion Ist der Grad des Polynoms gleich der Anzahl der reelen)nullstellen, kann man die Funktion in faktorisierter Form schreiben. f x) = ax x )x x )x x 3 )... Nullstellen: x, x, x 3... Linearfaktoren: x x ), x x )... a=koeffizient der höchsten Potenz Grad : Lineare Funktion f x) = ax + b Grad : Quadratische Funktion f x) = ax + bx + c f x) = ax x )x x ) Grad 3: Kubische Funktion f x) = ax 3 + bx + cx + d f x) = ax x )x x )x x 3 ) Grad : Biquadratische Funktionen f x) = ax + bx 3 + cx + dx + e f x) = ax x )x x )x x 3 )x x ) Grad 5: f x) = ax 5 + bx + cx 3 + dx + ex + f f x) = ax x )x x )x x 3 )x x )x x 5 ) Summen- in Produktdarstellung f x) = x + 5x = xx ) f x) = x x + = x + ) x ) f x) = 0 x3 3 5 x = 0 x 0 x 3 5 ) = 0 x = 0 0 x 3 5 = 0 x = x 3 = Grad der Funktion = Anzahl der Nullstellen = 3 Faktorisierte Form: f x) = 0, xx + )x ) f 7 x) = 0 x x = 0 u = x u = x 0 u u = 0 u / = + ± ) u = u = x = x = ± x = x = x = x = ± x 3 = x = Faktorisierte Form: f 7 x) = 0 x + )x )x + )x ) Produkt- in Summendarstellung f 3 x) = x )x )x ) = x ) 3 f 3 x) = x 3 x x 8 f 5 x) = 0, xx + )x ) = 0, x x f x) = x + ) = x + x 3 + x + x + f 7 x) = 0, 05x )x ) = 0, 05x x + 5 f 8 x) = x x ) = x x

3 Ganzrationale Funktion Definitions- und Wertebereich Definitionsbereich D = R Wertebereich - höchster Exponent ungerade: W = R - höchster Exponent gerade: W = [absoluter Tiefpunkt; [ W =] ;absoluter Hochpunkt] f x) = x + 5x absoluter Hochpunkt: /5) höchster Exponent gerade) D = R W =], 5[ f x) = x x + höchster Exponent 3 ungerade Zahl) D = R W = R f 5 x) = 0, x x D = R W = R f 7 x) = 0, 05x x + 5 absoluter Tiefpunkt aus der Kurvendiskussion D = R W = [ 5, [ Symmetrie Punktsymmetrie zum Ursprung: f x) = f x) f x) hat nur ungerade Exponenten Achsensymmetrie zur y-achse: f x) = f x) f x) hat nur gerade Exponenten f x) = x) + 5 x) keine Symmetrie zur y-achse und zum Ursprung f x) = x) x) + keine Symmetrie zur y-achse und zum Ursprung f x) = 0, x x f x) = 0, x) x) ) f x) = 0, x x f x) = f x) Symmetrie zum Ursprung f 7 x) = 0, 05x x + 5 f 7 x) = 0 x) x) f 7 x) = 0 x x f 7 x) = f x) Symmetrie zur y-achse 3

4 Ganzrationale Funktion Schnittpunkte mit der x-achse -Nullstellen Funktionsterm gleich Null setzen und die Gleichung lösen. siehe Algebra-Gleichungen) f x) = 0 ax n + bx n + cx n... = 0 höchster Exponent ungerade Anzahl der Nullstellen Grad des Polynoms höchster Exponent gerade 0 Anzahl der Nullstellen Grad des Polynoms Faktorisierte Polynomfunktion Nullstellen aus faktorisierten Polynom ablesen. ax x )x x )x x 3 )... = 0 Nullstellen: x, x, x 3... Nullstellen aus faktorisierten Polynom ablesen. f 3 x) = x ) 3 x 3 = 3-fache Nullstelle f 5 x) = 0, 03x + 3) x ) x = 3 -fache Nullstelle x 3 = -fache Nullstelle Funktionsterm gleich Null setzen. f x) = x + 5x = 0 x x + 5) = 0 x = 0 x + 5 = 0 x + 5 = 0 x = x = 0 x = Faktorisierte Form: f x) = xx ) f x) = x 3 + 3x + = 0 Nullstelle für Polynmomdivision erraten:x = x 3 +3x + ) : x + ) = x + x + x 3 x ) x +3x + x +x) x + x +) 0 x + x + = 0 x / = ± ) x ) = x 3 = Faktorisierte Form: f x) = x + ) x ) f x) = 0 x3 3 5 x = 0 x ) = 0 x = 0 0 x 3 5 = 0 x = x 3 = Grad der Funktion = Anzahl der Nullstellen = 3 Faktorisierte Form: f 5 x) = 0, xx + )x ) f 7 x) = 0 x x = 0 u = x u = x 0 u u = 0 u / = + ± ) u = u = x = x = ± x = x = x = x = ± x 3 = x = Faktorisierte Form: f 7 x) = 0 x + )x )x + )x )

5 Ganzrationale Funktion Graph oberhalb/unterhalb der x-achse Bei ganzrationalen Funktionen kann sich das Vorzeichen nur an den Nullstellen ändern. Einen beliebigen Wert kleiner bzw. größer als die Nullstelle wählen und das Vorzeichen des Funktionswerts in die Tabelle eintragen. Vorzeichentabelle mit fx) x < x < x f x) + 0 Graph oberhalb 0 unterhalb + fx)>0 Graph oberhalb der x-achse - fx)<0 Graph unterhalb der x-achse f x) = x + 5x x < 0 < x < < x f x) x ]0; [ f x) > 0 oberhalb der x-achse x ] ; 0[ ]; [ f x) < 0 unterhalb der x-achse f x) = x x + x < < x < < x f x) x ] ; [ ] ; [ f x) > 0 oberhalb der x-achse x ]; [ f x) < 0 unterhalb der x-achse Faktorisierte Form: f 5 x) = 0, xx + )x ) Nullstellen:x = 0 x = x 3 = 5 < f 5 5) =, 5 x < < x < 0 < x < < x f x) x ] ; 0[ ]; [ f x) > 0 oberhalb der x-achse x ] ; [ ]0; [ f x) < 0 unterhalb der x-achse Grenzwert - Verhalten im Unendlichen f x) = a n x n + a n x n + a n x n... + a x + a 0 lim f x) = ± lim f x) = ± x x Das Vorzeichen des Glieds mit der höchsten Potenz und der Grad des Polynoms bestimmen das Vorzeichen des Grenzwerts. Grenzwert gegen plus Unendlich a n Grad Grenzwert + gerade lim a n n = x + ungerade lim a n n = x - gerade lim a n n = x - ungerade lim a n n = x Grenzwert gegen minus Unendlich a n Grad Grenzwert + gerade lim n ) n = x + ungerade lim n ) n = x - gerade lim n ) n = x - ungerade lim n ) n = x f x) = x + 5x lim x f x) = [ ] = lim x f x) = [ ) ] = f x) = x x + lim x f x) = [ 3 ] = lim x f x) = [ ) 3 ] = 5

6 Ganzrationale Funktion Ableitung f x) = a n x n + a n x n... + a x + a x + a 0 Die Ableitungen bildet man durch: Exponent vorziehen und vom Exponenten abziehen. Die erste Ableitung f x) gibt die Steigung der Funktion an der Stelle x an. Die zweite Ableitung f x) gibt die Krümmung der Funktion an der Stelle x an. f x) = a n n x n + a n n ) x n... + a f x) = x + 5x = xx ) f x) = x + 5 f x) = f x) = 0 f x) = x 3 + 3x + = x + ) x ) f x) = 3x + 3 = 3x + )x ) f x) = x = x x) = f x + a f x) = ax n f x) = nax n Grad : Lineare Funktion f x) = ax + b f x) = a Grad : Quadratische Funktion f x) = ax + bx + c Grad 3: Kubische Funktion f x) = ax 3 + bx + cx + d f x) = ax + b Grad : Biquadratische Funktionen f x) = ax + bx 3 + cx + dx + e f x) = ax 3 + 3bx + cx + d f x) = 3ax + bx + c Extremwerte und die.ableitung In den Extremwerten hat fx) eine horizontale Tangente HT). f x) = 0 Notwendige Bedingung) Die Nullstellen der. Ableitung bestimmen x 0, x..). In diesen Nullstellen x 0, x..) kann die Funktion einen Hochpunkt, Tiefpunkt oder Terrassenpunkt Sattelpunkt) besitzen. Einsetzen der Nullstellen x 0, x.. in die. Ableitung Hinreichende Bedingung) f x 0 ) > 0LK) Tiefpunkt Minimum) bei x 0 f x 0 ) < 0RK) Hochpunkt Maximum) bei x 0 f x 0 ) = 0 f x 0 ) = 0 Terrassenpunkt f x) = x + 5 = 0 x + 5 = 0 / 5 x = 5 / : x = 5 x = f ) < 0 Hochpunkt: /5) f x) = 3x + 3 = 0 3x + 3 = 0 / 3 3x = 3 / : 3) x = 3 3 x = ± x = x = f ) = > 0 Tiefpunkt: /0) f ) = ) < 0 Hochpunkt: /) f )

7 Ganzrationale Funktion Extremwerte und das Monotonieverhalten Extremwerte sind Hochpunkte Maxima) bzw. Tiefpunkte Minima) der Funktion. In den Extremwerten hat fx) eine horizontale Tangente HT). f x) = 0 Notwendige Bedingung) Die Nullstellen der. Ableitung bestimmen x 0, x..). In diesen Nullstellen x 0, x..) kann die Funktion einen Hochpunkt, Tiefpunkt oder Terrassenpunkt Sattelpunkt) besitzen. Zur Unterscheidung werden die Nullstellen in die Vorzeichentabelle eintragen. Einen Wert kleiner bzw. größer als die Nullstelle wählen und das Vorzeichen von f x) in die Tabelle eintragen. Hinreichende Bedingung) Hochpunkt HP) Monotonoieverhalten ändert sich von streng monoton steigend sms) nach streng monoton fallend smf). Vorzeichenwechsel VZW) der.ableitung f x) von Plus nach Minus. x < x < x f x) + 0 Graph sms HP smf Tiefpunkt TP) Monotonoieverhalten ändert sich von streng monoton fallend smf) nach streng monoton steigend sms). Vorzeichenwechsel VZW) der.ableitung f x) von Minus nach Plus. x < x < x f x) 0 + Graph smf TP sms f x) = x + 5 x < < x f x) + 0 streng monoton steigend x ] ; [ f x) > 0 streng monoton fallend x ]; [ f x) < 0 f x) = 3x + 3 x < < x < < x f x) streng monoton steigend x ] ; [ f x) > 0 streng monoton fallend x ] ; [ ]; [ f x) < 0 Terrassenpunkt TEP) Monotonoieverhalten ändert sich nicht. Kein Vorzeichenwechsel VZW) der.ableitung. x < x < x f x) Graph sms TEP sms x < x < x f x) 0 Graph smf TEP smf Die Ränder des Definitionsbereichs Definitionslücken) müssen in die Tabelle mit eingetragen werden. Wendepunkte und 3.Ableitung Im Wendepunkt und im Flachpunkt ist das Krümmungsverhalten gleich Null. f x) = 0 Notwendige Bedingung) Die Nullstellen der. Ableitung bestimmen x 0, x..). Einsetzen der Nullstellen x 0, x.. in die 3. Ableitung Hinreichende Bedingung) f x 0 ) = 0 Wendepunkt f x) = 0 kein Wendepunkt f x) = x = 0 x = 0 f 0) = f 0) = 0 Wendepunkt: 0/) 7

