4 Reihen. s n = a 1 + a a n = Die Folge (s n ) n N der Partialsummen heißt eine (unendliche) Reihe und wird auch als a k. k=1. )n N geschrieben.

Größe: px
Ab Seite anzeigen:

Download "4 Reihen. s n = a 1 + a 2 + + a n = Die Folge (s n ) n N der Partialsummen heißt eine (unendliche) Reihe und wird auch als a k. k=1. )n N geschrieben."

Transkript

1 4 Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle. Sei (a k ) k N eine Folge. Wir definieren die n-te Partialsumme (oder: Teilsumme) der Folge (a k ) k N durch Aufaddieren der ersten n Folgenglieder, also s n = a + a a n = a k für alle n N. Die Folge (s n ) n N der Partialsummen heißt eine (unendliche) ( n Reihe und wird auch als a k )n N geschrieben.

2 Die Bezeichnung n-te Partialsumme bezieht sich auf die Anzahl der aufsummierten Folgenglieder. Beachten Sie, dass zur Darstellung der n-ten Partialsumme mit dem Summenzeichen ein zweiter Laufindex, hier k, benötigt wird. Bei Reihen treten also immer zwei verschiedene Folgen auf: die Folge (a k ) k N der einzelnen Glieder und die Folge (s n ) n N der Partialsummen, das ist dann die Reihe. 2

3 Beispiel 4.. Sei a k = k. Dann ist s n = n = s 3 = = 6, s 0 = = s 00 5, 9 s , 79. 2, 93, k, z.b. Die Reihe (s n ) n N heißt harmonische Reihe. 3

4 2. Ist a k =, dann ist 2 k s 3 = = 7 = 0, s 0 = 023 0, s 00 0, Sei a k = k. Dann ist s 2 = 3, s 0 = = 55, s 00 =

5 4. Sei a k = ( ) k k. Dann ist s 3 = = 5 6, s 0 = s , 6930, s , , 6456, In diesem Fall heißt die Folge (s n ) n N alternierende harmonische Reihe. 5. Ist a k = ( ) k, dann ist die Folge der Partialsummen gegeben durch s =, s 2 = + = 0, s 3 = + + ( ) =, s 4 = 0 und allgemein s 2n = 0 und s 2n = für alle n N. 5

6 Die Graphen der Folgen (s n ) in Beispiel 4.. und 4 sehen folgendermaßen aus. Beispiel 4.: Harmonische Reihe x Beispiel 4.4: Alternierende harmonische Reihe x

7 Ist (a k ) k N eine geometrische Folge, so heißt a k )n N geometrische Reihe. ( n Ist (a k ) k N eine arithmetische Folge, so heißt a k )n N arithmetische Reihe. ( n Da bei geometrischen bzw. arithmetischen Folgen alle Folgenglieder bereits durch a und den Quotienten q bzw. die Differenz d vollständig festgelegt sind, lassen sich auch die Partialsummen allein aus a und q bzw. d berechnen. 7

8 . Sei (a k ) k N eine arithmetische Folge mit a k+ = a k + d. Dann ist ( ) (n ) d s n = a k = n a Ist (a k ) k N eine geometrische Folge mit a k+ s n = a k = q, so ist na falls q =, a k = q n a falls q. q 8

9 Beispiel 4.2. Die Folge a k = 2 k ist geometrisch. Daher bilden die zugehörigen Partialsummen eine geometrische Reihe und lassen sich berechnen durch s n = 2 (/2)n /2 = 2n 2 n, siehe etwa s 0 in Beispiel Die Folge a k = k aus Beispiel 4..3 ist arithmetisch mit d = und a =. Folglich ist die Folge (s n ) n N der Partialsummen eine arithmetische Reihe und die Summen lassen sich berechnen durch ( s n = n + n ) 2 = n(n + ). 2 9

10 3. Für die geometrische Folge a k = 5 3 k ergeben sich die Partialsummen etwa s 0 = s n = 5 3n, 2 4. Ist a k = 3 4k+, dann 3 s n = 4 = 3 k+ 6 ( 4 )n 4 = ( 4 )n. 4 Zum Beispiel ist s 5 = ( 4 )5 4 = ,

11 Da Reihen nur eine spezielle Form von Folgen sind, lassen sich die Begriffe aus dem letzten Abschnitt übertragen. Auch der Grenzwertbegriff lässt sich übertragen. Eine Reihe (s n ) n N mit s n = heißt konvergent (bzw. divergent), wenn sie als Folge konvergiert (bzw. divergiert). Ist sie konvergent, so schreiben wir für den Grenzwert lim s n = lim n n a k a k = a k.

12 Beachten Sie, dass das Symbol a k den Grenzwert der Reihe (und nicht die Reihe selbst) bezeichnet, sofern er existiert. Entsprechend wird die bestimmte Divergenz für Folgen auf Reihen übertragen. Beispiel 4.3. Harmonische Reihe: Die zur Folge ( k ) k N gehörende Reihe ( n k ) n N ist divergent, genauer k =. 2

13 2. Dezimalzahlen: Eine Zahl r = r 0, r r 2 r 3 mit r 0 N 0 und r n {0,..., 9} für n hat den Wert r = r 0 + r 0 + r = r k 0 k Sie ist also gerade der Grenzwert der zur Folge (r k 0 k ) k N0 gehörenden Reihe ( n r k 0 k ) n N0. (Diese Reihe ist tatsächlich immer konvergiert.) 3

14 k 2 +k ) n N kon- 3. Die zur Folge ( k 2 +k ) k N gehörende Reihe ( n vergiert gegen, also k 2 + k =, denn k 2 +k = k k+ k 2 + k = und somit und daher = + k n = n + k + n k + k 2 + k =. 4 k + n +

