Schall. - im Tierreich

Größe: px
Ab Seite anzeigen:

Download "Schall. - im Tierreich"

Transkript

1 Fotolia.com/Michael Rosskothen Fotolia.com/cheri131 Schall - im Tierreich Jedes Lebewesen auf der Erde nimmt mit dem Ohr am Tag Millionen von verschiedenen Geräuschen wahr. Der Schall hat eine unterschiedliche Intensität und Frequenz. Es kommt auch darauf an, wie weit das Geräusch vordringt. Anita, 4c Daniela, 4c Katja, 4c Valerie, 4c Hannah, 4c

2 Inhaltsverzeichnis Einleitung Allgemeines zum Schall Signal 440 Hertz Schall im Tierreich Kommunikation mittels Infraschall Die Gesänge der Wale Das Hörvermögen der Fledermäuse Der Delfin Quellen Bilder Texte

3 Einleitung Schall, das sind Wellen, die sich in der Luft ausbreiten, aber die man nicht sieht, dennoch hören bzw. spüren kann. Wenn ein Gegenstand herunterfliegt, dann wird die Luft neben dem Gegenstand vorbeigeleitet und ein Luftzug schlägt uns entgegen, den wir wahrnehmen können. Es entstehen auch Schallwellen, die man mit dem Ohr wahrnehmen kann. Etwas genauer beschrieben: Schall ist im Grunde nichts anderes als eine Reihe kurzweiliger Luftdruckveränderungen. Diese Schallwellen werden vom Außenohr, vergleichbar mit dem Membrantrichter eines Grammophons, aufgefangen und durch den äußeren Gehörgang zum Trommelfell geleitet. Dort werden die akustischen Schwingungen in mechanische Schwingungen»übersetzt«und von den Gehörknöchelchen Hammer, Amboß und Steigbügel verstärkt. Schall ist eine physikalische Größe. Man kann Schall mit dem Schallmeßgerät messen und die Meßwerte in den Einheiten Phon, db und µbar angeben. Auf einem Quadratmeter wird eine bestimmte Energiemenge an Schall(-druck) gemessen (W/m2); dieses Energievolumen pro Quadratmeter wird Schallintensiät genannt. Die Schallintensität kann unter anderem mit dem Barometer (in bar) gemessen werden, dabei wird aber ein beständiger Schalldruck angegeben. Das heißt, Schallwellen von Tönen werden von dem Barometer nicht berücksichtigt. In diesem Heft werden die verschiedenen Möglichkeiten der Schallaufzeichnung und die Entwicklung des Grammophons erklärt. Außerdem wird auf die Stereophonie auch eingegangen. Alle diese Themen fallen in das Gebiet der Schallakustik. Der hunderttausendste Teil des Atmosphärendrucks auf einem Quadratmeter hat den Wert von einem Pascal. Ein Pascal ist der Druck, der von einem Newton auf ein Quadratmeter ausgeübt wird. Das Ohr nimmt die für uns Menschen im Hörbereich liegenden Frequenzen der Schallwellen wahr. Der Hörbereich bei Menschen liegt im Bereich von 20 bis Hertz (bei Hunden Hz, Katzen Hz, Delphinen Hz, Fledermäuse Hz, Grillen Hz), dabei ist der niedrigste Wert die»hörschwelle«(nullpegel), der höchste Wert die»schmerzschwelle«. Das zwischen Hörschwelle und Schmerzschwelle liegende Gebiet heißt»hörfeld«oder»hörbereich«. Lautstärke und Entfernungshören sind frequenzabhängig. Die Frequenz T ist die Anzahl der Schwingungen pro Sekunde, eine Periode eine vollständige Hin- und Herbewegung, eine Amplitude ymax die höchste Auslenkung der Schwingung und eine Elongation y die momentane Auslenkung von der Gleichgewichtslage. Die Periodendauer gibt die Zeit für eine Periode T an.

4 Unsere Quelle war das Internet, wo wir gemeinsam verschiedene Informationen herausgesucht haben, und dann zusammenfügt haben. Insgesamt haben wir in der Schule ein paar Stunden recherchiert und es dann später richtig ausgearbeitet (Daniela/ Katja). Unser Spezialthema ist der Schall in der Tierwelt, weil wir darauf aufmerksam machen möchten, dass nicht nur Menschen ein sensibles Gehör haben. Die meisten Tiere haben ein noch besseres Gehör als die Menschen. Link: selbst geschrieben

5 Allgemeines zum Schall Die Wahrnehmung von Tönen und Geräuschen wird durch ein Phänomen ausgelöst, das der Physiker als Schall bezeichnet. Schallwellen sind Schwingungen, die sich über die Luft, das Wasser oder in festen Gegenständen ausbreiten können. Im luftleeren Raum ist dagegen keine Ausbreitung möglich. Die Schwingungen werden durch die Frequenz beschrieben. Ihre Maßeinheit ist 1 Hertz. Sie gibt die Anzahl der Schwingungen pro Sekunde an: 1 Hertz bedeutet eine Schwingung pro Sekunde. Je höher die Frequenz und je größer die Hertzzahl, umso höher erscheint uns der Ton. In Gasen und Flüssigkeiten breitet sich der Schall im Gegensatz zu den Transversalwellen des Lichts als Longitudonalwelle aus. Diese schwingen in Richtung der Ausbreitung, während Transversalwellen senkrecht dazu schwingen. Longitudonale Welle langsame Animation Longitudonale Welle schnelle Animation

6 Je größer der Ausschlag der Schwingung, bzw. je höher die Auslenkung der Amplitude ist, umso lauter erscheint uns der Ton. Die Lautstärke eines Tones drückt sich im Schallpegel (oder im Schalldruck) aus. Sie wird in der Physik in der logarithmischen Einheit Dezibel (db), bzw. beim menschlichen Ohr als db (A) angegeben. Eine Zunahme um 10 db (A) bedeutet, dass das Ohr die Lautstärke doppelt so laut empfindet. Schallpegel aus der Umwelt Werte in Dezibel beim menschlichen Ohr Rauschen des Waldes 10 db (A) Ticken einer Standuhr 20 db (A) Flüstern 30 db (A) Ruhige Unterhaltung 40 db (A) Normale Unterhaltung 50 db (A) Laute Unterhaltung 60 db (A) Schreibmaschine 70 db (A) Staubsauger, Straßenverkehr 80 db (A) vorbeifahrender LKW 90 db (A) Presslufthammer 100 db (A) Popgruppe 110 db (A) Propellerflugzeug 120 db (A) Schmerzgrenze des Ohres 130 db (A) Jumbojet beim Start 140 db (A) Zahlen zum Ohr des Menschen Durchschnittswerte für ein Ohr Durchmesser des Trommelfells: 1 Zentimeter Dicke des Trommelfells: 0,1 Millimeter Durchmesser des ovalen Fensters: 4 Millimeter Länge der Grundmembran: 3,4 Millimeter Zahl der Sinneszellen: Windungszahl der Schnecke: 2,5 Windungen Räumliches Auflösungsvermögen: 8,4 Grad Obergrenze der Hörfähigkeit im Alter 5 Jahre: 21 khz 20 Jahre: 18 khz 35 Jahre: 15 khz 50 Jahre: 12 khz 65 Jahre: 9 khz 80 Jahre: 5 khz Der Hörbereich eines jungen Menschen liegt zwischen 20 und Hertz. Im Alter nimmt der Hörbereich des Menschen ab. Frequenzen unterhalb des Hörbereichs liegen im Infraschallbreich, Töne oberhalb im Ultraschallbereich. In einem Test kann die obere Hörgrenze getestet werden: Die Dateien spielen ein Sinus-Signal ab. Höre zunächst ein Signal mit der Frequenz von 440 Hertz, das dem Kammerton "a" einer Stimmgabel entspricht. Stelle die Lautstärke am Lautsprecher nicht zu laut, so dass ein angenehmer Ton entsteht. Signal 440 Hertz Höre nun die Signale aufwärts ab 1000 Hertz an. Sobald im oberen Bereich kein Piepsen mehr zu hören ist, wird die Hörgrenze erreicht. Sinussignale - Frequenzen in Hertz

