Funktionen mit mehreren Variablen. Voraussetzungen:

Größe: px
Ab Seite anzeigen:

Download "Funktionen mit mehreren Variablen. Voraussetzungen:"

Transkript

1 Funktionen mit mehreren Variablen Voraussetzungen: Grundlegende Kenntnisse über Ableiten (Zu inden in dem Artikel Dierential und Integralrechnung au sowie eine Vorstellung davon, was eine reelle Funktion ist (Zu inden in dem Artikel Reelle und spezielle Funktionen au Funktionen mit mehreren Variablen: Eine Reelle Funktion in der mehrere Variablen vorkommen, ist eine Abbildungen die einem Zahlentupel eine einzige reelle Zahl zuordnet (Zahlentupel = ein Gebilde aus mehreren Zahlen). Ein Vektor kann auch als Tupel angesehen werden. Man kann also au diese Weise einem Vektor eine reelle Zahl zuordnen. In Formeln heißt dies: : R n! R, x! (x) = (x 1,x 2,...,x n ) x ist dann ein Vektor und x 1 bis x n sind dessen Komponenten. Beispiel ür eine Funktion mit mehreren Variablen: Die Funktion (x 1,x 2 ) = sin(x 1 sin(x 2 ) ordnet zwei X-Werten einen Y Wert zu. Der Graph der Funktion würde in etwa so aussehen: Der Gipel dieses Hügels wäre bei x 1 = J/2, x 2 = J/2 und y = 1, denn sin(j/2) = 1 = 1. Ist einer der beiden X Werte etwas größer oder kleiner als J/2, so ist auch das Ergebnis von

2 sin(x 1 sin(x 2 ) kleiner als 1 und der Hügel an dieser Stelle nicht ganz so hoch wie am Gipel. Je weiter wir uns mit den X Werten von J/2 enternen, desto größer wird dieser Eekt, bis y = 0 ist. Ab dort steigt der Graph wieder an. Wie man zu dem Graen kommt, kann man sich auch anders veranschaulichen. Man könnte zum Beispiel nacheinander Parallele zu einer der beiden X Achsen zeichen. Dazu hält man einen der beiden X Werte (wir nehmen mal x 2 ) bei einem konstanten Wert. Für x 2 = J/2 ergebe ich y = sin(x 1 ). Wir erhalten also die Sinuskurve. Nun setzen wie x 2 au 2 und erhalten y = sin(x 1 ) = sin(x 1 ). Das entspricht einer abgelachten Sinuskurve, die im olgenden Bild als rote Linie dargestellt ist. Wir können natürlich auch x 1 konstant lassen und so die Parallelen zur X 2 Achse gewinnen. Nach und nach erhalten wir au dieses Weise ein Bild von unserem Hügel.

3 Niveaulinien: Wenn wir eine Karte von unserem Hügel zeichnen wollten, dann würden wir wie bei Landkarten au sogenannte Höhenlinien zurückgreien um die Bereiche mit gleicher Höhe au unserer zweidimensionalen Karte darzustellen. In der Mathematik nennt man diese Höhenlinien Niveaulinien. Zu einer Niveaulinie gehören alle Punkte, denen der gleiche Y Wert zugeordnet wird. In Formeln: Für alle Punkte (x 1,x 2 ) au einer Niveaulinie gilt: (x 1,x 2 ) = c (c ist eine beliebige reelle Zahl) In der olgenden Abbildung sind die Stellen des Graen rot gekennzeichnet, welche die Y Werte y 1, y 2 oder y 3 haben. Die zu den roten Kreisen gehörenden Punkte (x 1,x 2 ) liegen wie olgt au der X1-X2 Ebene: Dies sind die Niveaulinien zu y 1, y 2 und y 3.

4 Partielle Ableitungen: Partielle Ableitungen werden benötigt um Funktionen mit mehren Variablen zu dierenzieren. Bei Funktionen mit einer Variablen war die erste Ableitung die Steigung des Graen. Dies ist auch bei Funktionen mit mehreren Variablen so, allerdings gibt es ür jede Variable eine separate Steigung. In unserem Beispiel von oben haben wir zwei Variablen. Wenn wir dies Steigung in einem Punkt betrachten, dann können wir beispielsweise zu dem Ergebnis kommen, daß die Steigung entlang der x 1 -Achse recht groß ist, aber entlang der x 2 -Achse ziemlich klein. Anschaulich heißt das, wir können von unserem Punkt aus in Richtung der x 2 -Achse au dem Hügel bequem weitergehen, aber in Richtung der x 1 -Achse müßten wir klettern. Wenn man mehrere Steigungen ür einen Punkt hat, dann braucht man auch genauso viele Gleichungen, um alle zu berechnen. Wenn wir ür eine Variable x i die Funktionsgleichung der Steigung ableiten wollen, dann tun wir dies, indem wir alle anderen Variablen wie Konstanten behandeln und die Funktion nach den gewohnten Regeln ableiten. In dem Beispiel von oben sähe das so aus: (x 1,x 2 ) = sin(x 1 sin(x 2 ) Die beiden Ableitungen: x1 = cos( x1) ) sin( x2 123 alskons tan te betrachtet = sin( x1) cos( 2 ) 123 x2 x alskons tan te betrachtet Achtung! Die Schreibweisen (x 1 ) und (x 2 ) ür die ersten partiellen Ableitungen nach x 1 und x 2 sind alsch. Die Variable, nach der abgeleitet wurde schreibt man als Index neben das. Wir können nun ür jeden Punkt die Steigung entlang jeder Achse berechnen. Könnte man daraus nicht eine Art resultierende Gesamtsteigung bilden? (Wenn ich schon so doo rage, dann kann man das natürlich). Wenn man die Steigungen in einem Punkt entlang aller Achsen in vektorieller Form auschreibt, dann zeigt dieser Vektor in die Richtung der größten Steigung in diesem Punkt und die Länge des Vektors entspricht dann dieser Steigung. Man nennt diesen hilreichen Vektor Gradient und bildet ihn ormal wie olgt: Das ging jetzt alles ein bißchen schnell. Versuchen wir und das also noch einmal graphisch zu veranschaulichen: (nächste Seite) X X = M 1 2 Xn