8 Quadratische Funktionen f x) = ax + bx + c Wendepunkte und das Krümmungsverhalten Im Wendepunkt und im Flachpunkt ist das Krümmungsverhalten gleich Null. f x) = 0 Notwendige Bedingung) Die Nullstellen der. Ableitung bestimmen x 0, x..). Zur Unterscheidung zwischen Wendepunkt und Flachpunkt werden die Nullstellen in die Vorzeichentabelle eintragen. Hinreichende Bedingung) Einen Wert kleiner bzw. größer als die Nullstelle wählen und das Vorzeichen von f x) in die Tabelle eintragen. Wendepunkt WP) Das Krümmungsverhalten ändert sich von rechtsgekrümmt RK) nach linksgekrümmt LK) oder von linksgekrümmt nach rechtsgekrümmt. Vorzeichenwechsel VZW) der.ableitung f x) von Plus nach Minus oder von Minus nach Plus. x < x < x f x) + 0 Graph LK WP RK Flachpunkt FP) x < x < x f x) 0 + Graph RK WP LK Krümmungsverhalten ändert sich nicht Kein Vorzeichenwechsel VZW) der.ableitung x < x < x f x) Graph LK FP LK x < x < x f x) 0 Graph RK FP RK Die Ränder des Definitionsbereichs Definitionslücken) müssen in die Tabelle mit eingetragen werden. f x) = x x < 0 < x f x) + 0 x ] ; 0[ f x) > 0 linksgekrümmt x ]0; [ f x) < 0 rechtsgekrümmt Stammfunktion von fx) Stammfunktionen bildet man durch: zum Exponent addieren, durch den Exponenten dividieren. f x) = ax n F x) = n+ axn+ + c Unbestimmtes Integral: Fx) = f x) dx = Fx) + c F x) = x + 5x)dx = 5 x3 + x + c F x) = x 3 + 3x + ) dx = x + x + x + c Bestimmtes Integral A = x f x) dx = [F x)] x x x = Fx ) Fx ) A = ) 0 x + 5x dx = [ 5 x3 + x] 0 = ) ) 0) = 3 3 0) = 3 3 A = x 3 + 3x + ) [ ] dx = x + x + x ) ) = + + ) + ) + ) ) = ) 3 = 3 Quadratische Funktionen f x) = ax + bx + c. Aufgaben 8

9 Quadratische Funktionen f x) = ax + bx + c Aufgaben ) f x) = x ) f x) = x 3) f x) = x + ) f x) = x 8x 5) f x) = x ) f x) = 3 x x + 3 7) f x) = x 3 8) f x) = x + 9) f x) = x 0) f x) = 3 x + x ) f x) = x x + 7 ) f x) = x + x 7 3) f x) = x + x ) f x) = x + x + 5 5) f x) = x + 3x + ) f x) = x + x 7) f x) = 3 x + x + 5 8) f x) = 8 x + 3 9) f x) = 3 8 x 3 8 x ) f x) = x + 5x ) f x) = 3 x 3x ) f x) = 5 9 x 5 3) f x) = x + x ) f x) = 5 x x + 5 5) f x) = 5 9 x 5 x ) f x) = 8 x + x ) f x) = 0 x ) f x) = 9 x + 9 x ) f x) = 9 x 9 x ) f x) = 7 9 x + 3 x 3) f x) = 3 x x 3) f x) = 5 9 x 3 3 x 33) f x) = x 0x 5 3) f x) = x 8x 35) f x) = x + x + 3) f x) = 7 8 x + 3 x 37) f x) = 0 8 x + 9 x 38) f x) = 5 x x

10 Quadratische Funktionen f x) = ax + bx + c. Aufgabe ) Funktion/Ableitungen/Stammfunktion f x) = x f x) = x f x) = Fx) = x )dx = 3 x3 + c Definitions- und Wertebereich: D = R W = [0, [ Grenzwerte: f x) = x ) lim x f x) = [ ] = lim x f x) = [ ) ] = Symmetrie zum Ursprung oder zur y-achse f x) = x) f x) = x f x) = f x) Symmetrie zur y-achse: Nullstellen / Schnittpunkt mit der x-achse: f x) = x = 0 x = 0 x = 0 x = 0; -fache Nullstelle Vorzeichentabelle: x < 0 < x f x) x ] ; 0[ ]0; [ f x) > 0 oberhalb der x-achse Extremwerte/Hochpunkte/Tiefpunkte: f x) = x = 0 x = 0 x = 0 x = 0; -fache Nullstelle f 0) = > 0 Tiefpunkt:0/0) Monotonie/ streng monoton steigend sms)/streng monoton fallend smf) x < 0 < x f x) 0 + x ]0; [ f x) > 0 streng monoton steigend x ] ; 0[ f x) < 0 streng monoton fallend Eingeschlossene Fläche mit der x-achse keine Fläche 0

11 Quadratische Funktionen f x) = ax + bx + c Funktionsgraph und Wertetabelle f x) = x Ableitung von f x)

12 Quadratische Funktionen f x) = ax + bx + c Aufgabe ) Funktion/Ableitungen/Stammfunktion f x) = x f x) = x f x) = Fx) = x )dx = x3 + c Definitions- und Wertebereich: D = R W =], 0] Grenzwerte: f x) = x ) lim x f x) = [ ] = lim x f x) = [ ) ] = Symmetrie zum Ursprung oder zur y-achse f x) = x) f x) = x f x) = f x) Symmetrie zur y-achse: Nullstellen / Schnittpunkt mit der x-achse: f x) = x = 0 x = 0 x = 0 x = 0; -fache Nullstelle Vorzeichentabelle: x < 0 < x f x) 0 x ] ; 0[ ]0; [ f x) < 0 unterhalb der x-achse Extremwerte/Hochpunkte/Tiefpunkte: f x) = x = 0 x = 0 x = 0 x = 0; -fache Nullstelle f 0) = f 0) < 0 Hochpunkt:0/0) Monotonie/ streng monoton steigend sms)/streng monoton fallend smf) x < 0 < x f x) + 0 x ] ; 0[ f x) > 0 streng monoton steigend x ]0; [ f x) < 0 streng monoton fallend Eingeschlossene Fläche mit der x-achse keine Fläche

13 Quadratische Funktionen f x) = ax + bx + c Funktionsgraph und Wertetabelle f x) = x Ableitung von f x) x 8 f x) f x) f x)

14 Quadratische Funktionen f x) = ax + bx + c Funktion/Ableitungen/Stammfunktion f x) = x + = x + 3, )x 3, ) f x) = x f x) = Fx) = x + )dx = x3 + x + c Aufgabe 3) Definitions- und Wertebereich: D = R W =], ] Grenzwerte: f x) = x + x ) lim f x) = [ x ] = lim f x) = [ x ) ] = Symmetrie zum Ursprung oder zur y-achse f x) = x) + f x) = x + f x) = f x) Symmetrie zur y-achse: Nullstellen / Schnittpunkt mit der x-achse: f x) = x + = 0 x + = 0 / ) x = / : x = x = ± x = 3, x = 3, x = 3, ; -fache Nullstelle x = 3, ; -fache Nullstelle Vorzeichentabelle: x < 3, < x < 3, < x f x) x ] 3, ; 3, [ f x) > 0 oberhalb der x-achse x ] ; 3, [ ]3, ; [ f x) < 0 unterhalb der x-achse Extremwerte/Hochpunkte/Tiefpunkte: f x) = x = 0 x = 0 x = 0 x 3 = 0; -fache Nullstelle f 0) = f 0) < 0 Hochpunkt:0/) Monotonie/ streng monoton steigend sms)/streng monoton fallend smf) x < 0 < x f x) + 0 x ] ; 0[ f x) > 0 streng monoton steigend x ]0; [ f x) < 0 streng monoton fallend Eingeschlossene Fläche mit der x-achse 3, A = ) [ 3, x + dx = ] 3, x3 + x 3, = ) 3, 3 + 3, ) 3, )3 + 3, )

15 Quadratische Funktionen f x) = ax + bx + c = 3, 9) 3, 9) = 7, 7 Funktionsgraph und Wertetabelle f x) = x + Ableitung von f x) x 8 f x) f x) f x)

16 Quadratische Funktionen f x) = ax + bx + c Aufgabe ) Funktion/Ableitungen/Stammfunktion f x) = x 8x = x + )x f x) = x 8 f x) = Fx) = x 8x)dx = 3 x3 x + c Definitions- und Wertebereich: D = R W =], 8] Grenzwerte: f x) = x 8 x ) lim f x) = [ x ] = lim f x) = [ x ) ] = Symmetrie zum Ursprung oder zur y-achse f x) = x) 8 x) keine Symmetrie zur y-achse und zum Ursprung Nullstellen / Schnittpunkt mit der x-achse: f x) = x 8x = 0 x x 8) = 0 x = 0 x 8 = 0 x 8 = 0 / + 8 x = 8 / : ) x = 8 x = x = ; -fache Nullstelle x = 0; -fache Nullstelle Vorzeichentabelle: x < < x < 0 < x f x) x ] ; 0[ f x) > 0 oberhalb der x-achse x ] ; [ ]0; [ f x) < 0 unterhalb der x-achse Extremwerte/Hochpunkte/Tiefpunkte: f x) = x 8 = 0 x 8 = 0 / + 8 x = 8 / : ) x = 8 x = x 3 = ; -fache Nullstelle f ) = f ) < 0 Hochpunkt: /8) Monotonie/ streng monoton steigend sms)/streng monoton fallend smf) x < < x f x) + 0 x ] ; [ f x) > 0 streng monoton steigend x ] ; [ f x) < 0 streng monoton fallend Eingeschlossene Fläche mit der x-achse 0 ) [ A = x 8x dx = ] 0 3 x3 x

17 Quadratische Funktionen f x) = ax + bx + c = 3 ) 03 0 = 0) ) = ) )3 ) Funktionsgraph und Wertetabelle f x) = x 8 x Ableitung von f x)

18 Quadratische Funktionen f x) = ax + bx + c Funktion/Ableitungen/Stammfunktion f x) = x = x +, 83)x, 83) f x) = x f x) = Fx) = x )dx = x3 x + c Aufgabe 5) Definitions- und Wertebereich: D = R W = [ ), [ Grenzwerte: f x) = x x ) lim f x) = [ x ] = lim f x) = [ x ) ] = Symmetrie zum Ursprung oder zur y-achse f x) = x) f x) = x f x) = f x) Symmetrie zur y-achse: Nullstellen / Schnittpunkt mit der x-achse: f x) = x = 0 x = 0 / + x = / : x = x = ± 8 x =, 83 x =, 83 x =, 83; -fache Nullstelle x =, 83; -fache Nullstelle Vorzeichentabelle: x <, 83 < x <, 83 < x f x) x ] ;, 83[ ], 83; [ f x) > 0 oberhalb der x-achse x ], 83;, 83[ f x) < 0 unterhalb der x-achse Extremwerte/Hochpunkte/Tiefpunkte: f x) = x = 0 x = 0 x = 0 x 3 = 0; -fache Nullstelle f 0) = > 0 Tiefpunkt:0/ ) Monotonie/ streng monoton steigend sms)/streng monoton fallend smf) x < 0 < x f x) 0 + x ]0; [ f x) > 0 streng monoton steigend x ] ; 0[ f x) < 0 streng monoton fallend Eingeschlossene Fläche mit der x-achse,83 ) [ ],83 A =,83 x dx = x3 x ),83 ) =, 833, 83, 83)3, 83) 8

19 Quadratische Funktionen f x) = ax + bx + c = 3, 77) 3, 77) = 7, 5 Funktionsgraph und Wertetabelle f x) = x Ableitung von f x) x 8 f x) f x) f x)

20 Quadratische Funktionen f x) = ax + bx + c Funktion/Ableitungen/Stammfunktion f x) = 3 x x + 3 = 3 x + 7, )x, ) f x) = 3 x f x) = 3 Fx) = 3 x x + 3)dx = 9 x3 x + 3x + c Aufgabe ) Definitions- und Wertebereich: D = R W =], ] Grenzwerte: f x) = x 3 x + 3 x ) lim f x) = [ x 3 ] = lim f x) = [ x 3 ) ] = Symmetrie zum Ursprung oder zur y-achse f x) = 3 x) x) + 3 keine Symmetrie zur y-achse und zum Ursprung Nullstellen / Schnittpunkt mit der x-achse: f x) = 3 x x + 3 = 0 3 x x + 3 = 0 + ± ) x / = ) 3 x / = + ± 8 3 ±, 83 x / = 3 +, 83 x = 3 x = ) 3 3, 83 3 x = 7, x =, x = 7, ; -fache Nullstelle x =, ; -fache Nullstelle Vorzeichentabelle: x < 7, < x <, < x f x) x ] 7, ;, [ f x) > 0 oberhalb der x-achse x ] ; 7, [ ], ; [ f x) < 0 unterhalb der x-achse Extremwerte/Hochpunkte/Tiefpunkte: f x) = 3 x = 0 3 x = 0 / + 3 x = / : ) 3 x = 3 x = 3 x 3 = 3; -fache Nullstelle f 3) = 3 f 3) < 0 Hochpunkt: 3/) 0

21 Quadratische Funktionen f x) = ax + bx + c Monotonie/ streng monoton steigend sms)/streng monoton fallend smf) x < 3 < x f x) + 0 x ] ; 3[ f x) > 0 streng monoton steigend x ] 3; [ f x) < 0 streng monoton fallend Eingeschlossene Fläche mit der x-achse, A = ) [ 7, 3 x x + 3 dx = ], 9 x3 x + 3x 7, = ) 9, 3, + 3, ) 9 7, )3 7, ) + 3 7, ) =, 97) 3) = 33, 9 Funktionsgraph und Wertetabelle f x) = 3 x x + 3 Ableitung von f x) 8 8