15 Dabei haben wir benutzt: n k = + k +. Analog zeigt man die Konvergenz der Reihe ( k=2 ) k 2 k n N indem man k 2 k = k k benutzt. 5

16 Es gibt eine sehr einfache notwendige Bedingung für die Konvergenz einer Folge. Satz 4. Ist die Reihe ( n a k) n N konvergent, dann gilt lim a k = 0. k Achtung: die Umkehrung gilt nicht! Die obige Aussage lässt sich auch formulieren als Ist (a k ) k N keine Nullfolge, dann konvergiert die Reihe ( n a k) n N nicht. 6

17 Beispiel 4.4. Die Folge (a k ) k N mit a k = 3k+5 6k ist keine Nullfolge, daher ist die zugehörige Reihe nicht konvergent. 2. Die Folge (a k ) k N mit a k = k ist eine Nullfolge, aber die zugehörige Reihe (das ist genau die harmonische Reihe) ist nicht konvergent. Es folgt nun sofort: Die arithmetische Reihe zu der Folge mit a k+ = a k + d konvergiert nur für a = d = 0. Die Beschreibung des Konvergenzverhaltens geometrischer Reihen ist etwas aufwändiger. 7

18 Grenzwert geometrischer Reihen: Sei (a k ) k N eine geometrische Folge mit a k+ a k = q R und a 0.. Ist q <, dann konvergiert die geometrische Reihe ( n a k) n N, und es gilt a k = lim n a k = lim n a q n q = a q. 2. Für q ist die geometrische Reihe divergent. Beachten Sie, dass hier a k = a q k gilt. Setzen wir a =, so erhalten wir q k = q k für q < = q für q 8

19 Beachten Sie bitte den kleinen Unterschied, wenn die Summation mit k = beginnt: { q q k für q < = q für q Beispiel 4.5 Sei a k = ( ) 2 k 7 und sn = n a k. Dann ist lim s n = n a k = (2) k = = 7 5 Die Konvergenz ist sehr schnell. Es ist zum Beispiel s 0, , s 6, =, 4. 9

20 Durch einige Umformungen lässt sich auch Konvergenzverhalten und Grenzwert der Reihe ( ) 2 k 3 7 k+ bestimmen. Diese Reihe ist nicht geometrisch, setzt sich aber aus geometrischen Reihen zusammen. Setze s n = n 2k 3. Dann ist 7 nach den Rechenregeln für Summen k+ ( 2 k s n = 7 3 ) = k+ 7 k+ = ( 2 ) k 3 ( ) k ) k 7( 7 3 ) k 7( 7 Also folgt nach den Grenzwertformeln für die geometrische Reihe 20

21 sowie nach den Rechenregeln für Grenzwerte von Folgen lim n s n = 7 = 7 ( 2 ) k ( k 7) 7 = 5 2 = 0, 3. 2

4 Reihen und Finanzmathematik

4 Reihen und Finanzmathematik 4 Reihen und Finanzmathematik 4. Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle. Sei

Mehr

Man schreibt dann lim. = bzw. lim

Man schreibt dann lim. = bzw. lim Die Funktion f : R R geht für x nach (bzw. ), fallses für allem R + ein t(ε) R + gibt, so dass gilt ist x > t(ε), dann folgt f(x) > M bzw. ist x > t(ε), dann folgt f(x) < M. Man schreibt dann lim x = bzw.

Mehr

1 k = = Sie ist also gerade der Grenzwert der zur Folge (r k 10 k ) k N0 gehörenden Reihe( n

1 k = = Sie ist also gerade der Grenzwert der zur Folge (r k 10 k ) k N0 gehörenden Reihe( n Die zur Folge ( k ) k N gehörende Reihe ( n k ) n N ist divergent, genauer k =. 2. Dezimalzahlen: Eine Zahl r = r 0,r r 2 r 3 mit r 0 N 0 und r n {0,...,9} für n hat den Wert r = r 0 +r 0 +r 2 00 +...

Mehr

4 Reihen und Finanzmathematik

4 Reihen und Finanzmathematik 4 Reihen und Finanzmathematik 4.1 Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle.

Mehr

Folgen und Reihen. Christoph Laabs, n s k und ist Grenzwert dieser Reihe.

Folgen und Reihen. Christoph Laabs, n s k und ist Grenzwert dieser Reihe. Folgen und Reihen Christoph Laabs, christoph.laabs@tu-dresden.de Grundlagen Eine Reihe ist darstellbar durch z. B. = a 0 + a + a 2 + a + a 4 +... Ausgesprochen wird das als Summe von von k bis Unendlich.

Mehr

Kapitel 4. Reihen 4.1. Definition und Beispiele

Kapitel 4. Reihen 4.1. Definition und Beispiele Kapitel 4. Reihen 4.1. Definition und Beispiele Ist (a n ) eine Folge von Zahlen, so heißt der formale Ausdruck a ν = a 0 + a 1 + a 2 +... eine Reihe; die einzelnen a ν sind die Glieder dieser Reihe. Um

Mehr

Analysis I. Vorlesung 9. Reihen

Analysis I. Vorlesung 9. Reihen Prof. Dr. H. Brenner Osnabrück WS 20/204 Analysis I Vorlesung 9 Reihen Wir haben in der siebten Vorlesung gesagt, dass man eine Dezimalentwicklung, also eine (unendliche) Ziffernfolge mit Ziffern zwischen

Mehr

3.2 Reihen. Mathematik I WiSe 2005/

3.2 Reihen. Mathematik I WiSe 2005/ 3.2 Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle. Die entsprechenden Beispiele werden

Mehr

Folgen und Reihen. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Folgen und Reihen. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) Fragen und Antworten Folgen und Reihen (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis 1 Folgen und Reihen 2 1.1 Fragen............................................... 2 1.1.1 Folgen...........................................