5 Ich gebe zu, daß geht jetzt schon an die Grenzen der Anschaulichkeit, aber versuchen kann man es ja mal. Es soll hier die Steigung im Punkt P betrachtet werden. Mit dem roten Steigungsdreieck wird die Steigung entlang der x 2 und mit dem blauen entlang der x 1 Achse veranschaulicht. Man erkennt (mit ein wenig dreidimensionalem Vorstellungsvermögen), daß die Steigung entlang der x 1 Achse etwas doppelt so groß ist wie entlang der x 2 Achse. Unser Gradient sieht also wie olgt aus: = X 1 X 2 ( p) 2 = ( p) 1 Dieser Vektor ist in der Graik grün dargestellt:

6 Wenn man etwas schie guckt kann man erkennen, daß der Vektor in die Richtung des steilsten Anstieges im Punkt p zeigt. Wenn man noch etwas schieer guckt, dann erkennt man eine weitere interessante Eigenschat des Gradienten. Na? Erkannt? Ok, ich löse au: Der Gradient steht senkrecht au der Niveaulinie von dem Punkt p! Höhere partielle Ableitungen: Wir wissen jetzt wie man die erste Ableitung einer Funktion mit mehreren Variablen bildet, aber wie sieht es mit der zweiten und dritten usw. aus? Das Prinzip ist das gleiche. Man betrachtet alle Variablen bis au eine als Konstante und leitet ab, um die Ableitung nach dieser Variablen zu erhalten. Bei einer Funktion mit zwei Variablen hatten wir nach dem ersten mal Ableiten zwei Funktionen erhalten. Wenn wir nun ein weiteres mal ableiten, dann müssen wir das ganze mit jeder der beiden Funktionen tun und erhalten somit vier Funktionen. Es olgt nun ein Beispiel, in dem die ersten beiden Ableitungen einer Funktion mit zwei Variablen gebildet werden: (x) = x 1 ² - 4x 2 x 1 Die ersten partiellen Ableitungen: x1 = 2x1 4 x 2 = 0 4x1 { x2 alskons tan te betrachtet Und nun die zweiten partiellen Ableitungen: Fangen wir mit x1 an: 4x 2 als Konstante angesehen 2x 1 als Konstante angesehen = 2 0 = 0 4 x1x1 x 1x2 Und nun x 2 : 0 als Konstante angesehen 4x 1 als Konstante angesehen 4 0 x2 x1 = x 2 x2 = Schreibweisen: In der Tradition der Dierentialrechnung sind olgende Schreibweisen üblich: Für die erste partielle Ableitung der Funktion nach der Variablen x i : xi = x i Für die zweite partielle Ableitung nach der Variablen x n, die durch Ableiten der Funktion xi entstanden ist: xixn = x x i n

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

1.4 Gradient, Divergenz und Rotation

1.4 Gradient, Divergenz und Rotation .4 Gradient, Divergenz und Rotation 5.4 Gradient, Divergenz und Rotation Die Begriffe Gradient, Divergenz und Rotation erfordern die partiellen Ableitung aus Abschnitt.. sowie das Konzept des Differentialoperators.

Mehr

Wenn die einzelnen Variablen Elemente der reellen Zahlen sind, also reellen Funktion.

Wenn die einzelnen Variablen Elemente der reellen Zahlen sind, also reellen Funktion. FernUNI Hagen WS 00/0 Dierentialrechnung bei Fkt. mit mehreren Variablen In der Ökonomie sowie in vielen anderen Anwendungsbereichen der Mathematik ist eine beobachtete Größe häuig von mehreren Variablen

Mehr

3 Differenzierbarkeit und Ableitung (Differentialrechnung I)

3 Differenzierbarkeit und Ableitung (Differentialrechnung I) 3 Differenzierbarkeit und Ableitung (Differentialrechnung I) 31 Differenzierbarkeit und Ableitung von Funktionen einer Variablen Definition 31 Es sei M R, f : M R und a M Wenn der Funktionsgrenzwert f(x)

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13

Mathematischer Vorkurs für Physiker WS 2012/13 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+