7 Das Richtungshören wird durch das Vorhandensein von zwei Ohren ermöglicht. Ein Geräusch auf der rechten Körperseite kommt am rechten Ohr um eine kurze Zeiteinheit eher an als am linken. Aufgrund dieses Unterschieds errechnet das Gehirn die Richtung der ankommenden Schallwelle. Im Tierreich können die Eulen die Richtung und auch die Distanz einer Schallquelle besonders gut orten. Ihr Gesichtsschleier wirkt wie zwei Parabolantennen mit Schallverstärkung. Außerdem sind ihre Ohröffnungen links und rechts in unterschiedlicher Höhe angebracht. Eine vom Boden kommende Schallwelle erreicht daher ein Ohr eher als das andere. Aufgrund der Differenz kann das Gehirn der Eulen die Höhe oder die Tiefe der Schallquelle relativ genau orten. Dies ist beim Fangen von Mäusen bei Dunkelheit von großer Bedeutung.

8 Fotolia.com/unpict Fotolia.com/Nadine Haase Schall im Tierreich Kommunikation mittels Infraschall Für den Menschen nicht hörbar ist die "Geheimsprache" der Elefanten. Diese unterhalten sich keineswegs nur über Trompetenlaute, die sie überwiegend zur Begrüßung einsetzen. Elefanten nutzen zudem sogenannte Infraschalllaute. Das sind Töne mit einer Frequenz von etwa 20 Hertz. Bei Elefanten können sie die Lautstärke eines Gewitterdonners erreichen. Mithilfe dieser Töne können sich die Tiere über mehrere Kilometer verständigen, da sich Infraschall hervorragend über große Entfernungen ausbreitet. So finden zum Beispiel Elefantenmännchen und -weibchen in der Paarungszeit mit Hilfe von Infraschalllauten zusammen. Für Menschen ist Infraschall zu tief, um ihn zu hören. Wir spüren ihn höchstens als eine Art Vibration. Die Gesänge der Wale Elefanten sind nicht die einzigen Tiere, die Infraschall hören und erzeugen können. Auch Nilpferde benutzen ihn zur Kommunikation - an Land wie im Wasser. Hier breitet sich der Schall um etwa das Vierfache schneller aus als in der Luft. Auch die Meister des Infraschalls leben unter Wasser: Wale. Sie nutzen ihn vor allem zur Revierabgrenzung, um den Gruppenzusammenhang zu stärken und während der Paarungszeit. Wissenschaftler sind sich jedoch nicht einig darüber, ob die Töne Rivalen in Schach halten oder Weibchen imponieren sollen. Sicher ist: Die Laute des Wales sind ohrenbetäubend. Die gewaltige Stimme eines Blauwals - mit mehr als 30 Metern Länge das größte Tier der Erde - besitzt eine Schallenergie, die der eines startenden Space-Shuttles nahekommt. Walforscher gehen davon aus, dass sich die Giganten der Meere mit Hilfe von Infraschall über mehrere hundert, wenn nicht sogar tausend Kilometer verständigen können.

9 MEV Verlag/Andreas Becker Fotolia.com/cheri131 Das Hörvermögen der Fledermäuse Fledermäuse benutzen hochtonige Rufe, um sich zu orientieren und Beute in der Luft über das vom Körper reflektierte Echo zu orten. Ihre Rufe liegen im Bereich von 15 bis 150 khz, sind also weitgehend im Ultraschall angesiedelt. Menschen können, wenn sie ein gutes Gehör haben, manchmal die tiefsten Töne von Fledermausrufen hören. Kleine Fledermäuse benutzen zur Echoorientierung allerdings nur Ultraschallrufe, die für uns unhörbar sind. Der Delfin Delfine haben ein sehr gut entwickeltes Hörvermögen. Es hat für die Orientierung unter Wasser, die Ortung von Jagdbeute und die Verständigung eine sehr große Bedeutung. Delfine können Töne von 1 bis 150 khz hören. Am empfindlichsten sind sie für Frequenzen im Bereich von 40 bis 100 khz. Auch tiefere Frequenzen als 1 khz werden wahrgenommen, wenn diese laut genug sind. Hinter den Augen haben Delfine kleine Ohröffnungen. Einige Forscher vermuten, dass Delfine durch die Ohröffnungen die tiefen Töne aufnehmen, andere glauben, dass die Ohröffnungen keine Funktion haben. Die Tonaufnahme der hohen Töne erfolgt mit hoher Sicherheit über den Unterkiefer. Die raffinierte Konstruktion des Hörapparats ermöglicht den Delfinen ein sehr gutes Richtungshören. Sie stoßen Klicklaute aus, um mithilfe von Echogeräuschen Beute zu orten.

10 Quellen Bilder: Texte:

2. Physikschulaufgabe

2. Physikschulaufgabe Thema: Akustik 1. Akustik ist die Lehre vom Schall. Erläutere, was du unter Schall verstehst. 2. Nenne die verschiedenen Schallarten. Wodurch unterscheiden sie sich? 3. Wie entsteht Schall prinzipiell?