Mehr

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014 Inhalt Mathematik für Chemiker Teil 1: Analysis Vorlesung im Wintersemester 2014 Kurt Frischmuth Institut für Mathematik, Universität Rostock Rostock, Oktober 2014... Folgen und Reihen Reelle Funktionen

Mehr

1 Folgen und Stetigkeit

1 Folgen und Stetigkeit 1 Folgen und Stetigkeit 1.1 Folgen Eine Folge ist eine durchnummerierte Zusammenfassung von reellen Zahlen. Sie wird geschrieben als (a 1, a 2, a 3,...) = (a n ) n N. Es ist also a n R. Der Index n gibt

Mehr

Konvergenz und Divergenz einer unendlichen Reihe. 5-E Ma 2 Lubov Vassilevskaya

Konvergenz und Divergenz einer unendlichen Reihe. 5-E Ma 2 Lubov Vassilevskaya Konvergenz und Divergenz einer unendlichen Reihe 5-E Ma 2 Lubov Vassilevskaya Folgen und Reihen: Beispiele Unter dem Bildungsgesetz einer unendlichen Reihe n i= versteht man einen funktionalen Zusammenhang

Mehr

4 Reihen und Finanzmathematik

4 Reihen und Finanzmathematik 4 Reihen und Finanzmathematik 4. Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle. Die

Mehr

Folgen und Reihen. Kapitel Zahlenfolgen

Folgen und Reihen. Kapitel Zahlenfolgen Kapitel 2 Folgen und Reihen 2. Zahlenfolgen Definition. Eine Folge reeller Zahlen a 0,a,a 2,..., die gewonnen wird durch eine Vorschrift, die jeder natürlichen Zahl n N genau eine reelle Zahl a n zuordnet,

Mehr

INGENIEURMATHEMATIK. 8. Reihen. Sommersemester Prof. Dr. Gunar Matthies

INGENIEURMATHEMATIK. 8. Reihen. Sommersemester Prof. Dr. Gunar Matthies Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik INGENIEURMATHEMATIK 8. Reihen Prof. Dr. Gunar Matthies Sommersemester 2016 G. Matthies Ingenieurmathematik

Mehr

Kapitel 4. Folgen und Reihen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38

Kapitel 4. Folgen und Reihen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38 Kapitel 4 Folgen und Reihen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38 Folgen Eine Folge ist eine Anordnung von reellen Zahlen. Die einzelnen Zahlen heißen Glieder

Mehr

Vorlesung: Analysis I für Ingenieure

Vorlesung: Analysis I für Ingenieure Vorlesung: Analysis I für Ingenieure Dozent: Dr. Michael Karow Thema: unendliche Reihen Definition. Eine unendliche Reihe ist der Grenzwert einer Folge von Summen: a k = lim k a k, wobei a k C. Falls der

Mehr

= (n 2 ) 1 (Kurzschreibweise: a n = n 2 ) ergibt die Zahlenfolge 1, 4, 9, 16, 25, 36,.

= (n 2 ) 1 (Kurzschreibweise: a n = n 2 ) ergibt die Zahlenfolge 1, 4, 9, 16, 25, 36,. 2 Folgen, Reihen, Grenzwerte 2.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die eindeutig den natürlichen Zahlen zugeordnet sind (n N; auch

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Hochschule Darmstadt FB Mathematik und Naturwissenschaften Wirtschaftsmathematik für die Betriebswirtschaftslehre (B.Sc.) Sommersemester 207 Adam Georg Balogh Dr. rer. nat. habil. Adam Georg Balogh E-mail:

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die 3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die eindeutig den natürlichen Zahlen zugeordnet sind ( n N, auch

Mehr

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba.

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba. Die Eindeutigkeit nach Satz 3 ergibt schließlich (5). (6) folgt aus (2) und () wegen Aussage (7) ergibt sich aus () und (6). 0 = log b = log b ( a a) = log b a +log ba. 3 Reihen 3. Konvergenz und Divergenz

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 20/2 R. Steuding (HS-RM) NumAna Wintersemester 20/2 / 20 2. Reihen R. Steuding (HS-RM) NumAna

Mehr

Folgen und Reihen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Folgen und Reihen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Folgen und Reihen Bernhard Ganter Institut für Algebra TU Dresden D-0062 Dresden bernhard.ganter@tu-dresden.de Folgen Eine (unendliche) (Zahlen)folge ist eine Abbildung f : N R. Statt f (n) schreibt man

Mehr

Kapitel 5 Reihen 196

Kapitel 5 Reihen 196 Kapitel 5 Reihen 96 Kapitel 5. Definition und Beispiele 97 Das Material dieses Kapitels können Sie nachlesen in: MICHAEL SPIVAK, Calculus, Kapitel 22 DIRK HACHENBERGER, Mathematik für Informatiker, Kapitel

Mehr

D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu. MC-Fragen Serie 1. Einsendeschluss: Freitag, der :00 Uhr

D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu. MC-Fragen Serie 1. Einsendeschluss: Freitag, der :00 Uhr D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu MC-Fragen Serie 1 Einsendeschluss: Freitag, der 26.09.2014 12:00 Uhr 1. Welche der folgenden Aussagen sind richtig? (a) Eine divergente Folge ist nicht

Mehr

Folgen und Reihen. 1 Konvergenz

Folgen und Reihen. 1 Konvergenz Folgen und Reihen Man betrachte viele Zahlen hintereinander geschrieben. Solche Folgen von Zahlen können durch nummeriert werden. Es entsteht eine Zuordnung der natürlichen Zahlen zu den Gliedern der Folge.