Mehr

Kapitel 6. Differenzialrechnung für Funktionen von mehreren Variablen

Kapitel 6. Differenzialrechnung für Funktionen von mehreren Variablen Kapitel 6. Differenzialrechnung für Funktionen von mehreren Variablen 6.1 Funktionen von mehreren Variablen Eine Abbildung f : D R, D R n, ordnet jedem n-tupel x = (x 1, x 2,...,x n ) D (eindeutig) eine

Mehr

Abb. 5.10: Funktion und Tangentialebene im Punkt ( ) ( ) ( ) 3.) Die Zahlenwerte und in Gleichung (Def. 5.11) berechnen sich durch ( ) ( )

Abb. 5.10: Funktion und Tangentialebene im Punkt ( ) ( ) ( ) 3.) Die Zahlenwerte und in Gleichung (Def. 5.11) berechnen sich durch ( ) ( ) Abb. 5.0: Funktion und Tangentialebene im Punkt Aus der totalen Differenzierbarkeit folgt sowohl die partielle Differenzierbarkeit als auch die Stetigkeit von : Satz 5.2: Folgerungen der totalen Differenzierbarkeit

Mehr

2 Funktionen mehrerer Veränderlicher

2 Funktionen mehrerer Veränderlicher 2 Funktionen mehrerer Veränderlicher 4 2 Funktionen mehrerer Veränderlicher Wir betrachten nun Funktionen, die auf einer Teilmenge des R n definiert sind. Wir betrachten eine Funktion f, deren Definitionsbereich

Mehr

Partielle Ableitungen

Partielle Ableitungen Partielle Ableitungen Gymnasium Immensee Vertiefungskurs Mathematik Bettina Bieri 24. Juli 2011 Inhaltsverzeichnis 1 Funktionen von zwei Variablen 1 1.1 Aufbau solcher Funktionen.................... 1

Mehr

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren Kapitel 3 Vektoren 31 Skalare, Vektoren, Tensoren Viele physikalische Größen lassen sich bei bekannter Maßeinheit durch Angabe ihres Betrages als reelle Zahl vollständig angeben Solche Größen nennt man

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

10 Differentialrechnung für Funktionen in mehreren Variablen

10 Differentialrechnung für Funktionen in mehreren Variablen 6 Differentialrechnung für Funktionen in mehreren Variablen Die meisten Funktionen in den Naturwissenschaften hängen von mehreren Variablen ab. In diesem Kapitel behandeln wir deshalb Methoden zur Untersuchung

Mehr

5 Grundlagen der Differentialrechnung

5 Grundlagen der Differentialrechnung VWA-Mathematik WS 2003/04 1 5 Grundlagen der Differentialrechnung 5.1 Abbildungen Unter einer Abbildung f, f:d W, y= f( ) von einer Menge D (Definitionsbereich) in eine Menge W (Wertemenge) versteht man

Mehr

9 Differentialrechnung für Funktionen von mehreren Variablen

9 Differentialrechnung für Funktionen von mehreren Variablen 9 Dierentialrechnung ür Funktionen von mehreren Variablen 9.1 Funktionen von zwei reellen Variablen und ihre Darstellung Unter Funktionen von zwei unabhängigen Variablen versteht man eine Vorschrit, die

Mehr

Mathematische Funktionen

Mathematische Funktionen Mathematische Funktionen Viele Schüler können sich unter diesem Phänomen überhaupt nichts vorstellen, und da zusätzlich mit Buchstaben gerechnet wird, erzeugt es eher sogar Horror. Das ist jedoch gar nicht

Mehr

Relationen / Lineare Funktionen

Relationen / Lineare Funktionen Relationen / Lineare Funktionen Relationen Werden Elemente aus einer Menge X durch eine Zuordnungsvorschrift anderen Elementen aus einer Menge Y zugeordnet, so wird durch diese Zuordnungsvorschrift eine

Mehr

Kurzzusammenstellung der in der Vorlesung behandelten impliziten Gleichungen und deren Ableitungen

Kurzzusammenstellung der in der Vorlesung behandelten impliziten Gleichungen und deren Ableitungen Kurzzusammenstellung der in der Vorlesung behandelten impliziten Gleichungen und deren Ableitungen Einleitung: Funktion mit einer Veränderlichen Als Einleitung haben wir folgende Funktion besprochen: y

Mehr

2.6 Stetigkeit und Grenzwerte

2.6 Stetigkeit und Grenzwerte 2.6 Stetigkeit und Grenzwerte Anschaulich gesprochen ist eine Funktion stetig, wenn ihr Graph sich zeichnen lässt, ohne den Stift abzusetzen. Das ist natürlich keine präzise mathematische Definition und

Mehr

6. Funktionen von mehreren Variablen

6. Funktionen von mehreren Variablen 6. Funktionen von mehreren Variablen Prof. Dr. Erich Walter Farkas 24.11.2011 Seite 1 Funktionen von mehreren Variablen n {1, 2, 3,...} =: N. R n := {(x 1,..., x n) x 1,..., x n R} = Menge aller n-tupel

Mehr

Lineare Funktionen. Das rechtwinklige (kartesische) Koordinatensystem. Funktionen