Mehr

Physik & Musik. Lärm & Lärmschutz. 1 Auftrag

Physik & Musik. Lärm & Lärmschutz. 1 Auftrag Physik & Musik 10 Lärm & Lärmschutz 1 Auftrag Physik & Musik Lärm& Lärmschutz Seite 1 Lärm und Lärmschutz Bearbeitungszeit: 1 Stunde Sozialform: Einzel- oder Partnerarbeit Einleitung Sie haben sicher auch

Mehr

Physik & Musik. Hundepfeife & Sirene. 2 Aufträge

Physik & Musik. Hundepfeife & Sirene. 2 Aufträge Physik & Musik 6 Hundepfeife & Sirene 2 Aufträge Physik & Musik Hundepfeife & Sirene Seite 1 Hundepfeife und Sirene Bearbeitungszeit: 45 Minuten Sozialform: Einzel- oder Partnerarbeit Voraussetzung: Posten

Mehr

Eingeschränktes Hörvermögen (1)

Eingeschränktes Hörvermögen (1) Eingeschränktes Hörvermögen (1) In dem Video führt der Audiologe (ein HNO Arzt, der Personen mit Hörstörungen behandelt) verschiedene Verfahren durch, um die Art der Schwerhörigkeit festzustellen. Konsultation:

Mehr

Was ist Lärm? Schall. Ton, Klang und Geräusch

Was ist Lärm? Schall. Ton, Klang und Geräusch Theoretische Grundlagen Was ist Lärm? Um das Phänomen Lärm verstehen zu können und um sich im Dschungel der später verwendeten Fachausdrücke nicht zu verlieren, sollte man über die wesentlichen physikalischen

Mehr

3.4 Frequenzbereiche, Ultraschall

3.4 Frequenzbereiche, Ultraschall 3.4 Frequenzbereiche, Ultraschall Frequenzbereich, Frequenzspektrum, Reflexion von Schallwellen, Anwendungen Bsp.: Ultraschalluntersuchungen, Farbdoppler für die Analyse von Strömungen (Herzklappenfunktion,

Mehr

EXKURS GERÄUSCHWAHRNEHMUNG. Vortrag von Sibylle Blümke

EXKURS GERÄUSCHWAHRNEHMUNG. Vortrag von Sibylle Blümke EXKURS GERÄUSCHWAHRNEHMUNG Vortrag von Sibylle Blümke INHALT Aufbau des Ohres Wie hören wir? Welche Frequenzen sind wahrnehmbar? Frequenzen in der Musik Bezug auf unser Projekt 2 Sibylle Blümke, Exkurs

Mehr

VORSCHAU. 4. Es werden mechanische und elektromagnetische Wellen unterschieden. Ordne folgende Beispiele.

VORSCHAU. 4. Es werden mechanische und elektromagnetische Wellen unterschieden. Ordne folgende Beispiele. Die mechanischen 1. Entscheide, ob die Aussagen richtig oder falsch sind. Wenn du denkst, es handelt sich um eine falsche Aussage, dann berichtige diese. Aussage richtig falsch Die Aussage müsste richtig

Mehr

Die Pole sind die Stellen der stärksten Anziehungskraft.

Die Pole sind die Stellen der stärksten Anziehungskraft. Name: Klasse: 2 Magnetismus Das Magnetfeld durchdringt die meisten Stoffe. Die Pole sind die Stellen der stärksten Anziehungskraft. So kann man sich das Magnetfeld der Erde vorstellen. Ein Magnet zieht

Mehr

Amplitude, Periode und Frequenz Lesetext, Lückentext, Arbeitsblatt

Amplitude, Periode und Frequenz Lesetext, Lückentext, Arbeitsblatt Lehrerinformation 1/7 Arbeitsauftrag In Partnerarbeiten sollen die Informationen zum Schall zusammengetragen werden und mithilfe des Arbeitsblattes sollen Lückentexte ausgefüllt, Experimente durchgeführt

Mehr

Anfänge in der Antike

Anfänge in der Antike Akustik Eine wesentliche Grundlage der Musik ist der Schall. Seine Eigenschaften erforscht die Akustik (griechisch: ακουειν = hören). Physikalisch ist Schall definiert als mechanische Schwingungen und

Mehr

DER SCHALL ALS MECHANISCHE WELLE

DER SCHALL ALS MECHANISCHE WELLE DER SCHALL ALS MECHANISCHE WELLE I. Experimentelle Ziele Das Ziel der Experimente ist es, die Untersuchung der wesentlichen Eigenschaften von mechanischen Wellen am Beispiel der Schallwellen zu demonstrieren.

Mehr

Physik für Mediziner und Zahnmediziner

Physik für Mediziner und Zahnmediziner Physik für Mediziner und Zahnmediziner Vorlesung 08 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 Schwebung : Lautsprecher und Mikrophon Experiment Beobachtung: Deutung:

Mehr

Von Lärm zu Klang: auditive Wahrnehmung und Lokalisation

Von Lärm zu Klang: auditive Wahrnehmung und Lokalisation Von Lärm zu Klang: auditive Wahrnehmung und Lokalisation VL Wahrnehmung und Aufmerksamkeit, Dipl.-Psych. S. Raisig, Humboldt Universität Berlin, WS 2008/2009 Auditive Wahrnehmung Funktion / Bedeutung Warnsystem

Mehr

Windenergie und Infraschall

Windenergie und Infraschall Windenergie und Infraschall PRÄSENTATIONSVORLAGE: CLEMENS MEHNERT; KOMPETENZZENTRUM WINDENERGIE VORTRAG: DR. HEINRICH MENGES; REFERAT TECHNISCHER ARBEITSSCHUTZ, LÄRM 04.07.2013 Was ist Schall? Schall =

Mehr

TONHÖHE UND LAUTSTÄRKE

TONHÖHE UND LAUTSTÄRKE TONHÖHE UND LAUTSTÄRKE 1 Funktionsgenerator 1 Oszilloskop, Zweikanal 1 Lautsprecher Verbindungsleitungen Range Function LOUD SPEAKER Der Stativreiter wird am Stativfuß H-Form befestigt. An ihm wird die

Mehr

Physik & Musik. Schallgeschwindigkeit. 1 Auftrag

Physik & Musik. Schallgeschwindigkeit. 1 Auftrag Physik & Musik 7 Schallgeschwindigkeit 1 Auftrag Physik & Musik Schallgeschwindigkeit Seite 1 Schallgeschwindigkeit Bearbeitungszeit: 30 Minuten Sozialform: Einzel- oder Partnerarbeit Einleitung Haben

Mehr

D_UP01094.Book Seite 313 Mittwoch, 20. April 2005 5:03 17. Audiogrundlagen

D_UP01094.Book Seite 313 Mittwoch, 20. April 2005 5:03 17. Audiogrundlagen D_UP01094.Book Seite 313 Mittwoch, 20. April 2005 5:03 17 C Audiogrundlagen C Anhang Mit Soundtrack Pro können Sie ohne Hintergrundwissen oder entsprechende Erfahrungen Musikprojekte in Profi-Qualität

Mehr

8. Akustik, Schallwellen

8. Akustik, Schallwellen Beispiel 2: Stimmgabel, ein Ende offen 8. Akustik, Schallwellen λ l = n, n = 1,3,5,.. 4 f n = n f1, n = 1,3,5,.. 8.Akustik, Schallwellen Wie gross ist die Geschwindigkeit der (transversalen) Welle in der

Mehr

Die akustische Analyse von Sprachlauten 1. Zeitsignal, Periodizität, Spektrum. Jonathan Harrington