Mehr

Die anderen Folgen in Beispiel 3.1 sind nicht geometrisch. So ist etwa für die Folge mit b n = 1 n b 3 = 2 b 2 3, aber b 4

Die anderen Folgen in Beispiel 3.1 sind nicht geometrisch. So ist etwa für die Folge mit b n = 1 n b 3 = 2 b 2 3, aber b 4 Ebenso ist jede Folge mit der Vorschrift d n = q n für ein festes q R geometrisch. Die anderen Folgen in Beispiel 3.1 sind nicht geometrisch. So ist etwa für die Folge mit b n = 1 n b 3 = 2 b 2 3, aber

Mehr

Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 +

Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 + 8 Reihen 38 8 Reihen Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe a 0 + a + a 2 + zu bilden. Wir wollen nun erklären, was wir darunter verstehen wollen. Zunächst kann man die

Mehr

Ferienkurs Analysis 1, SoSe Unendliche Reihen. Florian Beye August 15, 2008

Ferienkurs Analysis 1, SoSe Unendliche Reihen. Florian Beye August 15, 2008 Ferienkurs Analysis 1, SoSe 2008 Unendliche Reihen Florian Beye August 15, 2008 1 Reihen und deren Konvergenz Definition 1.1. Eine reelle bzw. komplexe Reihe ist eine unendliche Summe über die Glieder

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 1

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 1 D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie. Frage Welche der Aussagen sind richtig? Eine divergente Folge ist nicht beschränkt. Falsch. Z.B. ist {( ) n } n N beschränkt und divergent.

Mehr

ist streng monoton fallend.

ist streng monoton fallend. Beispiel 3.5 Betrachte die Folgen aus Beispiel 3.1 Die Folgen a und d mit a n = n 2 und d n = 2 n sowie die Fibonacci-Folge sind streng monoton wachsend. Die Folge b mit b n = 1 n ist streng monoton fallend.

Mehr

Unendliche Reihen. D.h. Die Summe einer unendlichen Reihe ist der Grenzwert der Folge der Partialsummen.

Unendliche Reihen. D.h. Die Summe einer unendlichen Reihe ist der Grenzwert der Folge der Partialsummen. Unendliche Reihen Wegen der elementaren Eigenschaften der Zahlen ist lar, was unter einer endlichen Summe von Zahlen a + a 2 +... + zu verstehen ist. Vorderhand ist noch nicht erlärt, was unter einer unendlichen

Mehr

6 - Unendliche Reihen

6 - Unendliche Reihen Kapitel 2 Folgen und Reihen Seite 1 6 Unendliche Reihen Definition 6.1 (Unendliche Reihen) Sei eine Folge aus C. Unter der unendlichen Reihe mit den Gliedern versteht man das Symbol oder Die Zahl heißt

Mehr

3 Folgen, Reihen und stetige Funktionen

3 Folgen, Reihen und stetige Funktionen Höhere Mathematik 101 3 Folgen, Reihen und stetige Funktionen 3.1 Folgen und Reihen: Definitionen und Beispiele Eine reelle oder komplexe Zahlenfolge ist eine Abbildung, die jeder natürlichen Zahl n eine

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2015/16 Stefan Etschberger Hochschule Augsburg Grundlagentest Polynome! Testfrage: Polynome 1 Die Summe

Mehr

Folgen. Eine (unendliche) (Zahlen)folge ist eine Abbildung. dann als. notiert, und das wird abgekürzt mit. nennt man die Folgenglieder.

Folgen. Eine (unendliche) (Zahlen)folge ist eine Abbildung. dann als. notiert, und das wird abgekürzt mit. nennt man die Folgenglieder. Folgen Eine (unendliche) (Zahlen)folge ist eine Abbildung Statt dann als schreibt man auch oder ähnlich, die Folge wird notiert, und das wird abgekürzt mit. Die nennt man die Folgenglieder. Mathematik

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 8 10. November 2009 Kapitel 2. Konvergenz von Folgen und Reihen Definition 27. Eine (reelle bzw. komplexe) Zahlenfolge ist eine R- bzw. C-wertige

Mehr

Viele Statistiken werden durch endliche Folgen beschrieben. (z.b. Anzahl der Studierenden an der TU München in den Jahren 1962 bis 1976)

Viele Statistiken werden durch endliche Folgen beschrieben. (z.b. Anzahl der Studierenden an der TU München in den Jahren 1962 bis 1976) Kapitel 9 Folgen und Reihen 9.1 Folgen 9.1.1 Was ist eine Folge? Abbildungen, die auf N definiert sind (mit Werten z.b. in R), heißen (unendliche) Folgen. Abb., die auf einer endlichen Menge aufeinander

Mehr

Mathematik I - Woche 10

Mathematik I - Woche 10 Mathematik I - Woche 0 Philip Müller Reihen. Was ist eine Reihe Wir hatten bis jetzt Folgen. Eine Folge (a n ) n N ist eine Vorschrift, die von den natürlichen Zahlen, in die reellen Zahlen abbildet. Ein

Mehr

2 Folgen und Reihen. 2.1 Folgen in C Konvergenz von Folgen. := f(n)

2 Folgen und Reihen. 2.1 Folgen in C Konvergenz von Folgen. := f(n) 2 Folgen und Reihen 2.1 Folgen in C 2.1.1 Konvergenz von Folgen Eine Folge komplexer Zahlen ist eine Funktion f : N C. Mit a n schreibt man (a n ) n=1, (a n ) oder auch a 1, a 2,.... := f(n) (a n ) heißt

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Folgen und Reihen

Vorbereitungskurs Mathematik zum Sommersemester 2015 Folgen und Reihen Vorbereitungskurs Mathematik zum Sommersemester 2015 Folgen und Reihen Susanna Pohl Vorkurs Mathematik TU Dortmund 12.03.2015 Folgen und Reihen Folgen und Grenzwerte Rechenregeln für konvergente Folgen

Mehr

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter.