Lineare Funktionen. Das rechtwinklige (kartesische) Koordinatensystem. Funktionen Das rechtwinklige (kartesische) Koordinatensystem Funktionen Funktion: Eine Funktion ist eine eindeutige Zuordnung. Jedem x D wird genau eine reelle Zahl zugeordnet. Schreibweise: Funktion: f: x f (x)

Mehr

Partielle Ableitungen

Partielle Ableitungen Partielle Ableitungen 7-E Partielle Ableitungen einer Funktion von n Variablen Bei einer Funktion y f x1, x,..., xn von n unabhängigen Variablen x1, x,..., x n lassen sich insgesamt n partielle Ableitungen

Mehr

Abb lokales Maximum und Minimum

Abb lokales Maximum und Minimum .13 Lokale Extrema, Monotonie und Konvexität Wir kommen nun zu den ersten Anwendungen der Dierentialrechnung. Zwischen den Eigenschaten einer Funktion, dem Verlau des zugehörigen Graphen und den Ableitungen

Mehr

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle.

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle. 10 Funktionen mit mehreren Variablen www.mathematik-fuer-ingenieure.de 2010 und, Esslingen Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung

Mehr

PFLICHTTEIL FRANZ LEMMERMEYER

PFLICHTTEIL FRANZ LEMMERMEYER PFLICHTTEIL FRANZ LEMMERMEYER ( Bestimmen Sie die erste Ableitung der Funktion f(x mit f(x = (3x x + und Vereinfachen Sie so weit wie möglich. ( Bestimmen Sie diejenige Stammfunktion F (x von ( π f(x =

Mehr

Funktionen. Funktionsbegriff Einführende Beispiele und Erklärungen Grundwissen. Beispiele zu den wichtigen Funktionsarten des Mathematikunterrichts

Funktionen. Funktionsbegriff Einführende Beispiele und Erklärungen Grundwissen. Beispiele zu den wichtigen Funktionsarten des Mathematikunterrichts Funktionen Allgemeines Funktionsbegriff Einführende Beispiele und Erklärungen Grundwissen Beispiele zu den wichtigen Funktionsarten des Mathematikunterrichts Ein Lesetext Datei Nr. 800 Stand: 5. Juli 0

Mehr

Hochschule Düsseldorf University of Applied Sciences. 19. November 2015 HSD. Physik. Energie II

Hochschule Düsseldorf University of Applied Sciences. 19. November 2015 HSD. Physik. Energie II Physik Energie II Arbeit bei variabler Kraft Was passiert wenn sich F in W = Fx ständig ändert? F = k x Arbeit bei variabler Kraft W = F dx Arbeit bei variabler Kraft F = k x W = F dx = ( k x)dx W = F

Mehr

16. FUNKTIONEN VON MEHREREN VARIABLEN

16. FUNKTIONEN VON MEHREREN VARIABLEN 16. FUNKTIONEN VON MEHREREN VARIABLEN 1 Reelle Funktionen auf dem R 2 Wir betrachten Funktionen f(x 1, x 2 ) von zwei reellen Variablen x 1, x 2, z.b. f(x 1, x 2 ) = x 2 1 + x2 2, g(x 1, x 2 ) = x 2 1

Mehr

Mathematik für Biologen mathematische Ergänzungen und Beispiele Teil I

Mathematik für Biologen mathematische Ergänzungen und Beispiele Teil I Mathematik für Biologen mathematische Ergänzungen und Beispiele Teil I 1. Mengen und Abbildungen In der Mathematik beschäftigt man sich immer -direkt oder indirekt- mit Mengen. Wir benötigen den Mengenbegriff

Mehr

43.1 Beispiel und Hinführung Ein Körper bewegt sich mit einer konstanten Geschwindigkeit von. . Zum Zeitpunkt t 0s beschleunigt er mit a 0,5

43.1 Beispiel und Hinführung Ein Körper bewegt sich mit einer konstanten Geschwindigkeit von. . Zum Zeitpunkt t 0s beschleunigt er mit a 0,5 4 Umkehrunktion 4. Beispiel und Hinührung Ein Körper bewegt sich mit einer konstanten Geschwindigkeit von v m s. Zum m Zeitpunkt t s beschleunigt er mit a,5. Der Beschleunigungsvorgang dauert 6 Sekunden.

Mehr

Die folgende Abbildung zeigt dir, wie man mit Hilfe des Brennstrahls und des Parallelstrahls das Bild bestimmen kann.

Die folgende Abbildung zeigt dir, wie man mit Hilfe des Brennstrahls und des Parallelstrahls das Bild bestimmen kann. Begleitmaterial zum Modul Bruchgleichungen Die folgende Abbildung zeigt dir, wie man mit Hilfe des Brennstrahls und des Parallelstrahls das Bild bestimmen kann.. Führe eine entsprechende Konstruktion selbst

Mehr

Partielle Ableitungen höherer Ordnung

Partielle Ableitungen höherer Ordnung Partielle Ableitungen höherer Ordnung 1-E Partielle Ableitungen höherer Ordnung f ( x, y) = x cos y + y e x Partielle Ableitungen 1. Ordnung: f x = cos y + y e x, f y = x sin y + e x Partielle Ableitungen