Die akustische Analyse von Sprachlauten 1. Zeitsignal, Periodizität, Spektrum. Jonathan Harrington Die akustische Analyse von Sprachlauten 1. Zeitsignal, Periodizität, Spektrum Jonathan Harrington Wie entsteht der Schall? 1. Ein Gegenstand bewegt sich und verursacht Luftdruckveränderungen. Luftmoleküle

Mehr

Tontechnik 1. Schalldruck. Akustische Grundbegriffe. Schallwechseldruck Sprecher in 1 m Entfernung etwa 10-6 des atmosphärischen Luftdrucks

Tontechnik 1. Schalldruck. Akustische Grundbegriffe. Schallwechseldruck Sprecher in 1 m Entfernung etwa 10-6 des atmosphärischen Luftdrucks Tontechnik 1 Akustische Grundbegriffe Audiovisuelle Medien HdM Stuttgart Quelle: Michael Dickreiter, Mikrofon-Aufnahmetechnik Schalldruck Schallwechseldruck Sprecher in 1 m Entfernung etwa 10-6 des atmosphärischen

Mehr

Physik & Musik. Gehör. 2 Aufträge

Physik & Musik. Gehör. 2 Aufträge Physik & Musik 9 Gehör 2 Aufträge Physik & Musik Gehör Seite 1 Gehör Bearbeitungszeit: 20 Minuten Sozialform: Partnerarbeit Einleitung Schall ist lediglich eine Abfolge von kleinen Druckunterschieden,

Mehr

SCHREINER LERN-APP: « SCHALLSCHUTZ»

SCHREINER LERN-APP: « SCHALLSCHUTZ» Wie breitet sich Schall aus? Was ist der akkustische Unterschied zwischen einem Ton und einem Geräusch? Was gibt die Frequenz an? Was gibt der Schalldruck an? 443 Schallausbreitung 444 Ton - Geräusch 445

Mehr

Aufgaben Mechanische Wellen

Aufgaben Mechanische Wellen I.2 Unterscheidung von Wellen 1. Beschreibe, in welche zwei Arten man Wellenvorgänge einteilen kann. 2. Welche Arten von mechanischen Wellen gibt es in folgenden Medien: a) Luft, b) Wasser, c) Stahl? I.3

Mehr

Gehör. Ein Referat von Steffen Wiedemann

Gehör. Ein Referat von Steffen Wiedemann Gehör Ein Referat von Steffen Wiedemann E1VT2,März 2001 1. Der Aufbau des menschlichen Ohres Das Ohr wird in drei Teile unterteilt, das Außenohr, das Mittelohr und das Innenohr. Das Außenohr besteht aus

Mehr

ANHANG MASSE UND GEWICHTSKRAFT

ANHANG MASSE UND GEWICHTSKRAFT ANHANG Arbeitsblatt Name: MASSE UND GEWICHTSKRAFT 1. Führe 10 Messungen durch! Auf dem Display wird die gewichtskraft in Newton (N) angegeben. 10 g Massestück N 20 g Massestück N 50 g Massestück N 100

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 5 bis 6: Schall - Physik und Musik

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 5 bis 6: Schall - Physik und Musik Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt für die Klassen 5 bis 6: Schall - Physik und Musik Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT

Mehr

EINLEITUNG PHYSIKALISCHE CHARAKTERISTIKA

EINLEITUNG PHYSIKALISCHE CHARAKTERISTIKA EINLEITUNG Schall, Schwingungen oder Wellen, die bei Mensch oder Tier über den Gehörsinn Geräuschempfindungen auslösen können. Das menschliche Ohr ist in der Lage, Schall mit Frequenzen zwischen ungefähr

Mehr

Der Schall. L p = 20 lg p p 0

Der Schall. L p = 20 lg p p 0 Der Schall Aufgabennummer: B_067 Technologieeinsatz: möglich erforderlich S Als Schalldruck p werden die Druckschwankungen eines kompressiblen Schallübertragungsmediums (üblicherweise Luft) bezeichnet,

Mehr

Hören unter Wasser Arbeitsblatt

Hören unter Wasser Arbeitsblatt Lehrerinformation 1/5 Arbeitsauftrag Die SuS lösen ein zum Thema. Ziel Die SuS wissen, wie Fische und Delfine hören. Material Sozialform EA Zeit 30 Zusätzliche Informationen: Beispiele von Walgesängen

Mehr

Windenergie und Infraschall CLEMENS MEHNERT KOMPETENZZENTRUM WINDENERGIE

Windenergie und Infraschall CLEMENS MEHNERT KOMPETENZZENTRUM WINDENERGIE Windenergie und Infraschall CLEMENS MEHNERT KOMPETENZZENTRUM WINDENERGIE Über die LUBW Die LUBW ist das Kompetenzzentrum des Landes Baden-Württemberg in Fragen des Umwelt- und Naturschutzes, des technischen

Mehr

Vorwort. Der Lärm gilt als eine der häufigsten täglichen Umweltbelästigungen. Vor allem die Menschen in der Stadt haben darunter zu leiden.

Vorwort. Der Lärm gilt als eine der häufigsten täglichen Umweltbelästigungen. Vor allem die Menschen in der Stadt haben darunter zu leiden. Vorwort Der Lärm gilt als eine der häufigsten täglichen Umweltbelästigungen. Vor allem die Menschen in der Stadt haben darunter zu leiden. Es gibt verschiedene Lärmquellen und es hängt von mehreren Kriterien

Mehr

Wir. sehen Augenmuskel Slow Food Deutschland e.v. www.slowfood.de. Iris (Regenbogenhaut) Netzhaut (Retina) Linse. Pupille (Sehloch) Hornhaut.

Wir. sehen Augenmuskel Slow Food Deutschland e.v. www.slowfood.de. Iris (Regenbogenhaut) Netzhaut (Retina) Linse. Pupille (Sehloch) Hornhaut. Im Dunkeln können wir nichts sehen. Unser Auge nimmt nur Licht wahr. Das Auge ist eigentlich eine Kugel, die zum größten Teil im Kopf verborgen ist. Die farbige Regenbogenhaut (Iris) umrahmt die Pupille.

Mehr

9. Akustik. I Mechanik. 12. Vorlesung EP. 7. Schwingungen 8. Wellen 9.Akustik

9. Akustik. I Mechanik. 12. Vorlesung EP. 7. Schwingungen 8. Wellen 9.Akustik 12. Vorlesung EP I Mechanik 7. Schwingungen 8. Wellen 9.Akustik Versuche: Stimmgabel und Uhr ohne + mit Resonanzboden Pfeife Schallgeschwindigkeit in Luft Versuch mit Helium Streichinstrument Fourier-Analyse

Mehr

Digitale Medien im Unterricht

Digitale Medien im Unterricht Digitale Medien im Unterricht Thema 3 Menschliche Wahrnehmung und menschliche Informationsverarbeitung Dr. Henry Herper / Dr. Volkmar Hinz Menschliche Informationsverarbeitung Menschliche Wahrnehmung Zur

Mehr

Für c doppelt so lang wie für c = 60 cm. Für C doppelt so lang wie für c = 120 cm.