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter. 7 Folgen 30 7 Folgen Wir betrachten nun (unendliche) Folgen von Zahlen a 0, a, a 2, a 3,.... Dabei stehen die drei Pünktchen für unendlich oft so weiter. Bezeichnung Wir bezeichnen mit N die Menge der

Mehr

9 Konvergenz und absolute Konvergenz von Reihen

9 Konvergenz und absolute Konvergenz von Reihen 9 Konvergenz und absolute Konvergenz von Reihen 9.2 Konvergenz von Reihen 9.5 Monotoniekriterium für Reihen 9.6 Konvergenzkriterium von Cauchy für Reihen 9.9 Rechenregeln für konvergente Reihen 9.10 Absolute

Mehr

Absolute Konvergenz. Definition 3.8. Beispiel 3.9. Eine Reihe. a n. konvergent ist. Die alternierende harmonische Reihe aber nicht absolut konvergent.

Absolute Konvergenz. Definition 3.8. Beispiel 3.9. Eine Reihe. a n. konvergent ist. Die alternierende harmonische Reihe aber nicht absolut konvergent. Definition 3.8 Eine Reihe n=1 a n heißt absolut konvergent, wenn die Reihe konvergent ist. a n n=1 Beispiel 3.9 Die alternierende harmonische Reihe aber nicht absolut konvergent. n=1 ( 1)n 1 n ist zwar

Mehr

$Id: reihen.tex,v /12/08 16:13:24 hk Exp $ 1 q

$Id: reihen.tex,v /12/08 16:13:24 hk Exp $ 1 q $Id: reihen.tex,v.35 207/2/08 6:3:24 hk Exp $ 5 Reihen 5. Konvergenz von Reihen In der letzten Sitzung hatten wir die Summenformel für die sogenannte geometrische Reihe q n = für q < q hergeleitet und

Mehr

Folgen und Reihen Folgen

Folgen und Reihen Folgen Folgen und Reihen 30307 Folgen Einstieg: Wir beginnen mit einigen Beispielen für reelle Folgen: (i),, 4, 8, 6, (ii) 4,, 6, 3, 7, (iii) 0,,,, 3,, (iv), 3, 7,,, Aufgabe : Setzt die Zahlenfolgen logisch fort

Mehr

n=1 a n mit reellen Zahlen a n einen

n=1 a n mit reellen Zahlen a n einen 4 Unendliche Reihen 4. Definition und Beispiele Ein altes Problem der Analysis ist es, einer Reihe mit reellen Zahlen einen Wert zuzuordnen. Ein typisches Beispiel ist die unendliche Reihe + +..., die

Mehr

Folgen und Reihen. Thomas Blasi

Folgen und Reihen. Thomas Blasi Folgen und Reihen Thomas Blasi 02.03.2009 Inhaltsverzeichnis Folgen und Grenzwerte 2. Definitionen und Bemerkungen............................. 2.2 Konvergenz und Beschränktheit.............................

Mehr

3.1 Folgen. ,...) die Folge der sogenannten Hauptbrüche in Q. Mathematik I WiSe 2005/ y = (y n ) n N = ( 1 3, 1 9, 1 27, 1 81, 1

3.1 Folgen. ,...) die Folge der sogenannten Hauptbrüche in Q. Mathematik I WiSe 2005/ y = (y n ) n N = ( 1 3, 1 9, 1 27, 1 81, 1 Kapitel 3. Folgen und Reihen 3.1 Folgen Eine Folge ist eine durchnummerierte Zusammenfassung von reellen Zahlen. Sie wird geschrieben als a = (a 1, a 2, a 3,...) = (a n ) n N. Es ist also a n R. Der Index

Mehr

Reihen. Kapitel 3. Reihen, Potenzreihen und elementare Funktionen. Peter Becker (H-BRS) Analysis Sommersemester / 543

Reihen. Kapitel 3. Reihen, Potenzreihen und elementare Funktionen. Peter Becker (H-BRS) Analysis Sommersemester / 543 Kapitel 3 Reihen, Potenzreihen und elementare Funktionen Peter Becker (H-BRS) Analysis Sommersemester 2016 160 / 543 Inhalt Inhalt 3 Reihen Absolute Konvergenz Potenzreihen Elementare Funktionen Anwendung:

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 2. Folgen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen Mathematik

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 22.11.2016 3. Mächtigkeit und die komplexe Zahlen Komplexe Zahlen Definition Die komplexe Zahlen sind definiert als C = R 2 = R R, mit (x 1, y 1 ) + (x 2, y 2 ) = (x 1 + x 2, y 1 +

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen Mathematik für Physiker I, WS 200/20 Freitag 0.2 $Id: folgen.tex,v. 200/2/06 :2:5 hk Exp $ $Id: reihen.tex,v. 200/2/0 4:4:40 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Cauchyfolgen Wir kommen nun

Mehr

5. Unendliche Reihen [Kö 6]

5. Unendliche Reihen [Kö 6] 25 5. Unendliche Reihen [Kö 6] 5.1 Grundbegriffe Definition 1. Es sei k Z und (a i ) i k eine (komplexe) Folge. Unter der unendlichen Reihe a i versteht man die Folge (s n ) n k der Partialsummen s n :=

Mehr

Folgen und Reihen. Katharina Brazda 9. März 2007

Folgen und Reihen. Katharina Brazda 9. März 2007 Katharina Brazda 9. März 2007 Inhaltsverzeichnis 1 Folgen 2 1.1 Definition von Folgen - explizite und rekursive Darstellung.............. 2 1.2 Wachstumsverhalten von Folgen - Monotonie und Beschränktheit..........