22 Quadratische Funktionen f x) = ax + bx + c

23 Quadratische Funktionen f x) = ax + bx + c Funktion/Ableitungen/Stammfunktion f x) = x 3 = x + 3, )x 3, ) f x) = x f x) = Fx) = x 3)dx = x3 3x + c Aufgabe 7) Definitions- und Wertebereich: D = R W = [ 3), [ Grenzwerte: f x) = x 3 x ) lim f x) = [ x ] = lim f x) = [ x ) ] = Symmetrie zum Ursprung oder zur y-achse f x) = x) 3 f x) = x 3 f x) = f x) Symmetrie zur y-achse: Nullstellen / Schnittpunkt mit der x-achse: f x) = x 3 = 0 x 3 = 0 / + 3 x = 3 / : x = 3 x = ± x = 3, x = 3, x = 3, ; -fache Nullstelle x = 3, ; -fache Nullstelle Vorzeichentabelle: x < 3, < x < 3, < x f x) x ] ; 3, [ ]3, ; [ f x) > 0 oberhalb der x-achse x ] 3, ; 3, [ f x) < 0 unterhalb der x-achse Extremwerte/Hochpunkte/Tiefpunkte: f x) = x = 0 x = 0 x = 0 x 3 = 0; -fache Nullstelle f 0) = > 0 Tiefpunkt:0/ 3) Monotonie/ streng monoton steigend sms)/streng monoton fallend smf) x < 0 < x f x) 0 + x ]0; [ f x) > 0 streng monoton steigend x ] ; 0[ f x) < 0 streng monoton fallend Eingeschlossene Fläche mit der x-achse 3, ) [ ] 3, A = 3, x 3 dx = x3 3x ) 3, ) = 3, 3 3 3, 3, )3 3 3, ) 3

24 Quadratische Funktionen f x) = ax + bx + c =, 93), 93) = 3, 9 Funktionsgraph und Wertetabelle f x) = x 3 Ableitung von f x) x 8 f x) f x) f x)

25 Quadratische Funktionen f x) = ax + bx + c Aufgabe 8) Funktion/Ableitungen/Stammfunktion f x) = x + = x +, )x, ) f x) = x f x) = Fx) = x + )dx = 3 x3 + x + c Definitions- und Wertebereich: D = R W =], ] Grenzwerte: f x) = x + x ) lim f x) = [ x ] = lim f x) = [ x ) ] = Symmetrie zum Ursprung oder zur y-achse f x) = x) + f x) = x + f x) = f x) Symmetrie zur y-achse: Nullstellen / Schnittpunkt mit der x-achse: f x) = x + = 0 x + = 0 / x = / : ) x = x = ± x =, x =, x =, ; -fache Nullstelle x =, ; -fache Nullstelle Vorzeichentabelle: x <, < x <, < x f x) x ], ;, [ f x) > 0 oberhalb der x-achse x ] ;, [ ], ; [ f x) < 0 unterhalb der x-achse Extremwerte/Hochpunkte/Tiefpunkte: f x) = x = 0 x = 0 x = 0 x 3 = 0; -fache Nullstelle f 0) = f 0) < 0 Hochpunkt:0/) Monotonie/ streng monoton steigend sms)/streng monoton fallend smf) x < 0 < x f x) + 0 x ] ; 0[ f x) > 0 streng monoton steigend x ]0; [ f x) < 0 streng monoton fallend Eingeschlossene Fläche mit der x-achse, ) [ A = x + dx = ],, 3 x3 + x, = ) 3, 3 +, ) 3, )3 +, ) = 3, 77) 3, 77) = 7, 5 5

26 Quadratische Funktionen f x) = ax + bx + c Funktionsgraph und Wertetabelle f x) = x + Ableitung von f x)

27 Quadratische Funktionen f x) = ax + bx + c Aufgabe 9) Funktion/Ableitungen/Stammfunktion f x) = x = x +, )x, ) f x) = x f x) = Fx) = x )dx = 3 x3 x + c Definitions- und Wertebereich: D = R W = [ ), [ Grenzwerte: f x) = x x ) lim f x) = [ x ] = lim f x) = [ x ) ] = Symmetrie zum Ursprung oder zur y-achse f x) = x) f x) = x f x) = f x) Symmetrie zur y-achse: Nullstellen / Schnittpunkt mit der x-achse: f x) = x = 0 x = 0 / + x = / : x = x = ± x =, x =, x =, ; -fache Nullstelle x =, ; -fache Nullstelle Vorzeichentabelle: x <, < x <, < x f x) x ] ;, [ ], ; [ f x) > 0 oberhalb der x-achse x ], ;, [ f x) < 0 unterhalb der x-achse Extremwerte/Hochpunkte/Tiefpunkte: f x) = x = 0 x = 0 x = 0 x 3 = 0; -fache Nullstelle f 0) = > 0 Tiefpunkt:0/ ) Monotonie/ streng monoton steigend sms)/streng monoton fallend smf) x < 0 < x f x) 0 + x ]0; [ f x) > 0 streng monoton steigend x ] ; 0[ f x) < 0 streng monoton fallend Eingeschlossene Fläche mit der x-achse, ) [ ], A = x dx =, 3 x3 x ), ) = 3, 3, 3, )3, ) =, 89), 89) = 3,

28 Quadratische Funktionen f x) = ax + bx + c Funktionsgraph und Wertetabelle f x) = x Ableitung von f x)

29 Quadratische Funktionen f x) = ax + bx + c Aufgabe 0) Funktion/Ableitungen/Stammfunktion f x) = 3 x + x = 3 xx ) f x) = 3 x + f x) = 3 Fx) = 3 x + x)dx = 9 x3 + x + c Definitions- und Wertebereich: D = R W =], 3] Grenzwerte: f x) = x 3 + x ) lim f x) = [ x 3 ] = lim f x) = [ x 3 ) ] = Symmetrie zum Ursprung oder zur y-achse f x) = 3 x) + x) keine Symmetrie zur y-achse und zum Ursprung Nullstellen / Schnittpunkt mit der x-achse: f x) = 3 x + x = 0 x 3 x + ) = 0 x = 0 3 x + = 0 3 x + = 0 / ) 3 x = / : 3 x = 3 x = x = 0; -fache Nullstelle x = ; -fache Nullstelle Vorzeichentabelle: x < 0 < x < < x f x) x ]0; [ f x) > 0 oberhalb der x-achse x ] ; 0[ ]; [ f x) < 0 unterhalb der x-achse Extremwerte/Hochpunkte/Tiefpunkte: f x) = 3 x + = 0 3 x + = 0 / 3 x = / : ) 3 x = 3 x = 3 x 3 = 3; -fache Nullstelle f 3) = 3 f 3) < 0 Hochpunkt:3/3) Monotonie/ streng monoton steigend sms)/streng monoton fallend smf) x < 3 < x f x) + 0 x ] ; 3[ f x) > 0 streng monoton steigend x ]3; [ f x) < 0 streng monoton fallend 9

30 Quadratische Funktionen f x) = ax + bx + c Eingeschlossene Fläche mit der x-achse A = ) [ 0 3 x + x dx = ] 9 x3 + x 0 = 9 ) ) = ) 0) = Funktionsgraph und Wertetabelle f x) = 3 x + x Ableitung von f x)

31 Quadratische Funktionen f x) = ax + bx + c

32 Quadratische Funktionen f x) = ax + bx + c Aufgabe ) Funktion/Ableitungen/Stammfunktion f x) = x x + 7 f x) = x f x) = Fx) = x x + 7)dx = 3 x3 x + 7x + c Definitions- und Wertebereich: D = R W = [3, [ Grenzwerte: f x) = x x + 7 x ) lim f x) = [ x ] = lim f x) = [ x ) ] = Symmetrie zum Ursprung oder zur y-achse f x) = x) x) + 7 keine Symmetrie zur y-achse und zum Ursprung Nullstellen / Schnittpunkt mit der x-achse: f x) = x x + 7 = 0 x x + 7 = 0 x / = + ± ) 7 x / = + ± Diskriminante negativ keine Lösung Vorzeichentabelle: kein Vorzeichenwechsel x R f x) > 0 oberhalb der x-achse Extremwerte/Hochpunkte/Tiefpunkte: f x) = x = 0 x = 0 / + x = / : x = x = x = ; -fache Nullstelle f ) = > 0 Tiefpunkt:/3) Monotonie/ streng monoton steigend sms)/streng monoton fallend smf) x < < x f x) 0 + x ]; [ f x) > 0 streng monoton steigend x ] ; [ f x) < 0 streng monoton fallend Eingeschlossene Fläche mit der x-achse keine Fläche 3

33 Quadratische Funktionen f x) = ax + bx + c Funktionsgraph und Wertetabelle f x) = x x + 7 Ableitung von f x)

34 Quadratische Funktionen f x) = ax + bx + c Funktion/Ableitungen/Stammfunktion f x) = x + x 7 f x) = x + f x) = Fx) = x + x 7)dx = 3 x3 + x 7x + c Aufgabe ) Definitions- und Wertebereich: D = R W =], 3)] Grenzwerte: f x) = x + x 7 x ) lim f x) = [ x ] = lim f x) = [ x ) ] = Symmetrie zum Ursprung oder zur y-achse f x) = x) + x) 7 keine Symmetrie zur y-achse und zum Ursprung Nullstellen / Schnittpunkt mit der x-achse: f x) = x + x 7 = 0 x + x 7 = 0 x / = ± ) 7) ) x / = ± Diskriminante negativ keine Lösung Vorzeichentabelle: kein Vorzeichenwechsel x R f x) < 0 unterhalb der x-achse Extremwerte/Hochpunkte/Tiefpunkte: f x) = x + = 0 x + = 0 / x = / : ) x = x = x = ; -fache Nullstelle f ) = f ) < 0 Hochpunkt:/ 3) Monotonie/ streng monoton steigend sms)/streng monoton fallend smf) x < < x f x) + 0 x ] ; [ f x) > 0 streng monoton steigend x ]; [ f x) < 0 streng monoton fallend Eingeschlossene Fläche mit der x-achse keine Fläche 3

35 Quadratische Funktionen f x) = ax + bx + c Funktionsgraph und Wertetabelle f x) = x + x 7 Ableitung von f x)

36 Quadratische Funktionen f x) = ax + bx + c Aufgabe 3) Funktion/Ableitungen/Stammfunktion f x) = x + x = x + )x f x) = x + f x) = Fx) = x + x)dx = 3 x3 + x + c Definitions- und Wertebereich: D = R W = [ ), [ Grenzwerte: f x) = x + x ) lim f x) = [ x ] = lim f x) = [ x ) ] = Symmetrie zum Ursprung oder zur y-achse f x) = x) + x) keine Symmetrie zur y-achse und zum Ursprung Nullstellen / Schnittpunkt mit der x-achse: f x) = x + x = 0 xx + ) = 0 x = 0 x + = 0 x + = 0 / x = / : x = x = x = ; -fache Nullstelle x = 0; -fache Nullstelle Vorzeichentabelle: x < < x < 0 < x f x) x ] ; [ ]0; [ f x) > 0 oberhalb der x-achse x ] ; 0[ f x) < 0 unterhalb der x-achse Extremwerte/Hochpunkte/Tiefpunkte: f x) = x + = 0 x + = 0 / x = / : x = x = x 3 = ; -fache Nullstelle f ) = > 0 Tiefpunkt: / ) Monotonie/ streng monoton steigend sms)/streng monoton fallend smf) x < < x f x) 0 + x ] ; [ f x) > 0 streng monoton steigend x ] ; [ f x) < 0 streng monoton fallend Eingeschlossene Fläche mit der x-achse 0 ) [ ] 0 A = x + x dx = 3 x3 + x ) ) = )3 + ) 3

37 Quadratische Funktionen f x) = ax + bx + c = 0) ) = 3 3 Funktionsgraph und Wertetabelle f x) = x + x Ableitung von f x)