Für c doppelt so lang wie für c = 60 cm. Für C doppelt so lang wie für c = 120 cm. Auflösung Schallquellen In einem bestimmten Pfeifensatz einer Orgel beträgt die klingende Länge für die Note c (f= 524 Hz) 30cm. Wie lange wird ihrer Meinung nach die Pfeife für den Ton c (f= 262 Hz) sein?

Mehr

Bauphysik: Schallschutz

Bauphysik: Schallschutz 4.2.12 Bauphysik: Schallschutz 4.2.12 Bauphysik: Schallschutz Fragestellungen, die wir nun erarbeiten 1. Welche Lärmquellen beeinträchtigen behagliches Wohnen? 2. Wo muss der Schreiner auf Schallschutz

Mehr

Erläutere die Entstehung von Geräuschen. Wie gelangen sie in das Ohr?

Erläutere die Entstehung von Geräuschen. Wie gelangen sie in das Ohr? Was ist Schall? 1 Erläutere die Entstehung von Geräuschen. Wie gelangen sie in das Ohr? Geräusche entstehen durch (unregelmäßige) Schwingungen einer Schallquelle, z. B. durch Vibration einer Gitarrensaite

Mehr

Geschichtlicher Rückblick

Geschichtlicher Rückblick Akustik, die Lehre vom Schall Schall entsteht durch Schwingungen von elastischen Körpern. Die durch Schlagen oder Klopfen ausgelösten Schwingungen von Gegenständen (= Schallquellen) werden durch feste,

Mehr

u(z, t 0 ) u(z, t 0 + t) z = c t Harmonische Welle

u(z, t 0 ) u(z, t 0 + t) z = c t Harmonische Welle u(z, t) l u(z, t + t) z Welle: Form der Auslenkung (Wellenlänge l) läuft fort; Teilchen schwingen um Ruhelage (Frequenz f = 1/T) Einheit der Frequenz : Hertz (Hz) : 1 Hz = 1/s Geschwindigkeit Wellenlänge

Mehr

Lösungsblatt Richtungshören

Lösungsblatt Richtungshören Richtungshören A Wissenswertes Der Schall breitet sich mit einer bestimmten Geschwindigkeit aus (in Luft ca. 340 m/s), d.h. er legt in einer bestimmten Zeit einen bestimmten Weg zurück. Das ist ein Grund,

Mehr

Unser Gehör. Das Ohr führt die Welt in den Menschen. Erkennst du dein Ohr und die einzelnen Elemente auf dem Bild?

Unser Gehör. Das Ohr führt die Welt in den Menschen. Erkennst du dein Ohr und die einzelnen Elemente auf dem Bild? Unser Gehör Das Ohr führt die Welt in den Menschen Erkennst du dein Ohr und die einzelnen Elemente auf dem Bild? as Alle Töne und Geräusche der Umwelt sind Luftschwingungen und treffen als sogenannte Schallwellen

Mehr

Das Gehirn. Chemie Mechanik. Optik

Das Gehirn. Chemie Mechanik. Optik Hören Das Gehirn Chemie Mechanik Optik Hörbereich 20 20.000 Hz 10 3.000 Hz 20 35.000 Hz 1000 10.000 Hz 10 100.000 Hz 1000 100.000 Hz Hörbereich Menschliches Ohr: Wahrnehmbarer Frequenzbereich 16 Hz 20.000

Mehr

Hören WS 2009/2010. Hören. (und andere Sinne)

Hören WS 2009/2010. Hören. (und andere Sinne) WS 2009/2010 Hören (und andere Sinne) Hören Chemie Mechanik Optik Hörbereich 20 16.000 Hz 10 3.000 Hz 20 35.000 Hz 1000 10.000 Hz 10 100.000 Hz 1000 100.000 Hz Hörbereich Menschliches Ohr: Wahrnehmbarer

Mehr

1 Grundlagen. Grundlagen 9

1 Grundlagen. Grundlagen 9 1 Grundlagen Der Begriff Akustik stammt aus der griechischen Srache (ἀκούειν akoyein: hören) und bedeutet die Lehre vom Schall und seiner Ausbreitung. Er umfasst die Schwingungen in gasförmigen, flüssigen

Mehr

Ultraschall. -Was ist Ultraschall genau?

Ultraschall. -Was ist Ultraschall genau? Ultraschall -Was ist Ultraschall genau? Ultraschall - Ultraschallwelllen sind für uns Menschen nicht hörbare Schallwellen. Sonographie -Wie funktioniert eine Sonographie? -Wozu braucht man eine Ultraschalluntersuchung?

Mehr

Physikalisches Praktikum S 1 Dopplereffekt mit Ultraschall

Physikalisches Praktikum S 1 Dopplereffekt mit Ultraschall Physik-Labor Fachbereich Elektrotechnik und Informatik Fachbereich Mechatronik und Maschinenbau Physikalisches Praktikum S 1 Dopplereffekt mit Ultraschall Versuchsziel Geschwindigkeitsmessung mit Hilfe

Mehr

1 Eigenschaften von Schall

1 Eigenschaften von Schall 1 Eigenschaften von Schall 1.1Schalldruck und Pegel Schall ist eine periodische Druckschwankung, verursacht z.b. durch Sprechen, die sich in einem elastischen Medium ausbreitet. Physikalisch ist Schall

Mehr

Beeinträchtigt der durch Windenergieanlagen verursachte Infraschall die Gesundheit?

Beeinträchtigt der durch Windenergieanlagen verursachte Infraschall die Gesundheit? Beeinträchtigt der durch Windenergieanlagen verursachte Infraschall die Gesundheit? VHS Erlangen 25. März 2014 Zentrale Fragen Infraschall, was ist das überhaupt? Können Menschen Infraschall hören oder

Mehr

Leseprobe. Frequenzen

Leseprobe. Frequenzen Leseprobe Frequenzen Inhaltsverzeichnis Frequenzen Dr. Eric Pearl, Prof. Dr. Bruce Lipton Schumann Frequenzen Dr. Beck Frequenzen Alan E. Baklayan Frequenzen Dr. Clark Frequenzen Royal R. Rife Frequenzen

Mehr

FACHKUNDE. Naturlehre Schall. flüssigen oder gasförmigen Stoffen ausbreiten. Beschreiben Sie die Schallausbreitung. 1. zentrisch (kugelförmig)

FACHKUNDE. Naturlehre Schall. flüssigen oder gasförmigen Stoffen ausbreiten. Beschreiben Sie die Schallausbreitung. 1. zentrisch (kugelförmig) Was versteht man unter mech. Schwingungen, die sich in festen, flüssigen oder gasförmigen Stoffen ausbreiten Beschreiben Sie die ausbreitung 1. Wie breiten sich wellen aus? 2. Was entsteht in der Luft?