Mehr

Inhaltsverzeichnis VB 2003

Inhaltsverzeichnis VB 2003 VB Inhaltsverzeichnis Inhaltsverzeichnis Die Integralrechnung Die Stammfunktion Wie kommt man zur Stammfunktion am Beispiel der Potenzfunktion Beispiele für Stammfunktionen: Beispiele mit Wurzelfunktionen

Mehr

FK WMS: Wirtschaftsmathematik 2, Einheit 1

FK WMS: Wirtschaftsmathematik 2, Einheit 1 FK WMS: Wirtschaftsmathematik 2, Einheit 1 Markus Sinnl 1 Sprechstunde: MO, 13-14 Uhr [04/343] markus.sinnl@univie.ac.at http://homepage.univie.ac.at/markus.sinnl 06.10.2014 1/18 1 basierend auf Folien

Mehr

1 Die natürliche Exponentialfunktion und ihre Ableitung

1 Die natürliche Exponentialfunktion und ihre Ableitung Schülerbuchseite 5 5 Lösungen vorläuig VI Natürliche Eponential- und Logarithmusunktion Die natürliche Eponentialunktion und ihre Ableitung S. 5 Durch Ausprobieren erkennt man, dass < a

Mehr

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1...

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1... Pflichtteil... Wahlteil Analsis 1... 6 Wahlteil Analsis... 9 Wahlteil Analsis 3... 13 Wahlteil Analtische Geometrie 1... 16 Wahlteil Analtische Geometrie... 3 Lösungen: 006 Pflichtteil Lösungen zur Prüfung

Mehr

Funktionen mehrerer Variablen

Funktionen mehrerer Variablen Funktionen mehrerer Variablen Partielle Ableitungen 1-E Die Grundfragen Um Differentialrechnung im Mehrdimensionalen zu formulieren, müssen wir folgende Fragen beantworten: 1-1 Wie wird die Konstruktion

Mehr

Funktionen in zwei (und mehreren) Veränderlichen

Funktionen in zwei (und mehreren) Veränderlichen Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstsemester 8 Funktionen in zwei (und mehreren) Veränderlichen Inhalt: 1. Definition und Beispiele.

Mehr

11 Üben X Affine Funktionen 1.01

11 Üben X Affine Funktionen 1.01 Üben X Aine Funktionen.0 Zeichne die Graphen zu olgenden Funktionsgleichungen! + + d c b a Augabenkarte von MUED Lösung X Aine Funktionen.0 + + d c b a Üben X Aine Funktionen.0 Bestimme die Funktionsgleichung

Mehr

Funktionen in zwei Variablen

Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen, Band 1,

Mehr

DEMO für ANALYSIS Funktionen mit 2 Variablen Ebenen als Funktionen. Teil 2: Punkt-Richtungs-Form für Ebenen

DEMO für   ANALYSIS Funktionen mit 2 Variablen Ebenen als Funktionen. Teil 2: Punkt-Richtungs-Form für Ebenen ANALYSIS Funktionen mit Variablen Ebenen als Funktionen Teil : Punkt-Richtungs-Form für Ebenen Tangentialebenen an Flächen Datei Nr. 500 Stand 9. Juni 0 Friedrich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Funktionsbegriff Einführende Beispiele und Erklärungen Grundwissen. Beispiele zu den wichtigen Funktionsarten des Mathematikunterrichts

Funktionsbegriff Einführende Beispiele und Erklärungen Grundwissen. Beispiele zu den wichtigen Funktionsarten des Mathematikunterrichts Funktionsbegriff Einführende Beispiele und Erklärungen Grundwissen Funktionen Beispiele zu den wichtigen Funktionsarten des Mathematikunterrichts Ein Lesetext Informationen - Überblick Datei Nr. 800 Stand:

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Auffrischungskurs Mathematik WS 2017/18 7 Differentialrechnung 1 / 75 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f

Mehr

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient Differenzenquotient Sei f : R R eine Funktion. Der Quotient Kapitel 7 Differentialrechnung f = f 0 + f 0 = f 0 0 heißt Differenzenquotient an der Stelle 0., Sekante 0, f 0 f 0 Josef Leydold Auffrischungskurs

Mehr

Beweise zum Ableiten weiterer Funktionen

Beweise zum Ableiten weiterer Funktionen Arbeitsblatt A: Eponentialfunktionen Satz (Ableitung von Eponentialfunktionen) Für alle gilt: () f () = e f ' () = e () f () = a f ' () = a ln (a) mit a + f() = e grafisches Differenzieren: Ergänze die

Mehr

Kapitel 6 Differential- und Integralrechnung in mehreren Variablen

Kapitel 6 Differential- und Integralrechnung in mehreren Variablen Kapitel 6 Differential- und Integralrechnung in mehreren Variablen Inhaltsverzeichnis FUNKTIONEN IN MEHREREN VARIABLEN... 3 BEISPIELE UND DARSTELLUNGEN... 3 GRENZWERT UND STETIGKEIT (ABSTANDSBEGRIFF)...

Mehr

Funktionen. Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet.