Mehr

Folgen und Reihen. Beschränkte Folge: Es gibt eine Zahl c = const.

Folgen und Reihen. Beschränkte Folge: Es gibt eine Zahl c = const. Folgen und Reihen Folgen: Def.: Eine Abbildung a N K, n a(n) := a n (K = R C) wird Zahlenfolge genannt. Sie heißt reelle (komplexe) Zahlenfolge, falls K = R(C) ist. Symbole: a n K: Elemente der Folge,

Mehr

$Id: reihen.tex,v /06/12 10:59:50 hk Exp $ unendliche Summe. a 1 + a 2 + a 3 +.

$Id: reihen.tex,v /06/12 10:59:50 hk Exp $ unendliche Summe. a 1 + a 2 + a 3 +. Mathematik für Informatiker B, SS 202 Dienstag 2.6 $Id: reihen.tex,v.8 202/06/2 0:59:50 hk Exp $ 7 Reihen Eine Reihe ist eine unendliche Summe a + a 2 + a 3 +. Die Summanden a i können dabei reell oder

Mehr

D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu. MC-Fragen Serie 1. Einsendeschluss: Freitag, der :00 Uhr

D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu. MC-Fragen Serie 1. Einsendeschluss: Freitag, der :00 Uhr D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu MC-Fragen Serie 1 Einsendeschluss: Freitag, der 26.09.2014 12:00 Uhr 1. Welche der folgenden Aussagen sind richtig? Eine divergente Folge ist nicht beschränkt.

Mehr

3. Folgen und Reihen. 3.1 Folgen und Grenzwerte. Denition 3.1 (Folge) Kapitelgliederung

3. Folgen und Reihen. 3.1 Folgen und Grenzwerte. Denition 3.1 (Folge) Kapitelgliederung Kapitelgliederung 3. Folgen und Reihen 3.1 Folgen und Grenzwerte 3.2 Rechenregeln für konvergente Folgen 3.3 Monotone Folgen und Teilfolgen 3.4 Ein Algorithmus zur Wurzelberechnung 3.5 Reihen 3.6 Absolut

Mehr

LS Informatik 4 & Folgen und Reihen. Buchholz / Rudolph: MafI 2 38

LS Informatik 4 & Folgen und Reihen. Buchholz / Rudolph: MafI 2 38 3. Folgen und Reihen Buchholz / Rudolph: MafI 2 38 Kapitelgliederung 3.1 Folgen und Grenzwerte 3.2 Rechenregeln für konvergente Folgen 3.3 Monotone Folgen und Teilfolgen 3.4 Ein Algorithmus zur Wurzelberechnung

Mehr

Konvergenz einer Folge. 1-E1 Ma 1 Lubov Vassilevskaya

Konvergenz einer Folge. 1-E1 Ma 1 Lubov Vassilevskaya Konvergenz einer Folge 1-E1 Ma 1 Lubov Vassilevskaya Konvergenz einer Folge: Inhalt Drei Verhaltensmuster von Folgen. Beispiele 1 ) = 1 n, = n n +1, 2 ) = ( 1)n n +1 n und ihre graphischen Darstellungen.,

Mehr

HM I Tutorium 5. Lucas Kunz. 24. November 2016

HM I Tutorium 5. Lucas Kunz. 24. November 2016 HM I Tutorium 5 Lucas Kunz 24. November 206 Inhaltsverzeichnis Theorie 2. Definition einer Reihe.............................. 2.2 Wichtige Reihen................................. 2.3 Limites inferior

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 8.11.2016 Kapital 2. Konvergenz 1. Grenzwerte von Folgen Definition 1.1 (Folge) Eine Folge reeller Zahlen ist eine Abbildung N R, n a n. a n heißt das n-te Glied der Folge, die Folge

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@mx.uni-saarland.de SS 2018 Vorlesung MINT Mathekurs SS 2018 1 / 20 Vorlesung 4 (Lecture 4) Folgen Sequences Vorlesung MINT

Mehr

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt.

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt. 7 KONVERGENTE FOLGEN 35 und die größe untere Schranke mit bezeichnet haben. inf M = Infimum von M Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt der Limes superior der Folge, und lim

Mehr

Mathematik I Herbstsemester 2018 Kapitel 6: Potenzreihen

Mathematik I Herbstsemester 2018 Kapitel 6: Potenzreihen Mathematik I Herbstsemester 208 Kapitel 6: Potenzreihen Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas / 58 6. Potenzreihen Reihen (Zahlenreihen) Konvergenzkriterien für Reihen Notwendiges

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@mx.uni-saarland.de SS 2017 Vorlesung 4 MINT Mathkurs SS 2017 1 / 20 Vorlesung 4 (Lecture 4) Folgen Sequences Vorlesung 4

Mehr

Analysis I - Ferienkurs

Analysis I - Ferienkurs TU-München, Dienstag, der 6.03.200 Analysis I - Ferienkurs Andreas Schindewolf 5. März 200 Inhaltsverzeichnis. Folgen 3.. Konvergenz und Cauchy-Folgen..................... 3.2. Konvergenz-Kriterien für

Mehr

10 Kriterien für absolute Konvergenz von Reihen

10 Kriterien für absolute Konvergenz von Reihen 10 Kriterien für absolute Konvergenz von Reihen 10.1 Majoranten- und Minorantenkriterium 10.3 Wurzelkriterium 10.4 Quotientenkriterium 10.9 Riemannscher Umordnungssatz 10.10 Äquivalenzen zur absoluten