Mehr

Schallwellen. Klassizifierung. Audioschall. hörbar für das menschliche Ohr. Frequenzen geringer als 16 Hz. Frequenzen höher als 20 khz

Schallwellen. Klassizifierung. Audioschall. hörbar für das menschliche Ohr. Frequenzen geringer als 16 Hz. Frequenzen höher als 20 khz 7a Akustik Schallwellen Klassizifierung nfraschall Frequenzen geringer als 6 Hz Audioschall hörbar für das menschliche Ohr Ultraschall Frequenzen höher als 0 khz Geschwindigkeit von Schallwellen beweglicher

Mehr

Seminar Akustik. Aufgaben zu Teil 1 des Skripts Uwe Reichel, Phil Hoole

Seminar Akustik. Aufgaben zu Teil 1 des Skripts Uwe Reichel, Phil Hoole Seminar Akustik. Aufgaben zu Teil des Skripts Uwe Reichel, Phil Hoole Welche Kräfte wirken auf ein schwingendes Teilchen?! von außen angelegte Kraft (z.b. Glottisimpulse)! Rückstellkräfte (Elastizität,

Mehr

Ultraschallsensoren von Alexandra Bauer

Ultraschallsensoren von Alexandra Bauer Ultraschallsensoren von Alexandra Bauer - 1 - Inhaltsverzeichnis 1. Funktionsweise von Ultraschallsensoren 1.1. Definition von Ultraschallsensoren S. 3 1.2. Probleme die mit beim Arbeiten mit S. 4 US Sensoren

Mehr

Lauter Lärm. Lärm - eine Einführung! mil. Luftraumüberwachungsflugzeug

Lauter Lärm. Lärm - eine Einführung! mil. Luftraumüberwachungsflugzeug Lärm - eine Einführung! mil. Luftraumüberwachungsflugzeug Ing. LAMMER Christian Amt der Steiermärkischen Landesregierung, Fachabteilung 17C Leiter des Referates SEL schall-und erschütterungstechn. ASV

Mehr

1. Messverfahren für Geräuschempfindungen

1. Messverfahren für Geräuschempfindungen 1. Messverfahren für Geräuschempfindungen Dieser Abschnitt befasst sich zwar mit Messverfahren für Geräuschempfindungen, beschränkt sich aber darauf, vereinfachend und allgemein verständlich die grundlegenden

Mehr

Station 1a. Die Stimmgabel

Station 1a. Die Stimmgabel Station 1a Die Stimmgabel Du benötigst: 1 Stimmgabel 1 Glas mit Wasser 1. Schlage die Stimmgabel fest auf die Tischkante und halte sie neben dein Ohr. Was kannst du hören? 2. Schlage die Stimmgabel erneut

Mehr

Stationärer Anteil ca % Direktschall.

Stationärer Anteil ca % Direktschall. Naturschall definiert die physikalischen Gesetze bei der Entstehung und Ausbreitung von Klängen, wie sie die Natur macht. Ein natürlicher Klang (technisch erzeugt) ist dann gegeben, wenn er die gleichen

Mehr

Schall und Hören. Wie wir Schall wahrnehmen und wie das Ohr funktioniert.

Schall und Hören. Wie wir Schall wahrnehmen und wie das Ohr funktioniert. Schall und Hören 1 Wie wir Schall wahrnehmen und wie das Ohr funktioniert. Diese Broschüre ist die erste in einer Reihe, die Widex über die Themen Hören und HörSysteme herausgibt. Was ist Schall? Schall

Mehr

Fortschreitende Wellen. Station C. Was transportieren Wellen? Längs- und Querwellen

Fortschreitende Wellen. Station C. Was transportieren Wellen? Längs- und Querwellen Station A Fortschreitende Wellen a) Skizziere ein Wellental. Stelle darin die Schnelle und die Ausbreitungsgeschwindigkeit c dar. b) Die gemessene Ausbreitungsgeschwindigkeit: c = c) Warum kann nicht ein

Mehr

Mechanische Schwingungen im hörbaren Frequenzbereich von 16 Hz bis 20 khz nennt man Schall.

Mechanische Schwingungen im hörbaren Frequenzbereich von 16 Hz bis 20 khz nennt man Schall. 1 von 7 29.07.2016 12:31 Was ist Schall? Das Wichtigste in Kürze... Mechanische Schwingungen im hörbaren Frequenzbereich von 16 Hz bis 20 khz nennt man Schall. Was ist Schall - eine Definition Damit sich

Mehr

Akustik. 3. Akus t ik. 3.1 Unters c hie dlic he Sc hallart e n im Hörbe re ic h und Ultraschallbereich

Akustik. 3. Akus t ik. 3.1 Unters c hie dlic he Sc hallart e n im Hörbe re ic h und Ultraschallbereich 3. Akus t ik 3.1 Unters c hie dlic he Sc hallart e n im Hörbe re ic h und Ultraschallbereich Grundlagen der Akustik In der Akustik wird versucht, die mannigfaltigen Erscheinungen und das Verhalten des

Mehr

Das Gehör 2 Leben mit Tieren 3/2013

Das Gehör 2 Leben mit Tieren 3/2013 Das Gehör 2 Leben mit Tieren 3/2013 Das Gehör ist bei vielen Tierarten vorhanden, wobei der Sitz des Hörsinnes sehr unterschiedlich sein kann. Dabei kann das Hören sehr viele Funktionen haben: Aufspüren

Mehr

HÖRBAR. Christian Thielemeier

HÖRBAR. Christian Thielemeier 1 HÖRBAR 2 Schallwellen Versuchsprotokoll : Vermutung: Hohe Töne sind stärker. Da einem ja auch schon mal ein hoher Ton in den Ohren weh tut, glaube ich sie haben mehr Kraft. Material: - Eine Röhre (mit

Mehr

Unsere Ohren sind fantastisch

Unsere Ohren sind fantastisch 1 Unsere Ohren sind fantastisch Obwohl wir nur zwei Ohren haben, können sie nach vorne, nach hinten, zur Seite, nach oben und unten gleichzeitig hören. Mit ihrer Hilfe können wir auch Entfernungen abschätzen.

Mehr

Welche Aussage trifft zu? Schallwellen (A) sind elektromagnetische Wellen hoher Energie (B) sind infrarote, elektromagnetische Wellen (C) können sich im Vakuum ausbreiten (D) sind Schwingungen miteinander

Mehr

DOWNLOAD. Akustik: Schall. Grundwissen Optik und Akustik. Nabil Gad. Downloadauszug aus dem Originaltitel: Nabil Gad

DOWNLOAD. Akustik: Schall. Grundwissen Optik und Akustik. Nabil Gad. Downloadauszug aus dem Originaltitel: Nabil Gad DOWNLOAD Nabil Gad : Schall Nabil Gad Grundwissen Optik und 5. 10. Klasse Bergedorfer Kopiervorlagen Downloadauszug aus dem Originaltitel: Schallquellen a) Erkläre, was man unter Schallquellen versteht.