Funktionen. Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet. 1 Der Funktionsbegriff Funktionen Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet. Dabei nennt man die Menge A Definitionsmenge

Mehr

Inhalt der Lösungen zur Prüfung 2012:

Inhalt der Lösungen zur Prüfung 2012: Inhalt der Lösungen zur Prüfung : Pflichtteil... Wahlteil Analsis... 8 Wahlteil Analsis... Wahlteil Analsis... 4 Wahlteil Analtische Geometrie... 8 Wahlteil Analtische Geometrie... Pflichtteil Lösungen

Mehr

1 Analysis Kurvendiskussion

1 Analysis Kurvendiskussion 1 Analysis Kurvendiskussion 1.1 Allgemeingültige Betrachtungen Die folgenden aufgezeigten Betrachtungen und Rechenschritte gelten für alle Arten von Funktionen. Funktion (z.b. Polynom n-ten Grades) Schreibweise

Mehr

Mathematik für das Ingenieurstudium

Mathematik für das Ingenieurstudium Mathematik für das Ingenieurstudium von Martin Stämpfle, Jürgen Koch 2., aktual. Aufl. Hanser München 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 43232 1 Zu Inhaltsverzeichnis schnell

Mehr

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5 Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1 Inhaltsverzeichnis 1 Grundlagen 2 2 Der Graph einer Funktion

Mehr

4 Gleichungen und Ungleichungen

4 Gleichungen und Ungleichungen In diesem Kapitel werden Techniken zur Bestimmung der Lösungsmengen von Gleichungen und Ungleichungen rekapituliert. 4.1 Eindimensionale Gleichungen und Ungleichungen Eine Gleichung oder Ungleichung ohne

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 13. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 13. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Andreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.de Department Biologie II Telefon: 89-8-748 Großhadernerstr. Fax:

Mehr

Was ist eine Funktion?

Was ist eine Funktion? Lerndomino zum Thema Funktionsbegriff Kopiereen Sie die Seite (damit Sie einen Kontrollbogen haben), schneiden Sie aus der Kopie die "Dominosteine" zeilenweise aus, mischen Sie die "Dominosteine" und verteilen

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 205/6 7 Differentialrechnung / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f () f ( 0) 0 heißt

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Definition I Eine Gerade oder gerade Linie ist ein Element der Geometrie. Anschaulich kann man sich darunter

Mehr

Gradient eines Skalarfeldes

Gradient eines Skalarfeldes Gradient eines Skalarfeldes 1-E Gradient eines Skalarfeldes Definition 1: Unter dem Gradient eines differenzierbaren Skalarfeldes Φ (x, y) versteht man den aus den partiellen Ableitungen 1. Ordnung von

Mehr

Lineare Gleichungen mit 2 Variablen

Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen sind sehr eng verwandt mit linearen Funktionen. Die Funktionsgleichung einer linearen Funktion f(x) = m x+q m: Steigung, q: y Achsenabschnitt

Mehr

4 Differenzierbarkeit

4 Differenzierbarkeit 4 Differenzierbarkeit 16 4 Differenzierbarkeit Wir wollen nun Differenzierbarkeit von Funktionen mehrerer Veränderlicher definieren Dazu führen wir zunächst den Begriff der partiellen Ableitung ein Definition

Mehr

Kapitel 7. Differentialrechnung. Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56

Kapitel 7. Differentialrechnung. Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56 Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f x = f (x 0 + x) f (x 0 ) x = f (x)

Mehr

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005 Einführung in die Integralrechnung Mag. Mone Denninger. November 5 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis Einleitung Berechnung einfacher Stammfunktionen. Integrationsregeln.........................

Mehr

Demoseiten für

Demoseiten für Lineare Ungleichungen mit Variablen Anwendung (Vorübungen für das Thema Lineare Optimierung) Datei Nr. 90 bzw. 500 Stand 0. Dezember 009 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 90 / 500 Lineare Ungleichungen

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 12. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 12. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Andreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.de Department Biologie II Telefon: 89-8-748 Großhadernerstr. Fax:

Mehr

Im Folgenden werde ich als anschauliche Beispiele eine strömende Flüssigkeit im dreidimensionalen Raum sowie eine Landschaftskarte (2D) verwenden.

Im Folgenden werde ich als anschauliche Beispiele eine strömende Flüssigkeit im dreidimensionalen Raum sowie eine Landschaftskarte (2D) verwenden. Vektoranalysis Begriffe Im Folgenden werde ich als anschauliche Beispiele eine strömende Flüssigkeit im dreidimensionalen Raum sowie eine Landschaftskarte 2D) verwenden. Ein Skalarfeld f = fx, y, z) ist

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 7. Juni 201 *Aufgabe 1. Gegeben seien fx, y = xy 2 8e x+y und P = 1, 2. Der Gradient von f ist genau an der Stelle P Null. a Untersuchen Sie mit Hilfe der Hesse-Matrix,

Mehr

Ableitung und Steigung. lim h

Ableitung und Steigung. lim h Ableitung und Steigung Aufgabe 1 Bestimme die Ableitung der Funktion f(x) = x über den Differentialquotienten. f (x f '(x ) lim h h) f (x h ) (x lim h h) h x x lim h hx h h x h(x lim h h h) lim x h h x

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten Mathematik Rechenfertigkeiten Lösungen zu den Übungen Freitag Dominik Tasnady, Mathematik Institut, Universität Zürich Winterthurerstrasse 9, 857 Zürich Erstellt von Dr. Irmgard Bühler 9.August Integration,