38 Quadratische Funktionen f x) = ax + bx + c Funktion/Ableitungen/Stammfunktion f x) = x + x + 5 = x +, 7)x 5, 7) f x) = x + f x) = Fx) = x + x + 5)dx = x3 + x + 5x + c Aufgabe ) Definitions- und Wertebereich: D = R W =], 7] Grenzwerte: f x) = x + x + 5 x ) lim f x) = [ x ] = lim f x) = [ x ) ] = Symmetrie zum Ursprung oder zur y-achse f x) = x) + x) + 5 keine Symmetrie zur y-achse und zum Ursprung Nullstellen / Schnittpunkt mit der x-achse: f x) = x + x + 5 = 0 x + x + 5 = 0 ) ± 5 x / = ) x / = ± ± 3, 7 x / = + 3, 7 3, 7 x = x = x =, 7 x = 5, 7 x =, 7; -fache Nullstelle x = 5, 7; -fache Nullstelle Vorzeichentabelle: x <, 7 < x < 5, 7 < x f x) x ], 7; 5, 7[ f x) > 0 oberhalb der x-achse x ] ;, 7[ ]5, 7; [ f x) < 0 unterhalb der x-achse Extremwerte/Hochpunkte/Tiefpunkte: f x) = x + = 0 x + = 0 / x = / : ) x = x = x 3 = ; -fache Nullstelle f ) = f ) < 0 Hochpunkt:/7) Monotonie/ streng monoton steigend sms)/streng monoton fallend smf) x < < x f x)

39 Quadratische Funktionen f x) = ax + bx + c x ] ; [ f x) > 0 streng monoton steigend x ]; [ f x) < 0 streng monoton fallend Eingeschlossene Fläche mit der x-achse 5,7 A = ) [,7 x + x + 5 dx = ] 5,7 x3 + x + 5x,7 = ) 5, , , 7 ), 7)3 +, 7) + 5, 7) = 30, ), 79) = 3, 9 Funktionsgraph und Wertetabelle f x) = x + x + 5 Ableitung von f x)

40 Quadratische Funktionen f x) = ax + bx + c

41 Quadratische Funktionen f x) = ax + bx + c Funktion/Ableitungen/Stammfunktion f x) = x + 3x + = x + 0, 85)x, 35) f x) = x + 3 f x) = Fx) = x + 3x + )dx = 3 x3 + x + x + c Aufgabe 5) Definitions- und Wertebereich: D = R W =], 5 8 ] Grenzwerte: f x) = x + 3 x + x ) lim f x) = [ x ] = lim f x) = [ x ) ] = Symmetrie zum Ursprung oder zur y-achse f x) = x) + 3 x) + keine Symmetrie zur y-achse und zum Ursprung Nullstellen / Schnittpunkt mit der x-achse: f x) = x + 3x + = 0 x + 3x + = 0 x / = 3 ± 3 ) ) x / = 3 ± 3 ±, x / = 3 +, 3, x = x = x = 0, 85 x =, 35 x = 0, 85; -fache Nullstelle x =, 35; -fache Nullstelle Vorzeichentabelle: x < 0, 85 < x <, 35 < x f x) x ] 0, 85;, 35[ f x) > 0 oberhalb der x-achse x ] ; 0, 85[ ], 35; [ f x) < 0 unterhalb der x-achse Extremwerte/Hochpunkte/Tiefpunkte: f x) = x + 3 = 0 x + 3 = 0 / 3 x = 3 / : ) x = 3 x = 3 x 3 = 3 ; -fache Nullstelle f 3 ) = f 3 ) < 0 Hochpunkt: 3 /5 8 ) Monotonie/ streng monoton steigend sms)/streng monoton fallend smf)

42 Quadratische Funktionen f x) = ax + bx + c x < 3 < x f x) + 0 x ] ; 3 [ f x) > 0 streng monoton steigend x ] 3 ; [ f x) < 0 streng monoton fallend Eingeschlossene Fläche mit der x-achse,35 ) [ A = x + 3x + dx = 0,85 3 x3 + ],35 x + x 0,85 = 3, ), 35 +, , 85)3 + ) 0, 85) + 0, 85) = 9, 03), 9) = 0, 9 Funktionsgraph und Wertetabelle f x) = x + 3 x + Ableitung von f x) 8 8

43 Quadratische Funktionen f x) = ax + bx + c

44 Quadratische Funktionen f x) = ax + bx + c Aufgabe ) Funktion/Ableitungen/Stammfunktion f x) = x + x = x +, 3)x 0, 37) f x) = x + f x) = Fx) = x + x )dx = 3 x3 + 3x x + c Definitions- und Wertebereich: D = R W = [ ), [ Grenzwerte: f x) = x + x x ) lim f x) = [ x ] = lim f x) = [ x ) ] = Symmetrie zum Ursprung oder zur y-achse f x) = x) + x) keine Symmetrie zur y-achse und zum Ursprung Nullstellen / Schnittpunkt mit der x-achse: f x) = x + x = 0 x + x = 0 x / = ± ) x / = ± ±, 3 x / = +, 3 x = x = x = 0, 37 x =, 3 x =, 3; -fache Nullstelle x = 0, 37; -fache Nullstelle, 3 Vorzeichentabelle: x <, 3 < x < 0, 37 < x f x) x ] ;, 3[ ]0, 37; [ f x) > 0 oberhalb der x-achse x ], 3; 0, 37[ f x) < 0 unterhalb der x-achse Extremwerte/Hochpunkte/Tiefpunkte: f x) = x + = 0 x + = 0 / x = / : x = x = 3 x 3 = 3; -fache Nullstelle f 3) = > 0 Tiefpunkt: 3/ ) Monotonie/ streng monoton steigend sms)/streng monoton fallend smf) x < 3 < x f x) 0 + x ] 3; [ f x) > 0 streng monoton steigend x ] ; 3[ f x) < 0 streng monoton fallend

45 Quadratische Funktionen f x) = ax + bx + c Eingeschlossene Fläche mit der x-achse 0,37 ) [ ] 0,37 A = x + x dx =,3 3 x3 + 3x x ),3 ) = 3 0, , 37 0, 37 3, 3)3 + 3, 3), 3) = 0, 3) 8, 3) = 8, Funktionsgraph und Wertetabelle f x) = x + x Ableitung von f x)

46 Quadratische Funktionen f x) = ax + bx + c

47 Quadratische Funktionen f x) = ax + bx + c Funktion/Ableitungen/Stammfunktion f x) = 3 x + x + 5 = 3 x +, 9)x 7, 9) f x) = 3 x + f x) = 3 Fx) = 3 x + x + 5)dx = 9 x3 + x + 5x + c Aufgabe 7) Definitions- und Wertebereich: D = R W =], 8] Grenzwerte: f x) = x 3 + x + 5 x ) lim f x) = [ x 3 ] = lim f x) = [ x 3 ) ] = Symmetrie zum Ursprung oder zur y-achse f x) = 3 x) + x) + 5 keine Symmetrie zur y-achse und zum Ursprung Nullstellen / Schnittpunkt mit der x-achse: f x) = 3 x + x + 5 = 0 3 x + x + 5 = 0 ± x / = ) 3 x / = ± ± 3, 7 x / = 3 + 3, 7 x = 3 x = 3 ) 5 x =, 9 x = 7, 9 x =, 9; -fache Nullstelle x = 7, 9; -fache Nullstelle 3, 7 3 Vorzeichentabelle: x <, 9 < x < 7, 9 < x f x) x ], 9; 7, 9[ f x) > 0 oberhalb der x-achse x ] ;, 9[ ]7, 9; [ f x) < 0 unterhalb der x-achse Extremwerte/Hochpunkte/Tiefpunkte: f x) = 3 x + = 0 3 x + = 0 / 3 x = / : ) 3 x = 3 x = 3 x 3 = 3; f 3) = 3 -fache Nullstelle 7

48 Quadratische Funktionen f x) = ax + bx + c f 3) < 0 Hochpunkt:3/8) Monotonie/ streng monoton steigend sms)/streng monoton fallend smf) x < 3 < x f x) + 0 x ] ; 3[ f x) > 0 streng monoton steigend x ]3; [ f x) < 0 streng monoton fallend Eingeschlossene Fläche mit der x-achse 7,9 A = ) [,9 3 x + x + 5 dx = ] 7,9 9 x3 + x + 5x,9 = ) 9 7, , , 9 ) 9, 9)3 +, 9) + 5, 9) = 7, ) 5, 3) = 5, 3 Funktionsgraph und Wertetabelle f x) = 3 x + x + 5 Ableitung von f x)

49 Quadratische Funktionen f x) = ax + bx + c

50 Quadratische Funktionen f x) = ax + bx + c Aufgabe 8) Funktion/Ableitungen/Stammfunktion f x) = 8 x x + 3 = 8 x + 5)x ) f x) = x f x) = Fx) = 8 x x + 3 )dx = 0, 05x3 x + 3 x + c Definitions- und Wertebereich: D = R W =], ] Grenzwerte: f x) = x 8 x + 3 x ) lim f x) = [ 8 x ] = 8 f x) = [ ) ] = lim x Symmetrie zum Ursprung oder zur y-achse f x) = 8 x) 3 x) + keine Symmetrie zur y-achse und zum Ursprung Nullstellen / Schnittpunkt mit der x-achse: f x) = 8 x x + 3 = 0 8 x x + 3 = 0 x / = + ± x / = + ± 5 x / = x = ± ) 8 ) 3 8 ) x = 7 x = 5 x = x = 5; -fache Nullstelle x = ; -fache Nullstelle Vorzeichentabelle: x < 5 < x < < x f x) x ] 5; [ f x) > 0 oberhalb der x-achse x ] ; 5[ ]; [ f x) < 0 unterhalb der x-achse Extremwerte/Hochpunkte/Tiefpunkte: f x) = x = 0 x = 0 / + ) / : x = x = x = x 3 = ; -fache Nullstelle 50

51 Quadratische Funktionen f x) = ax + bx + c f ) = f ) < 0 Hochpunkt: /) Monotonie/ streng monoton steigend sms)/streng monoton fallend smf) x < < x f x) + 0 x ] ; [ f x) > 0 streng monoton steigend x ] ; [ f x) < 0 streng monoton fallend Eingeschlossene Fläche mit der x-achse A = 8 5 x ) [ x + 3 dx = 0, 05x 3 x + 3 ] x 5 = 0, ) 0, 05 5) 3 5) + 3 ) 5) =, 85) 7, 8) = 9 3 Funktionsgraph und Wertetabelle f x) = 8 x x + 3 Ableitung von f x)

52 Quadratische Funktionen f x) = ax + bx + c

53 Quadratische Funktionen f x) = ax + bx + c Aufgabe 9) Funktion/Ableitungen/Stammfunktion f x) = 3 8 x 3 8 x = 3 8 x + 5)x ) f x) = 8 x 3 8 f x) = 8 Fx) = 3 8 x 3 8 x )dx = 0, 3x3 8 x x + c Definitions- und Wertebereich: D = R W =], 8] Grenzwerte: f x) = x lim f x) = [ x lim x x x ) 8 ] = 3 f x) = [ 8 ) ] = Symmetrie zum Ursprung oder zur y-achse f x) = 3 8 x) x) keine Symmetrie zur y-achse und zum Ursprung Nullstellen / Schnittpunkt mit der x-achse: f x) = 8 3 x 3 8 x = x 3 8 x = 0 x / = ± 3 8 x / = ± 5 8 x / = x = ± x = ) 3 8 ) x = 5 x = x = 5; -fache Nullstelle x = ; -fache Nullstelle Vorzeichentabelle: x < 5 < x < < x f x) ) x ] 5; [ f x) > 0 oberhalb der x-achse x ] ; 5[ ]; [ f x) < 0 unterhalb der x-achse Extremwerte/Hochpunkte/Tiefpunkte: f x) = 8 x 3 8 = 0 8 x 3 8 = 0 / + 3 8) / : 8 x = 3 8 x = x = 8 x 3 = ; -fache Nullstelle 53

54 Quadratische Funktionen f x) = ax + bx + c f ) = 8 f ) < 0 Hochpunkt: /8) Monotonie/ streng monoton steigend sms)/streng monoton fallend smf) x < < x f x) + 0 x ] ; [ f x) > 0 streng monoton steigend x ] ; [ f x) < 0 streng monoton fallend Eingeschlossene Fläche mit der x-achse A = x 3 ) [ 8 x dx = 0, 3x x ] 8 x 5 = 0, ) 8 0, 3 5) 3 8 5) ) 8 5) = 0) 8) = 8 Funktionsgraph und Wertetabelle f x) = 8 3 x 3 8 x Ableitung von f x)