Mehr

1. Allgemeines zur «Kartei Zeichnungsdiktat»

1. Allgemeines zur «Kartei Zeichnungsdiktat» 1. Allgemeines zur «Kartei Zeichnungsdiktat» Gut ausgebildete Fähigkeiten innerhalb der taktilen Wahrnehmung (Tastsinn), des Gleichgewichtssinnes, der Grob- und Feinmotorik, der Körperwahrnehmung, der

Mehr

Einführung in die Physik I. Schwingungen und Wellen 3

Einführung in die Physik I. Schwingungen und Wellen 3 Einführung in die Physik Schwingungen und Wellen 3 O. von der Lühe und U. Landgraf Elastische Wellen (Schall) Elastische Wellen entstehen in Flüssigkeiten und Gasen durch zeitliche und räumliche Veränderungen

Mehr

III. Schwingungen und Wellen

III. Schwingungen und Wellen III. Schwingungen und Wellen III.1 Schwingungen Physik für Mediziner 1 Schwingungen Eine Schwingung ist ein zeitlich periodischer Vorgang Schwingungen finden im allgemeinen um eine stabile Gleichgewichtslage

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

2. Übungstest aus Physik für ET A

2. Übungstest aus Physik für ET A 2. Übungstest aus Physik für ET 14.12.2012 A Zuname: Vorname(n): Matr.Nr.: Übungsgruppe: Jedes abgegebene Blatt muss oben Ihren Namen/Matr.Nr./ Übungsgruppe tragen. 1. Eine Masse m=0,3 kg schwingt ungedämpft

Mehr

Name: PartnerIn in Crime: Datum: Versuch: Ultraschall 1125B

Name: PartnerIn in Crime: Datum: Versuch: Ultraschall 1125B Name: PartnerIn in Crime: Datum: Versuch: Ultraschall 1125B Einleitung Eine Welle wird als ein räumlich und zeitlich verändertes Feld aufgefasst, das in der Lage ist, Energie (aber keine Materie) durch

Mehr

Hören Was ist Schall? Schalldruck. Hören Was ist Schall? Lautstärke. e = 329,63 Hz. Frequenz

Hören Was ist Schall? Schalldruck. Hören Was ist Schall? Lautstärke. e = 329,63 Hz. Frequenz Was ist Schall? hoher Druck Niedrige Frequenz hohe Frequenz Schalldruck niedriger Druck Schalldruck Niedrige Intensität Weg hohe Intensität Weg Periode Was ist Schall? Lautstärke e Ton e = 329,63 Hz Lautstärke

Mehr

1. SCHALLWELLEN. A06 Akustik A06

1. SCHALLWELLEN. A06 Akustik A06 Akustik 1. SCHALLWELLEN Bewegt man eine Blattfeder langsam hin und her, so strömt die Luft einfach um die Blattfeder herum. Schwingt dagegen die Blattfeder hinreichend schnell, so steht der Luft für den

Mehr

Unterrichtskonzept zum Themenbereich Luft Schall (NT 5.1.2)

Unterrichtskonzept zum Themenbereich Luft Schall (NT 5.1.2) Staatsinstitut für Schulqualität und Bildungsforschung Unterrichtskonzept zum Themenbereich Luft Schall (NT 5.1.2) Lehrplanbezug Die Schüler sollen im Natur-und-Technik-Unterricht der Jahrgangsstufe 5

Mehr

Schall ist: durch die Lu0 (oder ein anderes Medium) übertragene Schwingungsenergie.

Schall ist: durch die Lu0 (oder ein anderes Medium) übertragene Schwingungsenergie. Schall ist: durch die Lu0 (oder ein anderes Medium) übertragene Schwingungsenergie. Wenn ein Körper schwingt, versetzt er die Lu6, die ihn umgibt, in gleichar;ge Schwingung. Er wird damit zur Schallquelle.

Mehr

Lärm. Jürgen Buchwald BG RCI, Präventionszentrum Mainz

Lärm. Jürgen Buchwald BG RCI, Präventionszentrum Mainz Lärm Jürgen Buchwald BG RCI, Präventionszentrum Mainz juergen.buchwald@bgrci.de Was ist Lärm? Maschinenhalle Stadion Straßenverkehr Heavy Metal Flugzeuge Klassik Vogel Mücke Seite 2 Definition Lärm ist

Mehr

15:58. Medien Technik. Medientyp Audio. Schnecke. Hörnerv. Eustachisches Rohr (Druckausgleich)

15:58. Medien Technik. Medientyp Audio. Schnecke. Hörnerv. Eustachisches Rohr (Druckausgleich) Medientyp Audio Schnecke Hörnerv Eustachisches Rohr (Druckausgleich) Mittel und Innenohr Mittel innen Ohr Mittel und Innenohr Hörfähigkeit: Mensch: 16 Hz 20.000 Hz größte Empfindlichkeit 1.000 3.000 (5.000)

Mehr

Die Flaschenorgel - Wie entstehen hohe und tiefe Töne?

Die Flaschenorgel - Wie entstehen hohe und tiefe Töne? Die Flaschenorgel - Wie entstehen hohe und tiefe Töne? Themenbereich: Luft Alter der Kinder: 5-6 Jahre (Vorschulkinder) Fragen der Kinder: 1. Warum pfeift die Trillerpfeife beim Schiedsrichter? 2. Warum

Mehr

Erwerb naturwissenschaftlicher Kompetenzen durch das Experimentieren am Beispiel akustischer Phänomene. Silke Mikelskis-Seifert & Klaus Wiebel

Erwerb naturwissenschaftlicher Kompetenzen durch das Experimentieren am Beispiel akustischer Phänomene. Silke Mikelskis-Seifert & Klaus Wiebel Erwerb naturwissenschaftlicher Kompetenzen durch das Experimentieren am Beispiel akustischer Phänomene Silke Mikelskis-Seifert & Klaus Wiebel Eine Begriffsklärung zum Experimentieren Experiment, dass:,

Mehr

Das Auge 1.) Die Physik des Auges Brennpunkt Brennweite Brechkraft Aufgabe:

Das Auge 1.) Die Physik des Auges Brennpunkt Brennweite Brechkraft Aufgabe: Das Auge 1.) Die Physik des Auges Die Hornhaut, die Augenlinse, die Flüssigkeit zwischen Hornhaut und Linse sowie der Glaskörper bilden ein optisches System, das wie eine Sammellinse wirkt. Sammellinsen

Mehr

- Fahrgast in der Straßenbahn - Gepäck auf dem Autodach - Sicherheitsgurt

- Fahrgast in der Straßenbahn - Gepäck auf dem Autodach - Sicherheitsgurt PRÜFUNGSVORBEREITUNG MECHANIK 1.) Nenne das Trägheitsgesetz! Erläutere möglichst genau an folgenden Beispielen aus dem Straßenverkehr, warum Trägheit eine große Rolle bei Fragen der Verkehrssicherheit