Mehr

Folgen und Reihen. Mathematik-Repetitorium

Folgen und Reihen. Mathematik-Repetitorium Folgen und Reihen 1.1 Vollständige Induktion 1.2 Zahlenfolgen 1.3 Eigenschaften konvergenter Zahlenfolgen 1.4 Konvergenzkriterien 1.5 Unendliche Reihen 1.6 Eigenschaften unendlicher Reihen 1.7 Rechnen

Mehr

x k = s k=1 y k = y konvergent. Dann folgt (cx k ) = cx für c K. Partialsummenfolge konvergiert

x k = s k=1 y k = y konvergent. Dann folgt (cx k ) = cx für c K. Partialsummenfolge konvergiert 4 Reihen Im Folgenden sei K R oder K C. 4. Definition. Es sei (x k ) Folge in K. Wir schreiben x k s und sagen, die Reihe x k konvergiere, falls die sogenannte Partialsummen-Folge s n x k n, 2,... in K

Mehr

Kapitel 4 Folgen und Reihen

Kapitel 4 Folgen und Reihen Kapitel 4 Folgen und Reihen Inhalt 4.1 4.1 Konvergenzkriterien für für Folgen 4.2 4.2 Reihen 4.3 4.3 Achilles und und die die Schildkröte Seite 2 4.1 Konvergenzkriterien für Folgen Wiederholung (vgl. (vgl.

Mehr

k=1 {S n } n N konvergiert, so schreibt man: a n n=1 und spricht dann von Konvergenz oder Divergenz der unendlichen Reihe

k=1 {S n } n N konvergiert, so schreibt man: a n n=1 und spricht dann von Konvergenz oder Divergenz der unendlichen Reihe 7 Reihen sind spezielle Folgen, die durch Summation entstehen. Definition 7. : {a n } n N sei Folge in C; S n := n Folge {S n } n N unendliche Reihe. Falls a k statt lim S n. a k heißt {S n } n N konvergiert,

Mehr

Ferienkurs Analysis 1

Ferienkurs Analysis 1 Skript Ferienkurs Analysis 1 Fabian Hafner und Thomas Baldauf TUM Wintersemester 2016/17 04.04.2017 Das Skript wurde teilweise übernommen vom Skript des Ferienkurses WS 2014, verfasst von Andreas Wörfel.

Mehr

REIHENENTWICKLUNGEN. [1] Reihen mit konstanten Gliedern. [2] Potenzreihen. [3] Reihenentwicklung von Funktionen. Eine kurze Einführung Herbert Paukert

REIHENENTWICKLUNGEN. [1] Reihen mit konstanten Gliedern. [2] Potenzreihen. [3] Reihenentwicklung von Funktionen. Eine kurze Einführung Herbert Paukert Reihenentwicklungen Herbert Paukert 1 REIHENENTWICKLUNGEN Eine kurze Einführung Herbert Paukert [1] Reihen mit konstanten Gliedern [2] Potenzreihen [3] Reihenentwicklung von Funktionen Reihenentwicklungen

Mehr

Folgen, Reihen, Grenzwerte u. Stetigkeit

Folgen, Reihen, Grenzwerte u. Stetigkeit Folgen, Reihen, Grenzwerte u. Stetigkeit Josef F. Bürgler Abt. Informatik HTA Luzern, FH Zentralschweiz HTA.MA+INF Josef F. Bürgler (HTA Luzern) Einf. Infinitesimalrechnung HTA.MA+INF 1 / 33 Inhalt 1 Folgen

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Didaktik der Mathematik der Sekundarstufe II

Didaktik der Mathematik der Sekundarstufe II 1 / 31 Didaktik der Mathematik der Sekundarstufe II 3. Folgen und Grenzwerte H. Rodner, G. Neumann Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2010/11 Internetseite zur Vorlesung:

Mehr

Tutorium: Analysis und lineare Algebra. Regeln von de l Hospital, Reihen, Funktionen mehrerer Variablen, komplexe Zahlen

Tutorium: Analysis und lineare Algebra. Regeln von de l Hospital, Reihen, Funktionen mehrerer Variablen, komplexe Zahlen Tutorium: Analysis und lineare Algebra Regeln von de l Hospital, Reihen, Funktionen mehrerer Variablen, komplexe Zahlen Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Die Regeln von de l

Mehr

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5 3 Folgen 3.1 Definition und Beispiele Eine Abbildung a : Æ Ê heißt (reelle) Zahlenfolge. Statt a(n) schreiben wir kürzer a n und bezeichnen die ganze Folge mit (a n ) n Æ oder einfach (a n ), was aber

Mehr

3. Mit c n = ( 1) n ist. 4. Mit d n = 2 n ist. 5. Mit y n = ( 1 3) n. 6. Ist x n = (1 + 1 n )n, dann ist. Die Zahl a n heißt die n-te Fibonaccizahl.

3. Mit c n = ( 1) n ist. 4. Mit d n = 2 n ist. 5. Mit y n = ( 1 3) n. 6. Ist x n = (1 + 1 n )n, dann ist. Die Zahl a n heißt die n-te Fibonaccizahl. Kapitel 3. Folgen und Reihen 3. Folgen Eine Folge ist eine durchnummerierte Zusammenfassung von reellen Zahlen. Sie wird geschrieben als a, a, a 3,...) = a n ) n N. Es ist also a n R. Der Index n gibt

Mehr

Wirtschaftsmathematik für International Management (BA)

Wirtschaftsmathematik für International Management (BA) Wirtschaftsmathematik für International Management (BA) Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Lineare Algebra 4 Lineare Programme 5 Folgen und Reihen 6

Mehr

Tutorium: Analysis und lineare Algebra

Tutorium: Analysis und lineare Algebra Tutorium: Analysis und lineare Algebra Regeln von de l Hospital, Reihen, Funktionen mehrerer Variablen, komplexe Zahlen Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Die Regeln von de l

Mehr

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16)

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) 1 Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) Kapitel 7: Konvergenz und Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, s n = a k.