55 Quadratische Funktionen f x) = ax + bx + c

56 Quadratische Funktionen f x) = ax + bx + c Aufgabe 0) Funktion/Ableitungen/Stammfunktion f x) = x + 5x = xx ) f x) = x + 5 f x) = Fx) = x + 5x)dx = 5 x3 + x + c Definitions- und Wertebereich: D = R W =], 5] Grenzwerte: f x) = x + 5 x ) lim f x) = [ x ] = lim f x) = [ x ) ] = Symmetrie zum Ursprung oder zur y-achse f x) = x) + 5 x) keine Symmetrie zur y-achse und zum Ursprung Nullstellen / Schnittpunkt mit der x-achse: f x) = x + 5x = 0 x x + 5) = 0 x = 0 x + 5 = 0 x + 5 = 0 / 5 ) x = 5 / : x = 5 x = x = 0; -fache Nullstelle x = ; -fache Nullstelle Vorzeichentabelle: x < 0 < x < < x f x) x ]0; [ f x) > 0 oberhalb der x-achse x ] ; 0[ ]; [ f x) < 0 unterhalb der x-achse Extremwerte/Hochpunkte/Tiefpunkte: f x) = x + 5 = 0 x + 5 = 0 / 5 x = 5 / : ) x = 5 x = x 3 = ; -fache Nullstelle f ) = f ) < 0 Hochpunkt:/5) Monotonie/ streng monoton steigend sms)/streng monoton fallend smf) x < < x f x) + 0 x ] ; [ f x) > 0 streng monoton steigend x ]; [ f x) < 0 streng monoton fallend 5

57 Quadratische Funktionen f x) = ax + bx + c Eingeschlossene Fläche mit der x-achse A = ) [ 0 x + 5x dx = 5 x3 + ] x 0 = ) ) 0 = 3 ) 0) = Funktionsgraph und Wertetabelle f x) = x + 5 x Ableitung von f x)

58 Quadratische Funktionen f x) = ax + bx + c

59 Quadratische Funktionen f x) = ax + bx + c Aufgabe ) Funktion/Ableitungen/Stammfunktion f x) = 3 x 3x = 3 x + )x f x) = x 3 f x) = Fx) = 3 x 3x)dx = x3 x + c Definitions- und Wertebereich: D = R W =], 3] Grenzwerte: f x) = x 3 3 x ) lim f x) = [ 3 x ] = lim f x) = [ 3 x ) ] = Symmetrie zum Ursprung oder zur y-achse f x) = 3 x) 3 x) keine Symmetrie zur y-achse und zum Ursprung Nullstellen / Schnittpunkt mit der x-achse: f x) = 3 x 3x = 0 x 3 x 3) = 0 x = 0 3 x 3 = 0 3 x 3 = 0 / x = 3 / : 3 ) x = 3 3 x = x = ; -fache Nullstelle x = 0; -fache Nullstelle Vorzeichentabelle: x < < x < 0 < x f x) x ] ; 0[ f x) > 0 oberhalb der x-achse x ] ; [ ]0; [ f x) < 0 unterhalb der x-achse Extremwerte/Hochpunkte/Tiefpunkte: f x) = x 3 = 0 x 3 = 0 / + 3 x = 3 / : ) x = 3 x = x 3 = ; -fache Nullstelle f ) = f ) < 0 Hochpunkt: /3) Monotonie/ streng monoton steigend sms)/streng monoton fallend smf) x < < x f x) + 0 x ] ; [ f x) > 0 streng monoton steigend x ] ; [ f x) < 0 streng monoton fallend 59

60 Quadratische Funktionen f x) = ax + bx + c Eingeschlossene Fläche mit der x-achse 0 A = 3 ) [ x 3x dx = x3 ] 0 x = 03 ) 0 )3 ) ) = 0) 8) = 8 Funktionsgraph und Wertetabelle f x) = 3 x 3 x Ableitung von f x)

61 Quadratische Funktionen f x) = ax + bx + c

62 Quadratische Funktionen f x) = ax + bx + c Aufgabe ) Funktion/Ableitungen/Stammfunktion f x) = 5 9 x 5 = 9 5 x + 3)x 3) f x) = 9 x f x) = 9 Fx) = 5 9 x 5)dx = 7 5 x3 5x + c Definitions- und Wertebereich: D = R W = [ 5), [ Grenzwerte: f x) = x x ) lim f x) = [ 5 x 9 ] = lim f x) = [ 5 x 9 ) ] = Symmetrie zum Ursprung oder zur y-achse f x) = 5 9 x) 5 f x) = 5 9 x 5 f x) = f x) Symmetrie zur y-achse: Nullstellen / Schnittpunkt mit der x-achse: f x) = 5 9 x 5 = x 5 = 0 / x = 5 / : 5 9 x = x = ± 9 x = 3 x = 3 x = 3; -fache Nullstelle x = 3; -fache Nullstelle Vorzeichentabelle: x < 3 < x < 3 < x f x) x ] ; 3[ ]3; [ f x) > 0 oberhalb der x-achse x ] 3; 3[ f x) < 0 unterhalb der x-achse Extremwerte/Hochpunkte/Tiefpunkte: f x) = 9 x = 0 x = 0 x = 0 x 3 = 0; -fache Nullstelle f 0) = > 0 Tiefpunkt:0/ 5) 9 Monotonie/ streng monoton steigend sms)/streng monoton fallend smf) x < 0 < x f x) 0 + x ]0; [ f x) > 0 streng monoton steigend x ] ; 0[ f x) < 0 streng monoton fallend Eingeschlossene Fläche mit der x-achse 3 ) [ ] A = 3 9 x 5 dx = 7 x3 5x ) 3 ) 5 5 = )3 5 3)

63 Quadratische Funktionen f x) = ax + bx + c = 0) 0) = 0 Funktionsgraph und Wertetabelle f x) = 5 9 x 5 Ableitung von f x) x 8 f x) f x) f x)

64 Quadratische Funktionen f x) = ax + bx + c Aufgabe 3) Funktion/Ableitungen/Stammfunktion f x) = x + x = x + )x f x) = x + f x) = Fx) = x + x)dx = x 3 + x + c Definitions- und Wertebereich: D = R W = [ 3), [ Grenzwerte: f x) = x + x ) lim f x) = [ x ] = lim f x) = [ x ) ] = Symmetrie zum Ursprung oder zur y-achse f x) = x) + x) keine Symmetrie zur y-achse und zum Ursprung Nullstellen / Schnittpunkt mit der x-achse: f x) = x + x = 0 xx + ) = 0 x = 0 x + = 0 x + = 0 / x = / : x = x = x = ; -fache Nullstelle x = 0; -fache Nullstelle Vorzeichentabelle: x < < x < 0 < x f x) x ] ; [ ]0; [ f x) > 0 oberhalb der x-achse x ] ; 0[ f x) < 0 unterhalb der x-achse Extremwerte/Hochpunkte/Tiefpunkte: f x) = x + = 0 x + = 0 / x = / : x = x = x 3 = ; -fache Nullstelle f ) = > 0 Tiefpunkt: / 3) Monotonie/ streng monoton steigend sms)/streng monoton fallend smf) x < < x f x) 0 + x ] ; [ f x) > 0 streng monoton steigend x ] ; [ f x) < 0 streng monoton fallend Eingeschlossene Fläche mit der x-achse

65 Quadratische Funktionen f x) = ax + bx + c 0 ) A = x + x dx = [x 3 + x ] 0 = ) ) 3 + ) ) = 0) ) = Funktionsgraph und Wertetabelle f x) = x + x Ableitung von f x)

66 Quadratische Funktionen f x) = ax + bx + c

67 Quadratische Funktionen f x) = ax + bx + c Aufgabe ) Funktion/Ableitungen/Stammfunktion f x) = 5 x x + 5 = 5 x + )x 9) f x) = 5 x f x) = 5 Fx) = 5 x x + 5 )dx = 5 x3 + 5 x + 5 x + c Definitions- und Wertebereich: D = R W =], ] Grenzwerte: f x) = x x + 5 x ) lim f x) = [ x 5 ] = f x) = [ 5 ) ] = lim x Symmetrie zum Ursprung oder zur y-achse f x) = 5 x) x) + 5 keine Symmetrie zur y-achse und zum Ursprung Nullstellen / Schnittpunkt mit der x-achse: f x) = 5 x x + 5 = 0 5 x x + 5 = ± 3 x / = x / = x / = x = 3 5 ± ± ) ) x = x = x = 9 x = ; -fache Nullstelle x = 9; -fache Nullstelle Vorzeichentabelle: x < < x < 9 < x f x) x ] ; 9[ f x) > 0 oberhalb der x-achse x ] ; [ ]9; [ f x) < 0 unterhalb der x-achse Extremwerte/Hochpunkte/Tiefpunkte: f x) = 5 x = 0 5 x x = 3 x = x = x 3 = ; f ) = 5 5 = 0 / 3 5 / : ) 5 5 -fache Nullstelle 7

68 Quadratische Funktionen f x) = ax + bx + c f ) < 0 Hochpunkt:/) Monotonie/ streng monoton steigend sms)/streng monoton fallend smf) x < < x f x) + 0 x ] ; [ f x) > 0 streng monoton steigend x ]; [ f x) < 0 streng monoton fallend Eingeschlossene Fläche mit der x-achse 9 A = 5 x x + ) dx = 5 = ) 5 9 = 38 ) 3 ) = Funktionsgraph und Wertetabelle f x) = 5 x x + 5 [ 5 x3 + 5 x + 5 x 5 )3 + 8 ] 9 5 ) + ) 5 ) Ableitung von f x) 8 8

69 Quadratische Funktionen f x) = ax + bx + c

70 Quadratische Funktionen f x) = ax + bx + c Aufgabe 5) Funktion/Ableitungen/Stammfunktion f x) = 5 9 x 5 x = 5 9 x + 9)x ) f x) = 5 8 x 5 f x) = 8 5 Fx) = 5 9 x 5 x )dx = 5 3 x3 5 x x + c Definitions- und Wertebereich: D = R W =], 9] Grenzwerte: f x) = x x x ) lim f x) = [ 9 x 5 ] = 9 f x) = [ 5 ) ] = lim x Symmetrie zum Ursprung oder zur y-achse f x) = 5 9 x) 5 x) keine Symmetrie zur y-achse und zum Ursprung Nullstellen / Schnittpunkt mit der x-achse: f x) = 5 9 x 5 x = x 5 x = 0 x / = x / = + 5 ± ) ) ) + 5 ± x / = 5 ± x = x = x = 9 x = x = 9; -fache Nullstelle x = ; -fache Nullstelle 8 5 Vorzeichentabelle: x < 9 < x < < x f x) x ] 9; [ f x) > 0 oberhalb der x-achse x ] ; 9[ ]; [ f x) < 0 unterhalb der x-achse Extremwerte/Hochpunkte/Tiefpunkte: f x) = 8 5 x 5 = x 8 5 x = 5 x = x = x 3 = ; f ) = = 0 / + 5 / : 8 ) 5 -fache Nullstelle 70

71 Quadratische Funktionen f x) = ax + bx + c f ) < 0 Hochpunkt:/9) Monotonie/ streng monoton steigend sms)/streng monoton fallend smf) x < < x f x) + 0 x ] ; [ f x) > 0 streng monoton steigend x ] ; [ f x) < 0 streng monoton fallend Eingeschlossene Fläche mit der x-achse A = x 5 x + 3 ) dx = 5 = ) 5 = 7 ) 58 8 ) = Funktionsgraph und Wertetabelle f x) = 9 5 x 5 x [ 3 5 x3 5 x x 3 5 9)3 8 ] 9 5 9) + 3 ) 5 9) Ableitung von f x) 8 7

72 Quadratische Funktionen f x) = ax + bx + c , , , , , , , , , ,

73 Quadratische Funktionen f x) = ax + bx + c Aufgabe ) Funktion/Ableitungen/Stammfunktion f x) = 8 x + x = 8 x + 7)x 9) f x) = x + f x) = Fx) = 8 x + x )dx = x3 + 8 x x + c Definitions- und Wertebereich: D = R W =], 8] Grenzwerte: f x) = x 8 + x x ) lim x f x) = [ 8 ] = lim x f x) = [ 8 ) ] = Symmetrie zum Ursprung oder zur y-achse f x) = 8 x) + x) keine Symmetrie zur y-achse und zum Ursprung Nullstellen / Schnittpunkt mit der x-achse: f x) = 8 x + x = 0 8 x + x = 0 ± x / = ) 8 x / = ± x / = ± x = + 8 x = x = 7 x = 9 x = 7; -fache Nullstelle x = 9; -fache Nullstelle ) Vorzeichentabelle: x < 7 < x < 9 < x f x) x ] 7; 9[ f x) > 0 oberhalb der x-achse x ] ; 7[ ]9; [ f x) < 0 unterhalb der x-achse Extremwerte/Hochpunkte/Tiefpunkte: f x) = x + = 0 x + = 0 / x = / : ) x = x = x 3 = ; -fache Nullstelle f ) = 73

74 Quadratische Funktionen f x) = ax + bx + c f ) < 0 Hochpunkt:/8) Monotonie/ streng monoton steigend sms)/streng monoton fallend smf) x < < x f x) + 0 x ] ; [ f x) > 0 streng monoton steigend x ]; [ f x) < 0 streng monoton fallend Eingeschlossene Fläche mit der x-achse 9 A = 7 8 x + ) [ x + 77 dx = 8 x3 + 8 x ] 9 8 x 7 = ) 8 9 7) ) ) 7) = 50 5 ) 3 7 ) = Funktionsgraph und Wertetabelle f x) = 8 x + x Ableitung von f x) 8 7

75 Quadratische Funktionen f x) = ax + bx + c

Kurvendiskussion Gebrochenrationale Funktion Aufgaben und Lösungen

Kurvendiskussion Gebrochenrationale Funktion Aufgaben und Lösungen Kurvendiskussion Gebrochenrationale Funktion Aufgaben und http://www.fersch.de Klemens Fersch 7. September 0 Inhaltsverzeichnis Gebrochenrationale Funktion Gebrochen rationale Funktion Zählergrad < Nennergrad

Mehr

Formelsammlung Analysis

Formelsammlung Analysis Formelsammlung Analysis http://www.fersch.de Klemens Fersch. August 0 Inhaltsverzeichnis Analysis. Grenzwert - Stetigkeit.............................................. Grenzwert von f(x) für x gegen x0...................................