Mehr

P AP 1 = D. A k = P 1 D k P. = D k. mit P 0 3

P AP 1 = D. A k = P 1 D k P. = D k. mit P 0 3 Matrixpotenzen In Anwendungen müssen oft hohe Potenzen einer quadratischen Matrix berechnet werden Ist die Matrix diagonalisierbar, dann kann diese Berechnung wie folgt vereinfacht werden Sei A eine diagonalisierbare

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 23/24 Prof. Dr. J. Schmalian Blatt 5 Dr. P. P. Orth Abgabe und Besprechung 29..23. Messung der Gravitationsbeschleunigung

Mehr

Hauptprüfung Fachhochschulreife Baden-Württemberg

Hauptprüfung Fachhochschulreife Baden-Württemberg Hauptprüung Fachhochschulreie 204 Baden-Württemberg Augabe 2 Analysis Hilsmittel: graikähiger Taschenrechner Beruskolleg Alexander Schwarz www.mathe-augaben.com September 204 Gegeben ist die Funktion mit

Mehr

Bogenmaß, Trigonometrie und Vektoren

Bogenmaß, Trigonometrie und Vektoren 20 1 Einführung Bogenmaß: Bogenmaß, Trigonometrie und Vektoren Winkel können in Grad ( ) oder im Bogenmaß (Einheit: 1 Radiant, Abkürzung 1 rad) angegeben werden. Dabei gilt 2 rad 360. Die Einheit 1 rad

Mehr

Serie 4: Gradient und Linearisierung

Serie 4: Gradient und Linearisierung D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die

Mehr

1. Tangente, Ableitung, Dierential

1. Tangente, Ableitung, Dierential 1. Tangente, Ableitung, Dierential Variablen un Funktionen 1.1. Verallgemeinern Sie ie folgenen Gruppen von Gleichungen mithilfe von Variablen. (1) 5 + 3 = 3 + 5, 1 2 = 2 + 1. (2) 3 2 + 5 2 = (3 + 5) 2,

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 5: Differentialrechnung im R n Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juni 2009 1 / 31 5.1 Erinnerung Kapitel

Mehr

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1 III. Funktionen und Gleichungen ================================================================== 3.1. Lineare Funktionen Eine Funktion mit der Zuordnungvorschrift f : x y = mx + t und m, t R heißt lineare

Mehr

6. Rechnen mit Matrizen.

6. Rechnen mit Matrizen. 6. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt und dem

Mehr

Stetigkeit an der Stelle X0 2 Rn (Folgen) f : Rn! Rm. Stetigkeit an der Stelle X0 2 Rn

Stetigkeit an der Stelle X0 2 Rn (Folgen) f : Rn! Rm. Stetigkeit an der Stelle X0 2 Rn Body-Mass-nde/Ko rpermasseinde BM = Gewicht (Gro ße) Ko rpermasseinde (betrachte aber nur > 0, y > 0) fu r y = c fest: eine Gerade B() = c fu r = c fest: eine Hyperbel B(y ) = yc BM = Ko rpermasseinde

Mehr

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve.

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve. 1 Ableitungen Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen γ 1 (t) γ(t) = γ n (t) Bild(γ) = {γ(t) t I} heißt auch die Spur der Kurve Beispiel:1)

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften Modul 3 Funktionen mehrerer Variablen Hans Walser: Modul 3, Funktionen mehrerer Variablen ii Modul 3 für die Lehrveranstaltung Mathematik für Naturwissenschaften

Mehr

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente: Inhalt: Punkte im Koordinatensstem Funktionen und ihre Schaubilder Punktprobe und Koordinaten berechnen Proportionale Funktionen 5 Steigung und Steigungsdreieck 6 Die Funktion = m + b 7 Funktionsgleichungen

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

VEKTOREN. Allgemeines. Vektoren in der Ebene (2D)

VEKTOREN. Allgemeines. Vektoren in der Ebene (2D) VEKTOREN Allgemeines Man unterscheidet im Schulgebrauch zwischen zweidimensionalen und dreidimensionalen Vektoren (es kann aber auch Vektoren geben, die mehr als 3 Komponenten haben). Während zweidimensionale

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 10

Technische Universität München Zentrum Mathematik. Übungsblatt 10 Technische Universität München Zentrum Mathematik Mathematik 2 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt Hausaufgaben Aufgabe. Sei f : R 2 R gegeben durch x 2 y für (x, y)

Mehr

[FREIER FALL MIT UND OHNE LUFTWIDERSTAND] 10. Oktober 2010

[FREIER FALL MIT UND OHNE LUFTWIDERSTAND] 10. Oktober 2010 Inhalt Freier Fall ohne Luftwiderstand... 1 Herleitung des Luftwiderstandes... 3 Freier Fall mit Luftwiderstand... 4 Quellen... 9 Lässt man einen Körper aus einer bestimmt Höhe runter fallen, so wird er

Mehr

Grundlagen der Vektorrechnung

Grundlagen der Vektorrechnung Grundlagen der Vektorrechnung Ein Vektor a ist eine geordnete Liste von n Zahlen Die Anzahl n dieser Zahlen wird als Dimension des Vektors bezeichnet Schreibweise: a a a R n Normale Reelle Zahlen nennt