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, s n = a k. Analysis, Woche 7 Reihen I A 7. Folgen aus Folgen Wenn a n eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge s n konstruieren durch s n = a 0 + a + + a n, oder netter geschrieben s n

Mehr

3 Folgen und Stetigkeit

3 Folgen und Stetigkeit 3 Folgen und Stetigkeit 3.1 Folgen Eine Folge ist eine durchnummerierte Zusammenfassung von reellen Zahlen. Sie wird geschrieben als (a 1, a 2, a 3,...) = (a n ) n N. Es ist also a n R. Der Index n gibt

Mehr

Unendliche Reihen. . n

Unendliche Reihen. . n Unendliche Reihen Gegeben sei eine Folge (a ) reeller Zahlen. Aus den Gliedern dieser Folge bilden wir eine neue Folge (s n ) von Partialsummen, das bedeutet, s n berechnet sich durch Aufsummieren der

Mehr

$Id: reihen.tex,v /12/07 11:30:30 hk Exp $ unendliche Summe. a 0 + a 1 + a 2 +.

$Id: reihen.tex,v /12/07 11:30:30 hk Exp $ unendliche Summe. a 0 + a 1 + a 2 +. Mathematik für die Physik I, WS 208/209 Freitag 7.2 $Id: reihen.tex,v.40 208/2/07 :30:30 hk Exp $ 5 Reihen Eine Reihe ist eine unendliche Summe a 0 + a + a 2 +. Die Summanden a i können dabei reell oder

Mehr

Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R

Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R Definition: Zahlenfolge Kap. 10: Folgen und Reihen 10.1 Definition: Zahlenfolge Eine Funktion a : N Ñ R poder Cq heißt reelle (oder komplexe) Zahlenfolge. Man nennt a n apnq das n-te Folgenglied und schreibt

Mehr

Folgen & Reihen. 5. Kapitel aus meinem Lehrgang ANALYSIS. Ronald Balestra CH St. Peter

Folgen & Reihen. 5. Kapitel aus meinem Lehrgang ANALYSIS. Ronald Balestra CH St. Peter Folgen & Reihen 5. Kapitel aus meinem Lehrgang ANALYSIS Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch e-mail: theorie@ronaldbalestra.ch 31. Januar 2009 Überblick über die bisherigen ANALYSIS

Mehr

Folgen und Reihen. Mathematik I für Chemiker. Daniel Gerth

Folgen und Reihen. Mathematik I für Chemiker. Daniel Gerth Folgen und Reihen Mathematik I für Chemiker Daniel Gerth Überblick Folgen und Reihen Dieses Kapitel erklärt: Was man unter Folgen und Reihen versteht; Was man unter Grenzwert von Folgen und Reihen versteht;

Mehr

Häufungspunkte und Satz von Bolzano und Weierstraß.

Häufungspunkte und Satz von Bolzano und Weierstraß. Häufungspunkte und Satz von Bolzano und Weierstraß. Definition: Sei (a nk ) k N eine konvergente Teilfolge der Folge (a n ) n N.Dannwirdder Grenzwert der Teilfolge (a nk ) k N als Häufungspunkt der Folge

Mehr

Reihen. Definition 16 Zu einer Zahlenfolge{a n} n=0,1,2,... definieren die Glieder. a i, n = 0, 1, 2,... s n = a 0 + a

Reihen. Definition 16 Zu einer Zahlenfolge{a n} n=0,1,2,... definieren die Glieder. a i, n = 0, 1, 2,... s n = a 0 + a Reihen Definition 16 Zu einer Zahlenfolge{a n} n=0,1,2,... definieren die Glieder s n = a 0 + a 1 +...+a n = n a i, n = 0, 1, 2,... i=0 die zugehörige Reihe {s n} n=0,1,2,... Es wird s n auch die nte Partialsumme

Mehr

Rechenoperationen mit Folgen. Rekursion und Iteration.

Rechenoperationen mit Folgen. Rekursion und Iteration. Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n )

Mehr

HM I Tutorien 6 und 7

HM I Tutorien 6 und 7 HM I Tutorien 6 und 7 Lucas Kunz. Dezember 207 und 8. Dezember 207 Inhaltsverzeichnis Vorwort 2 2 Theorie 2 2. Definition einer Reihe.............................. 2 2.2 Absolute Konvergenz..............................

Mehr

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, a k.

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, a k. Analysis, Woche 7 Reihen I 7. Folgen aus Folgen Wenn a n eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge s n konstruieren durch s n = a 0 + a + + a n, oder netter geschrieben s n =

Mehr

Folgen und Reihen. 1.1 Zahlenfolgen. Kapitel 1 Folgen und Reihen 1 a 1

Folgen und Reihen. 1.1 Zahlenfolgen. Kapitel 1 Folgen und Reihen 1 a 1 Kapitel 1 Folgen und Reihen 1 a 1 Folgen und Reihen Folgen sind sehr grundlegend für die Mathematik an sich, aber auch für das persönliche Bild eines Menschen zur Mathematik. Wenn ein kleines Kind der

Mehr

Folgen & Reihen. ANALYSIS Kapitel 5 MNProfil - Mittelstufe KSOe. Ronald Balestra CH Zürich

Folgen & Reihen. ANALYSIS Kapitel 5 MNProfil - Mittelstufe KSOe. Ronald Balestra CH Zürich Folgen & Reihen ANALYSIS Kapitel 5 MNProfil - Mittelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 30. April 2012 Überblick über die bisherigen ANALYSIS - Themen: 1 Funktionen

Mehr