Mehr

Quadratische Funktion Aufgaben und Lösungen

Quadratische Funktion Aufgaben und Lösungen Quadratische Funktion Aufgaben und Lösungen http://www.fersch.de Klemens Fersch 9. August 0 Inhaltsverzeichnis Graph und Eigenschaften. y = a x + b x + c...............................................

Mehr

Kurvendiskussion. Mag. Mone Denninger 10. Oktober Extremwerte (=Lokale Extrema) 2. 5 Monotonieverhalten 3. 6 Krümmungsverhalten 4

Kurvendiskussion. Mag. Mone Denninger 10. Oktober Extremwerte (=Lokale Extrema) 2. 5 Monotonieverhalten 3. 6 Krümmungsverhalten 4 Mag. Mone Denninger 10. Oktober 2004 Inhaltsverzeichnis 1 Definitionsmenge 2 1.1 Verhalten am Rand und an den Lücken des Definitionsbereichs............................ 2 2 Nullstellen 2 3 Extremwerte

Mehr

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x. Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden

Mehr

( ) 6 eine. 1. Führen Sie für die Funktion f mit vollständige Kurvendiskussion durch. eine. 5. Führen Sie für die Funktion f mit f ( x) = 2x

( ) 6 eine. 1. Führen Sie für die Funktion f mit vollständige Kurvendiskussion durch. eine. 5. Führen Sie für die Funktion f mit f ( x) = 2x . Führen Sie für die Funktion f mit vollständige Kurvendiskussion durch. Berücksichtigen Sie dabei die folgenden Punkte: f( ) 0 7 eine -Definitionsmenge; -Symmetrie; -Grenzwertverhalten; -Schnittpunkt

Mehr

Polynome. Ein Term der Form. mit n und a 0 heißt Polynom. Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms.

Polynome. Ein Term der Form. mit n und a 0 heißt Polynom. Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms. Polynome Ein Term der Form a x + a x + a x + a x +... + a x + a x + a n n 1 n 2 n 3 2 1 2 3 4 n 2 n 1 n mit n und a 0 heißt Polynom. 1 Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms. 1 2 3 Als

Mehr

R. Brinkmann Seite

R. Brinkmann   Seite R. Brinkmann http://brinkmann-du.de Seite 1 1.08.016 Kurvendiskussion Vorbetrachtungen Um den Graphen einer Funktion zeichnen und interpretieren zu können, ist es erforderlich einiges über markante Punkte

Mehr

Kurvendiskussion von Polynomfunktionen

Kurvendiskussion von Polynomfunktionen Kurvendiskussion von Polynomfunktionen Theorie: Für die weiteren Berechnungen benötigen wie die 1. f (x) und 2. f (x) Ableitung der zu untersuchenden Funktion f (x). Wir werden viele Gleichungen lösen

Mehr

Zusammenfassung der Kurvendiskussion

Zusammenfassung der Kurvendiskussion Zusammenfassung der Kurvendiskussion Diskussionspunkte 1 Größtmögliche Definitionsmenge D f 2 Symmetrieeigenschaften des Graphen G f 3 Nullstellen, Polstellen, Schnittpunkte mit der y-achse, Vielfachheit

Mehr

GF MA Differentialrechnung A2

GF MA Differentialrechnung A2 Kurvendiskussion Nullstellen: Für die Nullstellen x i ( i! ) einer Funktion f gilt: Steigen bzw. Fallen: f ( x i ) = 0 f '( x) > 0 im Intervall I f ist streng monoton wachsend in I f '( x) < 0 im Intervall

Mehr

Lösungsblatt zu: Gebrochen rationale, Exponential- und Logarithmus Funktionen

Lösungsblatt zu: Gebrochen rationale, Exponential- und Logarithmus Funktionen Lösungsblatt zu: Gebrochen rationale, Exponential- und Logarithmus Funktionen Das hast du schon gelernt: Aufgabe : a) Definitionsbereich TIPP: Definitionsbereich Nenner darf nicht Null werden x 0 x

Mehr

1 x x2 3 mit D f = IR. Teilaufgabe 1.1 (5 BE) Berechnen Sie die Nullstellen der Funktion f und geben Sie das Symmetrieverhalten von G f.

1 x x2 3 mit D f = IR. Teilaufgabe 1.1 (5 BE) Berechnen Sie die Nullstellen der Funktion f und geben Sie das Symmetrieverhalten von G f. Abschlussprüfung Berufliche Oberschule 0 Mathematik Nichttechnik - A II - Lösung Teilaufgabe.0 Gegeben ist die reelle Funktion f( x) x x mit D f = IR. Teilaufgabe. (5 BE) Berechnen Sie die Nullstellen

Mehr

Gemischte Aufgaben zur Differentialund Integralrechnung

Gemischte Aufgaben zur Differentialund Integralrechnung Gemischte Aufgaben zur Differentialund Integralrechnung W. Kippels 0. Mai 04 Inhaltsverzeichnis Aufgaben. Aufgabe.................................... Aufgabe.................................... Aufgabe...................................

Mehr

Analysis. Ganzrationale Funktionen: Nullstellen, Extrempunkte, Monotonie, Verhalten im Unendlichen, Tangente. Gymnasium Klasse 10

Analysis. Ganzrationale Funktionen: Nullstellen, Extrempunkte, Monotonie, Verhalten im Unendlichen, Tangente. Gymnasium Klasse 10 Analysis Ganzrationale Funktionen: Nullstellen, Extrempunkte, Monotonie, Verhalten im Unendlichen, Tangente Gymnasium Klasse 1 Hilfsmittel: wissenschaftlicher Taschenrechner Alexander Schwarz März 18 1

Mehr

Vollständige Kurvendiskussion mit Erläuterungen

Vollständige Kurvendiskussion mit Erläuterungen Vollständige Kurvendiskussion mit Erläuterungen Aufgabe: Gegeben ist die Funktion =³ 3 +. Führen Sie eine vollständige Kurvendiskussion durch. 1.) Ableitungen: =3 6+1 =6 6 =6 (relevant für die Steigung

Mehr

Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften:

Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften: 1 KURVENDISKUSSION Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften: 1.1 Definitionsbereich Zuerst bestimmt man den maximalen Definitionsbereich

Mehr

Übungsaufgaben zur Kurvendiskussion

Übungsaufgaben zur Kurvendiskussion SZ Neustadt Mathematik Torsten Warncke FOS 12c 30.01.2008 Übungsaufgaben zur Kurvendiskussion 1. Gegeben ist die Funktion f(x) = x(x 3) 2. (a) Untersuchen Sie die Funktion auf Symmetrie. (b) Bestimmen

Mehr

B Anwendungen der Differenzialrechnung

B Anwendungen der Differenzialrechnung B Anwendungen der Differenzialrechnung Kurvendiskussionen Um den Verlauf eines Funktionsgraphen zu bestimmen, kann eine Wertetabelle aufgestellt werden. Dies kann jedoch sehr mühselig sein und es ist nicht

Mehr

Kurvendiskussion. Gesetzmäßigkeiten. Lineare Funktionen. Funktionsgleichung

Kurvendiskussion. Gesetzmäßigkeiten. Lineare Funktionen. Funktionsgleichung Kurvendiskussion Gesetzmäßigkeiten Lineare Funktionen Funktionsgleichung y = mx + c m: Steigung c: y-achsenabschnitt (Funktionswert für y, bei dem der Graph die y-achse schneidet Beispiel : y = x 3 mit

Mehr

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y 5. Die natürliche Exponentialfunktion und natürliche Logarithmusfunktion ================================================================== 5.1 Die natürliche Exponentialfunktion f : x 2 x f : x 1 2 x

Mehr

Tiefpunkt = relatives Minimum hinreichende Bedingung:

Tiefpunkt = relatives Minimum hinreichende Bedingung: R. Brinkmann http://brinkmann-du.de Seite 1 0.0.01 Kurvendiskussion Vorbetrachtungen Um den Graphen einer Funktion zeichnen und interpretieren zu können, ist es erforderlich einiges über markante Punkte

Mehr

1 Q12: Lösungen bsv 2.2

1 Q12: Lösungen bsv 2.2 Q: Lösungen bsv... 3. 4. Graphisches Bestimmen einer Integralfunktion a) Nullstellen (laut Graph): x = 0; x = VZT x < 0 x = 0 0 < x < x > f(x) - 0 + 0 - G Io TIP HOP b) Aus der Abbildung ergibt sich: VZT

Mehr

Übungsaufgaben II zur Klausur 1

Übungsaufgaben II zur Klausur 1 Übungsaufgaben II zur Klausur. Ableitungen 0. Führen Sie für g mit f ( +,9 8 eine vollständige Kurvendiskussion (siehe S. 9f durch. Markieren Sie alle von Ihnen bestimmten Punkte in der abschließenden

Mehr

Differenzialrechnung

Differenzialrechnung Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =

Mehr

12 M-Gk1/5 Led Übungen zur 1. Klausur 3. September Kurvendiskussion. Im Folgenden sei die Funktion f(x) = 1 6 x3 1 2 x 1 3 gegeben!

12 M-Gk1/5 Led Übungen zur 1. Klausur 3. September Kurvendiskussion. Im Folgenden sei die Funktion f(x) = 1 6 x3 1 2 x 1 3 gegeben! 12 M-Gk1/5 Led Übungen zur 1. Klausur 3. September 2008 1. Kurvendiskussion. Im Folgenden sei die Funktion f(x) = 1 6 x3 1 2 x 1 3 gegeben! a) Untersuche den Graphen von f(x) auf Standardsymmetrien (Punktsymmetrie

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

assume(type::real) //Definiert die Definitionsmenge über die reele a) f:=x->1/2*x^3-4*x^2+8*x // Definition einer Funktion mit der Variable "x".

assume(type::real) //Definiert die Definitionsmenge über die reele a) f:=x->1/2*x^3-4*x^2+8*x // Definition einer Funktion mit der Variable x. Wochenplan zu Wendestellen; Kurvendiskussion und Tangenten reset() //Entleert sämtliche Speicher! A1 assume(type::real) //Definiert die Definitionsmenge über die reele R a) f:=x->1/*x^-*x^+8*x // Definition

Mehr

1 Aufgaben. Aufgabe 1: f(x) = x Aufgabe 2: f(x) = x Aufgabe 4: f(x) = 2x 2 + 4

1 Aufgaben. Aufgabe 1: f(x) = x Aufgabe 2: f(x) = x Aufgabe 4: f(x) = 2x 2 + 4 1 Aufgaben Untersuche die folgende Funktionen auf Nullstellen, Schnittpunkte mit den Koordinatenachsen, Extremwerte, y-achsensymmetrie und Punktsymmetrie zum Ursprung (0 0) und zeichnen den Graph der Funktion.

Mehr

Mathematik-Aufgabenpool > Kurvendiskussion gebrochen rationaler Funktionen I

Mathematik-Aufgabenpool > Kurvendiskussion gebrochen rationaler Funktionen I Michael Buhlmann Mathematik-Aufgabenpool > Kurvendiskussion gebrochen rationaler Funktionen I Einleitung: Eine gebrochen rationale Funktion (Polynom) f: D f -> R (mit maximaler Definitionsbereich D f)

Mehr

Aufgabe zum Thema: Gebrochen - rationale Funktionen

Aufgabe zum Thema: Gebrochen - rationale Funktionen Aufgabe zum Thema: Gebrochen - rationale Funktionen Eine gebrochen-rationale Funktion Z (x) hat als Zähler- N (x) funktion Z (x) eine lineare Funktion und als Nennerfunktion N (x) eine ganz-rationale Funktion

Mehr

Flächenberechnung mit Integralen

Flächenberechnung mit Integralen Flächenberechnung mit Integralen W. Kippels 30. April 204 Inhaltsverzeichnis Übungsaufgaben 2. Aufgabe................................... 2.2 Aufgabe 2................................... 2.3 Aufgabe 3...................................