Mehr

7 Integralrechnung für Funktionen einer Variablen

7 Integralrechnung für Funktionen einer Variablen 7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare

Mehr

Proportionale und antiproportionale Zuordnungen

Proportionale und antiproportionale Zuordnungen Proportionale und antiproportionale Zuordnungen Proportionale und antiproportionale Zuordnungen findet man in vielen Bereichen des täglichen Lebens. Zum Beispiel beim Tanken oder beim Einkaufen. Bei proportionalen

Mehr

Funktionen. Aufgabe 1. Welche der folgenden Abbildungen sind injektiv, surjektiv oder bijektiv? (b) f : Z Z, f(x) = x 3. (d) f : R R 0, f(x) = x 2

Funktionen. Aufgabe 1. Welche der folgenden Abbildungen sind injektiv, surjektiv oder bijektiv? (b) f : Z Z, f(x) = x 3. (d) f : R R 0, f(x) = x 2 TH Mittelhessen, Wintersemester 013/014 Lösungen zu Übungsblatt 4 Fachbereich MNI, Diskrete Mathematik 1./13./14. November 013 Prof. Dr. Hans-Rudolf Metz Funktionen Aufgabe 1. Welche der folgenden Abbildungen

Mehr

Übungsaufgaben zur Linearen Funktion

Übungsaufgaben zur Linearen Funktion Übungsaufgaben zur Linearen Funktion Aufgabe 1 Bestimmen Sie den Schnittpunkt der beiden Geraden mit den Funktionsgleichungen f 1 (x) = 3x + 7 und f (x) = x 13! Aufgabe Bestimmen Sie den Schnittpunkt der

Mehr

Partielle Ableitungen, Gradient, Lineare Näherung, Extrema, Fehlerfortpflanzung

Partielle Ableitungen, Gradient, Lineare Näherung, Extrema, Fehlerfortpflanzung Partielle Ableitungen, Gradient, Lineare Näherung, Extrema, Fehlerfortpflanzung Jörn Loviscach Versionsstand: 29. Juni 2009, 18:41 1 Partielle Ableitungen, Gradient Die Ableitung einer Funktion f an einer

Mehr

Funktionen mehrerer Veränderlicher

Funktionen mehrerer Veränderlicher Funktionen mehrerer Veränderlicher Betrachtet werden Funktionen f : D R mit Denitionsbereich D R n und Wertebereich R, d. h. man hat die Funktionsgleichung y = f (x) = f (x, x 2,..., x n ) Beispiele: f

Mehr

Aufgaben zu den Ableitungsregeln

Aufgaben zu den Ableitungsregeln Aufgaben zu den Ableitungsregeln 1.0 Bestimmen Sie die Gleichung der Tangente im Punkt P(2;?) an den Graphen der folgenden Funktionen. 1.1 f(x) = x 2 2x 1.2 f(x) = (x + 1 2 )2 1.3 f(x) = 1 2 x2 3x 1 2.

Mehr

Abiturprüfung Mathematik 0 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f() = ( sin() + 7) 5. Aufgabe : ( VP) Berechnen Sie eine Stammfunktion

Mehr

8. Übungsblatt zur Mathematik I für Maschinenbau

8. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 8. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS / 6..-.. Aufgabe G (Matrixinversion mit Gauß-Algorithmus

Mehr

Matura2016-Lösung. Problemstellung 1

Matura2016-Lösung. Problemstellung 1 Matura-Lösung Problemstellung. Die Funktion f( = + 9k + müsste bei = den Wert annehmen, also gilt + 9k + = k =. Wir betrachten den Bereich mit positiven Werten. Dann gilt: f ( = 8 + 8 = = ; = Bei liegt

Mehr

6 Trigonometrische Funktionen

6 Trigonometrische Funktionen 6 Trigonometrische Funktionen 6. Definition Die Trigonometrischen Funktionen (oder Winkelfunktionen) Sinus-, Kosinusund Tangensfunktion stellen den Zusammenhang zwischen Winkel und Seitenverhältnis dar.

Mehr

Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis

Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis Lineare Funktion Wolfgang Kippels. November 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................

Mehr

2.1 Ableitung eines Vektors nach einem Skalar

2.1 Ableitung eines Vektors nach einem Skalar Kapitel 2 Differentiation von Feldern 2.1 Ableitung eines Vektors nach einem Skalar Wir betrachten einen Vektor im Raum, der sich zeitlich verändert, d.h. a(t). Für einen Zeitpunkt t + t gilt dann a =

Mehr

Ist die Funktion f auf dem Intervall a; b definiert, dann nennt man. f(b) f(a) b a

Ist die Funktion f auf dem Intervall a; b definiert, dann nennt man. f(b) f(a) b a . Einführung in die Differentialrechnung ==================================================================. Differenzenquotient und mittlere Änderungsrate ------------------------------------------------------------------------------------------------------------------

Mehr

8 Blockbild und Hohenlinien

8 Blockbild und Hohenlinien Mathematik fur Ingenieure Institut fur Algebra, Zahlentheorie und Diskrete Mathematik Dr. Dirk Windelberg Universitat Hannover Stand: 18. August 008 http://www.iazd.uni-hannover.de/windelberg/teach/ing

Mehr