Mehr

Facharbeit zum Thema Lärm und Lärmmessung. von Annika Schäfer

Facharbeit zum Thema Lärm und Lärmmessung. von Annika Schäfer Facharbeit zum Thema Lärm und Lärmmessung von Annika Schäfer Inhalt: 1 Lärm 1.1 Was ist Lärm? 1.2 Eine Definition von Lärm 1.3 Warum wird Lärm gemessen? 1.4 Wie wird Lärm gemessen? 2 Lärmmessung 2.1 Zum

Mehr

HARMONISCHE SCHWINGUNGEN

HARMONISCHE SCHWINGUNGEN HARMONISCHE SCHWINGUNGEN Begriffe für Schwingungen: Die Elongation γ ist die momentane Auslenkung. Die Amplitude r ist die maximale Auslenkung aus der Gleichgewichtslage (r >0). Die Schwingungsdauer T

Mehr

Lärm- und Schwingungsmessung

Lärm- und Schwingungsmessung Lärm- und Kapitel 3 im Praktikum-Skript 1 Lärmmessung 2 Theorie Versuch Bedeutung von Lärm Schall/Schalldruck Schalldruckpegel Folgen von Lärm Maßnahmen gegen Lärm Agenda Messung von Industrielärm im Labor

Mehr

Schall und Schallerzeugung Lesetext und Arbeitsblatt

Schall und Schallerzeugung Lesetext und Arbeitsblatt Lehrerinformation 1/5 Arbeitsauftrag SuS lesen einen Hintergrundtext zum Schall und führen praktische Beispiele dazu aus. Ziel Die SuS können Schall auf verschiedene Arten erzeugen und den Zusammenhang

Mehr

Ruhelage. D: Die Ruhelage nimmt ein Oszillator ein, wenn er nicht am Schwingen ist.

Ruhelage. D: Die Ruhelage nimmt ein Oszillator ein, wenn er nicht am Schwingen ist. WELLENLEHRE 1) Harmonische Schwingung 1.1) Fadenpendel Umkehrpunkt ŷ Umkehrpunkt y Ruhelage D: Ein Oszillator ist ein schwingfähiger Körper. D: Die Ruhelage nimmt ein Oszillator ein, wenn er nicht am Schwingen

Mehr

Mechanische Schwingungen

Mechanische Schwingungen Eine mechanische Schwingung ist eine zeitlich periodische Bewegung eines Körpers um eine Ruhelage. Mechanische Schwingungen Mechanische Schwingungen können erwünscht oder unerwünscht sein. erwünschte Schwingungen

Mehr

Der Becher wurde für den Test an einem der Sessel der Fahrgäste befestigt, und die Fahrt konnte losgehen. Das Ergebnis: Der Becher war leer!

Der Becher wurde für den Test an einem der Sessel der Fahrgäste befestigt, und die Fahrt konnte losgehen. Das Ergebnis: Der Becher war leer! Der Becher wurde für den Test an einem der Sessel der Fahrgäste befestigt, und die Fahrt konnte losgehen. Das Ergebnis: Der Becher war leer! Die gesamte Flüssigkeit wurde verschüttet. Das Interessante

Mehr

Tinnitus (Ohrensausen) ein Volksleiden Ursachen und Behandlungsmöglichkeiten. Dr. med. Isabella Wagner HNO-Facharzt LKH Wiener Neustadt

Tinnitus (Ohrensausen) ein Volksleiden Ursachen und Behandlungsmöglichkeiten. Dr. med. Isabella Wagner HNO-Facharzt LKH Wiener Neustadt ein Volksleiden Ursachen und Behandlungsmöglichkeiten Dr. med. Isabella Wagner HNO-Facharzt LKH Wiener Neustadt Was bezeichnet man als Tinnitus? Der Begriff Tinnitus aurium (lat. das Klingeln der Ohren

Mehr

Sinnesorgane: Das menschliche Ohr

Sinnesorgane: Das menschliche Ohr eqiooki.de Das Ohr Seite 1 von 5 Sinnesorgane: Das menschliche Ohr Zugegeben: Es gibt Lebewesen, die wesentlich besser hören können als der Mensch, gar im Ultraschallbereich. Aber dennoch ist auch das

Mehr

7. Wechselspannung und Wechselstrom

7. Wechselspannung und Wechselstrom Bisher wurden nur Gleichspannungen und Gleichströme und die zugehörigen Ein- und Ausschaltvorgänge behandelt. In diesem Kapitel werden Spannungen und Ströme eingeführt, die ihre Richtung zyklisch ändern.

Mehr

3. Der Aufbau und das Arbeiten des Ohres, die Voraussetzungen für unser Hören -I

3. Der Aufbau und das Arbeiten des Ohres, die Voraussetzungen für unser Hören -I die Voraussetzungen für unser Hören -I Das Gehör ist unser wichtigstes und heikelstes Sinnesorgan - auch unser aktivstes. Während die Augen zu jeder Zeit geschlossen werden können, bleiben unsere Ohren

Mehr

m s km v 713 h Tsunamiwelle Ausbreitungsgeschwindigkeit: g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter

m s km v 713 h Tsunamiwelle Ausbreitungsgeschwindigkeit: g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter Wellen Tsunami Tsunamiwelle Ausbreitungsgeschwindigkeit: v g h g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter Berechnungsbeispiel: h=4000 m v 9,81 4000 198 km v 713 h m s Räumliche

Mehr

Prof. Dr. Jochen Koubek Universität Bayreuth Digitale Medien. Akustik

Prof. Dr. Jochen Koubek Universität Bayreuth Digitale Medien. Akustik Prof. Dr. Jochen Koubek Universität Bayreuth Digitale Medien Akustik Schallwellen Schallgeschwindigkeit Medium v in m/s bei 20 C Luft 343 Wasser 1480 Glas 5200 Holz 3300 3400 Stahl ca. 5000 Wolkenscheibeneffekt

Mehr

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler.

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler. Geozentrisches und heliozentrisches Weltbild Geozentrisches Weltbild: Vertreter Aristoteles, Ptolemäus, Kirche (im Mittelalter) Heliozentrisches Weltbild: Vertreter Aristarch von Samos, Kopernikus, Galilei

Mehr

Lärm und Gesundheit. Themen: Lärm ein paar Begriffe ein wenig Physik Auswirkungen - auf das Ohr - auf den ganzen Menschen Prävention

Lärm und Gesundheit. Themen: Lärm ein paar Begriffe ein wenig Physik Auswirkungen - auf das Ohr - auf den ganzen Menschen Prävention 1 Lärm und Gesundheit Themen: Lärm ein paar Begriffe ein wenig Physik Auswirkungen - auf das Ohr - auf den ganzen Menschen Prävention 2 Lärm - subjektives Empfinden 3 Lärm und Gesundheit - Definitionen

Mehr