Mehr

Schwerpunktaufgaben zur Vorbereitung auf die Leistungsfeststellung

Schwerpunktaufgaben zur Vorbereitung auf die Leistungsfeststellung Schwerpunktaufgaben zur Vorbereitung auf die Leistungsfeststellung 1. Lösen Sie folgendes Gleichungssystem mit Hilfe des Gauß-Verfahrens. Überprüfen Sie Ihr Ergebnis mit dem Taschenrechner. ganzzahlig

Mehr

Gleichungen Aufgaben und Lösungen

Gleichungen Aufgaben und Lösungen Gleichungen Aufgaben und Lösungen http://www.fersch.de Klemens Fersch 6. Januar 3 Inhaltsverzeichnis Lineare Gleichung. a x + b = c....................................................... Aufgaben....................................................

Mehr

Abschlussprüfung Mathematik 12 Nichttechnik A II - Lösung

Abschlussprüfung Mathematik 12 Nichttechnik A II - Lösung GS.06.0 - m_nt-a_lsg_gs_pdf Abschlussprüfung 0 - Mathematik Nichttechnik A II - Lösung Teilaufgabe.0 Gegeben ist die reelle Funktion f mit f( x) D f = IR. 0 x x 8 x mit der Definitionsmenge Teilaufgabe.

Mehr

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002 Prüfungsaufgaben Mündliches Abitur Analysis Teilbereich : Ganzrationale Funktionen Hier nur Aufgaben als Demo Datei Nr. 9 März 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die in dieser Reihe von

Mehr

Mathematik I Herbstsemester 2018 Kapitel 4: Anwendungen der Differentialrechnung

Mathematik I Herbstsemester 2018 Kapitel 4: Anwendungen der Differentialrechnung Mathematik I Herbstsemester 2018 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 55 4. Anwendungen der Differentialrechnung Monotonie Krümmung Linearisierung einer Funktion Extremwerte

Mehr

Mathematik Abitur Zusammenfassung Marius Buila

Mathematik Abitur Zusammenfassung Marius Buila Mathematik Abitur Zusammenfassung Marius Buila 1.Analysis 1.1 Grundlagen: Ableitung f (u) ist Steigung in Punkt P (u/f(u)) auf K f(x) = a * x r f (x) = a * r * x r-1 Tangentengleichung: y= f (u) * (x-u)

Mehr

Aufgabenstellung Teilaufgabe a) Anforderungsprofil Teilaufgabe a) Modelllösung Teilaufgabe a) (1)

Aufgabenstellung Teilaufgabe a) Anforderungsprofil Teilaufgabe a) Modelllösung Teilaufgabe a) (1) Aufgabenstellung Teilaufgabe a) Anforderungsprofil Teilaufgabe a) Modelllösung Teilaufgabe a) (1) Seite 1/8 Heinz Klaus Strick 2011 Die Wertetabelle des Graphen ergibt sich über die I-Option des WTR: Dass

Mehr

Kurvendiskussion einer ganzrationalen Funktion

Kurvendiskussion einer ganzrationalen Funktion Kurvendiskussion einer ganzrationalen Funktion Lernzuflucht 24. November 20 L A TEX M. Neumann Folgende Funktion soll in einer Kurvendiskussion bearbeitet werden: f(x) = x 4 2x 2 ; D = R () Diese Funktion

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 7 Anwendungen der Differentialrechnung 7.1 Maxima und Minima einer Funktion................. 141 7.2 Mittelwertsatz............................ 144 7.3 Kurvendiskussion..........................

Mehr

1 Analysis Kurvendiskussion

1 Analysis Kurvendiskussion 1 Analysis Kurvendiskussion 1.1 Allgemeingültige Betrachtungen Die folgenden aufgezeigten Betrachtungen und Rechenschritte gelten für alle Arten von Funktionen. Funktion (z.b. Polynom n-ten Grades) Schreibweise

Mehr

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate Mathematik-Lexikon HM00 Abszisse Die x-koordinate eines Punktes -> Ordinate Aufstellen von Funktionstermen Gesucht: Ganzrationale Funktion n-ten Grades: ƒ(x) = a n x n + a n-1 x n-1 + a n- x n- +... +

Mehr

( 8) ( 1) LÖSUNGEN. Aufgabe 1. Aufgabe 1. 3x eine vollständige. Führen Sie für die Funktion f aus a) mit. Kurvendiskussion durch. 1.

( 8) ( 1) LÖSUNGEN. Aufgabe 1. Aufgabe 1. 3x eine vollständige. Führen Sie für die Funktion f aus a) mit. Kurvendiskussion durch. 1. Schuljahr 7/ Kurs Mathematik AHR Schuljahr 7/ Kurs Mathematik AHR Aufgabe Übungsaufgaben zur Klausur Nr Kurvendiskussion und Anwendungen Führen Sie für die Funktion f mit f ( + + eine vollständige Kurvendiskussion

Mehr

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x.

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x. Analysis Aufgabe aus Abiturprüfung Bayern GK (abgeändert). Gegeben ist die Funktion f(x) = ( x )e ( x ). a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen

Mehr

4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion.

4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion. 4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion. Definition 4.3. Es sei f : R D R eine auf D erklarte Funktion. Die Funktion f hat in a D eine globales oder

Mehr

5.5. Abituraufgaben zu ganzrationalen Funktionen

5.5. Abituraufgaben zu ganzrationalen Funktionen .. Abituraufgaben zu ganzrationalen Funktionen Aufgabe : Kurvendiskussion, Fläche zwischen zwei Schaubildern () Untersuchen Sie f(x) x x und g(x) x auf Symmetrie, Achsenschnittpunkte, Extrempunkts sowie

Mehr

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften Aufgabe 1 Ein Polynom 3. Grades hat eine Nullstelle bei x 0 = 0 und einen Wendepunkt bei x w = 1. Die Gleichung der Wendetangente lautet

Mehr

Mathematik-Aufgabenpool > Besondere Kurvenpunkte (Nullstellen) bei ganz rationalen Funktionen I

Mathematik-Aufgabenpool > Besondere Kurvenpunkte (Nullstellen) bei ganz rationalen Funktionen I Michael Buhlmann Mathematik-Aufgabenpool > Besondere Kurvenpunkte (Nullstellen) bei ganz rationalen Funktionen I n n 1 Einleitung: Ganz rationale Funktionen f: R -> R besitzen den Funktionsterm: = an x

Mehr

streng monoton steigend. streng monoton fallend. Ist f eine in einem Intervall stetige und im Innern des Intervalls differenzierbare Funktion mit

streng monoton steigend. streng monoton fallend. Ist f eine in einem Intervall stetige und im Innern des Intervalls differenzierbare Funktion mit 3. Anwendungen ================================================================= 3.1 Monotonie Eine Funktion f heißt in ihrem Definitionsbereich D monoton steigend, wenn für alle x 1, x 2 D mit x 1 < x

Mehr

Mathemathik-Prüfungen

Mathemathik-Prüfungen M. Arend Stand Juni 2005 Seite 1 1980: Mathemathik-Prüfungen 1980-2005 1. Eine zur y-achse symmetrische Parabel 4.Ordnung geht durch P 1 (0 4) und hat in P 2 (-1 1) einen Wendepunkt. 2. Diskutieren Sie

Mehr

3 Funktionen diskutieren

3 Funktionen diskutieren 3 Funktionen diskutieren 3.1 Polynomfunktionen Siehe dazu die Abschnitte 8.6 11 in der Formelsammlung. 1. f x = 1 3 x3 x 2. f x = 1 27 x 3 3 x 2 24 x + 26 mit f 1 = 0 3. f x = 1 4 x4 2 x 2 4. f x = 1 4

Mehr

Abschlussaufgabe Nichttechnik - Analysis I - Lsg.

Abschlussaufgabe Nichttechnik - Analysis I - Lsg. Analysis NT GS -.6.7 - m7_nta_l.mcd Abschlussaufgabe 7 - Nichttechnik - Analysis I - Lsg.. Gegeben sind die reellen Funktionen f k ( x) und ID fk ( ) x k x k x mit k IR k IR. Der Graph einer solchen Funktion

Mehr

Grundfunktion Wendepunkt Extrempunkt Nullstelle 1. Ableitung Extrempunkt Nullstelle - 2. Ableitung Nullstelle - -

Grundfunktion Wendepunkt Extrempunkt Nullstelle 1. Ableitung Extrempunkt Nullstelle - 2. Ableitung Nullstelle - - KURVENDISKUSSION Vorüberlegungen Die Kurvendiskussion ist ein wichtiges Teilgebiet der Mathematik, das speziell für die Matura von großer Bedeutung ist. Dabei untersucht man einen Graphen auf dessen geometrische

Mehr

(Quelle Abitur BW 2004) Gegeben sind die Schaubilder der Funktion mit, ihrer Ableitungsfunktion, einer Stammfunktion von und der Funktion mit.

(Quelle Abitur BW 2004) Gegeben sind die Schaubilder der Funktion mit, ihrer Ableitungsfunktion, einer Stammfunktion von und der Funktion mit. Aufgabe A5/04 Die Abbildung zeigt das Schaubild der Ableitungsfunktion einer Funktion. Welche der folgenden Aussagen über die Funktion sind wahr, falsch oder unentscheidbar? (1) ist streng monoton wachsend

Mehr

Die gebrochenrationale Funktion

Die gebrochenrationale Funktion Die gebrochenrationale Funktion Definition: Unter einer gebrochenrationalen Funktion versteht man den Quotienten zweier ganzrationaler Funktionen, d.h. Funktionen der Form f :x! a n xn + a n 1 x n 1 +...+

Mehr

LÖSUNGEN Kurvendiskussion

LÖSUNGEN Kurvendiskussion M. Sc.Petra Clauÿ Wintersemester 2015/16 Mathematische Grundlagen und Analysis 24. November 2015 LÖSUNGEN Kurvendiskussion Aufgabe 1. Bestimmen Sie die Gleichung der Tangente an den Graphen folgender Funktionen

Mehr

I. Verfahren mit gebrochen rationalen Funktionen:

I. Verfahren mit gebrochen rationalen Funktionen: I. Verfahren mit gebrochen rationalen Funktionen: 1. Definitionslücken bestimmen: Nenner wird gleich 0 gesetzt! 2. Prüfung ob eine hebbare Definitionslücke vorliegt: Eine hebbare Definitionslücke liegt

Mehr

Ableitung und Steigung. lim h

Ableitung und Steigung. lim h Ableitung und Steigung Aufgabe 1 Bestimme die Ableitung der Funktion f(x) = x über den Differentialquotienten. f (x f '(x ) lim h h) f (x h ) (x lim h h) h x x lim h hx h h x h(x lim h h h) lim x h h x

Mehr

Diskussion einzelner Funktionen

Diskussion einzelner Funktionen Diskussion einzelner Funktionen. Wir betrachten die Funktion f mit f() = cos sin (a) Berechne f() für { π, π, π, π, } 5π und zeichne den Grafen von f im - Intervall [ π, ] 5π. Einheiten: cm auf der y-achse,

Mehr

Abschlussprüfung Fachoberschule 2016 Mathematik

Abschlussprüfung Fachoberschule 2016 Mathematik Abschlussprüfung Fachoberschule 06 Aufgabenvorschlag A Funktionsuntersuchung /6 Gegeben ist die Funktion f mit der Funktionsgleichung f ( x) = x + x; x IR. Berechnen Sie die Funktionswerte f( x ) für folgende

Mehr

1 Allgemeines, Verfahrensweisen

1 Allgemeines, Verfahrensweisen 1 Allgemeines, Verfahrensweisen 1.1 Allgemeines Definition einer Funktion Eine Funktion f ist eine eindeutige Zuordnung, die jedem x-wert genau einen y-wert zuordnet. Dem y-wert, welchem ein x-wert zugeordnet

Mehr

1.4 Schaubild von Schaubild von Schaubild von 1., /

1.4 Schaubild von Schaubild von Schaubild von 1., / Lösung A1 1.1 Das Integral ist größer als Null, da die Fläche die der Graph der - Funktion oberhalb der -Achse größer ist als die Fläche unterhalb der -Achse. 1.2 Aussagen über das Schaubild von sind:

Mehr

Gebrochenrationale Funktionen Ü bungsaufgaben vor Kurzarbeit

Gebrochenrationale Funktionen Ü bungsaufgaben vor Kurzarbeit Gebrochenrationale Funktionen Ü bungsaufgaben vor Kurzarbeit Diskutieren Sie die Funktionen: a.) f(x) = 1 + x 5 x 2 1 b.) f(x) = x 4 + 5 x+2 c.) f(x) = x3 +2x 2 +x+2 x+2 Lösung: a.) An der Summenform des

Mehr

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 11. und 12. Übung

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 11. und 12. Übung TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, WS 017/18 Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 11. und 1. Übung

Mehr

Lineare Funktion Aufgaben und Lösungen

Lineare Funktion Aufgaben und Lösungen Lineare Funktion Aufgaben und Lösungen http://www.fersch.de Klemens Fersch. November 0 Inhaltsverzeichnis Ursprungsgerade. y = m x...................................................... Aufgaben.................................................

Mehr

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften W. Kippels 10. April 2016 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Prinzipielle Vorgehensweise.......................... 2 1.2 Lösungsrezepte................................

Mehr

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt Aufgaben für Analysis in der Oberstufe Robert Rothhardt 14. Juni 2011 2 Inhaltsverzeichnis 1 Modellierungsaufgaben 5 1.1 Musterabitur S60................................ 5 1.2 Musterabitur 3.1.4 B / S61..........................

Mehr

Flächenberechnung mit Integralen

Flächenberechnung mit Integralen Flächenberechnung mit Integralen Wolfgang Kippels 28. April 208 Inhaltsverzeichnis Vorwort 2 2 Einleitung 2 3 Übungsaufgaben 3 3. Aufgabe................................... 3 3.2 Aufgabe 2...................................

Mehr

und geben Sie die Gleichungen und Art aller Asymptoten an. an, bestimmen Sie die Koordinaten der Achsenschnittpunkte von G f auflösen x x 2 2 ( 2/ 0)

und geben Sie die Gleichungen und Art aller Asymptoten an. an, bestimmen Sie die Koordinaten der Achsenschnittpunkte von G f auflösen x x 2 2 ( 2/ 0) Abiturprüfung Berufliche Oberschule Mathematik Nichttechnik - A II - Lösung Teilaufgabe. x Gegeben ist die Funktion f( x) ( x ) in ihrer maximalen Definitionsmenge D f IR. Der zugehörige Graph heißt. Teilaufgabe.

Mehr

e-funktionen f(x) = e x2

e-funktionen f(x) = e x2 e-funktionen f(x) = e x. Smmetrie: Der Graph ist achsensmmetrisch, da f( x) = f(x).. Nullstellen: Bed.: f(x) = 0 Es sind keine Nullstellen vorhanden, da e x stets positiv ist. 3. Extrema: notw. Bed.: f

Mehr

I. Defintionsmenge - Nullstellen ======================================================================

I. Defintionsmenge - Nullstellen ====================================================================== I. Defintionsmenge - Nullstellen Gleichungstyp Lösung = a x = lna e bx = a x = b lna a e 2x + b + c = 0 Überführung durch Substitution u = in die quadratische Gleichung au 2 + bu + c = 0 Aufgaben. Bestimme

Mehr

Aufgabe Was wissen Sie über die Symmetrie ganzrationaler Funktionen?

Aufgabe Was wissen Sie über die Symmetrie ganzrationaler Funktionen? R. Brinkmann http://brinkmann-du.de Seite 0.0.0 Lösungen VBKA Ganzrationale Funktionen I Zur Vorbereitung einer Klassenarbeit en: A A A A A A A4 A4 n n Was bedeutet: f(x) = a x + a x +... + a x + a x +

Mehr

Aufgaben zum Aufstellen von Funktionen aus gegebenen Bedingungen

Aufgaben zum Aufstellen von Funktionen aus gegebenen Bedingungen Augaben zum Austellen von Funktionen aus gegebenen Bedingungen 1. Die Parabel Gp ist der Graph der quadratischen Funktion p(. Diese Parabel schneidet die x-achse im Punkt N(6/0). Ihr Scheitelpunkt S(/yS)

Mehr

( 0 ( x) d) Die Funktionsgleichung der Funktion 1 lautet: f( Für x 2 = 0 : Wähle die Werte -1 und 1. Überprüfe x1 = 1,

( 0 ( x) d) Die Funktionsgleichung der Funktion 1 lautet: f( Für x 2 = 0 : Wähle die Werte -1 und 1. Überprüfe x1 = 1, Differentialrechnung IV (Wendepunkte) (Kap 7) (Haben Sie Probleme bei der Bearbeitung dieser Aufgaben versuchen Sie diese in Ihrer Kleingruppe mit Hilfe des Arbeitsbuchs Mathematik zu klären Führt dies

Mehr

x 2 x 1.Untersuchen Sie die Schaubilder der Funktion auf ihre Symmetrieeigenschaften. (Achsensymmetrie/ Punktsymmetrie)

x 2 x 1.Untersuchen Sie die Schaubilder der Funktion auf ihre Symmetrieeigenschaften. (Achsensymmetrie/ Punktsymmetrie) I. Grenzverhalten von Funktionen. Verhalten einer Funktion für bzw.. Bestimmen Sie den Grenzwert a) b) ) ( + ( ) c) ( + ) ( ) II. Symmetrie.Untersuchen Sie die Schaubilder der Funktion auf ihre Symmetrieeigenschaften.

Mehr

Grundwissen Mathematik JS 11

Grundwissen Mathematik JS 11 GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math-naturw u neusprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 957 PEGNITZ FERNRUF 94/48 FAX 94/564 Grundwissen Mathematik JS Was versteht man allgemein unter einer

Mehr

Lösungen Kapitel A: Funktionen

Lösungen Kapitel A: Funktionen Lösungen Kapitel A: Funktionen Arbeitsblatt 01: Abhängigkeiten entstehen a) Zu Beginn des Tages befinden sich 10 Besucher am Strand. Bis um 4 Uhr nachts haben alle den Strand verlassen. Um 6 Uhr sind bereits

Mehr

Abschlussaufgabe Nichttechnik - Analysis II

Abschlussaufgabe Nichttechnik - Analysis II Analysis NT GS - 0.06.06 - m06_ntalsg_gs.mcd Abschlussaufgabe 006 - Nichttechnik - Analysis II.0 Gegeben sind die reellen Funktionen fx ( ) mit ID f = ID g = IR. ( ) = x und gx ( ) = fx ( ) +. Zeigen Sie,

Mehr

Mathematik EF. Bernhard Scheideler

Mathematik EF. Bernhard Scheideler Mathematik EF Bernhard Scheideler Stand: 7. September 20 Inhaltsverzeichnis Die Kurvendiskussion. Stetigkeit und Differenzierbarkeit:....................2 Standardsymmetrie:............................

Mehr

, a n 2. p(x) = a n x n + a n 1. x n a 2 x 2 + a 1 x + a 0. reelles Polynom in der Variablen x vom Grad n. Man schreibt deg p(x) = n

, a n 2. p(x) = a n x n + a n 1. x n a 2 x 2 + a 1 x + a 0. reelles Polynom in der Variablen x vom Grad n. Man schreibt deg p(x) = n . Graphen gebrochen rationaler Funktionen ==================================================================. Verhalten in der Umgebung der Definitionslücken ------------------------------------------------------------------------------------------------------------------

Mehr

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13 Musteraufgaben ab 08 Pflichtteil Aufgabe Seite / BEISPIEL A. Geben Sie Lage und Art der Nullstellen der Funktion f mit f( x) ( x ) ( x ) ; x IR an.. Bestimmen Sie die Gleichung der Tangente in P( f ())

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Eine Dokumentation von Sandro Antoniol Klasse 3f Mai 2003 Inhaltsverzeichnis: 1. Einleitung...3 2. Grundlagen...4 2.1. Symmetrieeigenschaften von Kurven...4 2.1.1. gerade Exponenten...4 2.1.2. ungerade

Mehr

Differenzial- und Integralrechnung II

Differenzial- und Integralrechnung II Differenzial- und Integralrechnung II Rainer Hauser Dezember 011 1 Einleitung 1.1 Ableitung Die Ableitung einer Funktion f: R R, x f(x) ist definiert als f (x) = df(x) dx = d f(x + h) f(x) f(x) = lim dx

Mehr

5.5. Prüfungsaufgaben zur graphischen Integration und Differentiation

5.5. Prüfungsaufgaben zur graphischen Integration und Differentiation 5.5. Prüfungsaufgaben zur graphischen Integration und Differentiation Aufgabe : Verschiebung und Streckung trigonometrischer Funktionen (5) a) Bestimmen Sie die Periode p sowie die Nullstellen der Funktion

Mehr

2.2 Bestimmen Sie für folgende Funktionen die jeweilige Ableitungsfunktion mit Hilfe der

2.2 Bestimmen Sie für folgende Funktionen die jeweilige Ableitungsfunktion mit Hilfe der II Grlagen der Differentialrechnung Kurvendiskussion (Kapitel ) Schuljahr 7- FOS Kostenlose Funktionenplotter zur Überprüfung Ihrer Skizzen Ihrer Wertetabellen finden Sie zb auf matheplotterde (online

Mehr

3. Ganzrationale Funktionen

3. Ganzrationale Funktionen 3. Gnzrtionle Funktionen ) Definitionen und Beispiele Definition: Eine gnzrtionle Funktion n-ten Grdes ht ls Definitionsterm ein Polynom n-ten Grdes, d.h. y = f() = n n n-1 n-1 1 0. n 0, i ( i = 1, n)

Mehr

Abschlussprüfung Mathematik 12 Nichttechnik A II - Lösung

Abschlussprüfung Mathematik 12 Nichttechnik A II - Lösung GS 9.6.7 - m7_nt-a_lsg_gs.pdf Abschlussprüfung 7 - Mathematik Nichttechnik A II - Lösung Teilaufgabe. Der Graph einer ganzrationalen Funktion f vierten Grades mit D f IR ist symmetrisch zur y-achse und

Mehr

Arbeiten ( )

Arbeiten ( ) Lösungen für die Prüfung zu Einführung in das mathematische Arbeiten (3.2.2002). Dieses Beispiel ist eine umgekehrte Kurvendiskussion. (a) Um die Koeffizienten von f zu bestimmen, können wir ansetzen f(x)

Mehr

13. Funktionen in einer Variablen

13. Funktionen in einer Variablen 13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier

Mehr

Funktionen untersuchen

Funktionen untersuchen Funktionen untersuchen Mögliche Fragestellungen Definition: lokale und globale Extrema Monotonie und Extrema Notwendige Bedingung für Extrema Hinreichende Kriterien, Vergleich Krümmungsverhalten Neumann/Rodner

Mehr

1.2 Weisen Sie rechnerisch nach, dass das Schaubild der Funktion mit 4P! bei 1 einen Sattelpunkt aufweist.

1.2 Weisen Sie rechnerisch nach, dass das Schaubild der Funktion mit 4P! bei 1 einen Sattelpunkt aufweist. Aufgabe A1 1.1 Erläutere anhand einer Skizze, ob das Integral 3P größer, kleiner oder gleich Null ist. 1.2 Für eine Funktion gilt: (1) 0 für 2 und 1 (2) 23 (3) 13 (4) 2 (5) 1 6 Welche Aussagen lassen sich

Mehr

Abschlussprüfung Berufliche Oberschule 2013 Mathematik 12 Nichttechnik - A I - Lösung. = x x 2 2a x

Abschlussprüfung Berufliche Oberschule 2013 Mathematik 12 Nichttechnik - A I - Lösung. = x x 2 2a x Abschlussprüfung Berufliche Oberschule 0 Mathematik Nichttechnik - A I - Lösung Teilaufgabe.0 Gegeben sind die reellen Funktionen f mit dem Funktionsterm f a ( x) wobei x, a IR und a 0. = x a x a x, Teilaufgabe.

Mehr

Abitur 2017 Mathematik Infinitesimalrechnung I

Abitur 2017 Mathematik Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung I Gegeben ist die Funktion g : x 2 4 + x 1 mit maximaler Definitionsmenge D g. Der Graph von g wird mit G g bezeichnet.

Mehr

Abitur 2010 Mathematik GK Infinitesimalrechnung I

Abitur 2010 Mathematik GK Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2010 Mathematik GK Infinitesimalrechnung I Teilaufgabe 2 (4 BE) Gegeben ist für k R + die Schar von Funktionen f k : x 1 Definitionsbereich D k. Der

Mehr