Statistik und Wahrscheinlichkeitsrechnung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Statistik und Wahrscheinlichkeitsrechnung"

Transkript

1 Statistik und Wahrscheinlichkeitsrechnung Übungen für die kompetenzbasierte Abschlussprüfung Äpfel wurden gewogen und die Ergebnisse in einem Boxplot-Diagramm dargestellt. Ergänzen Sie die folgenden Aussagen: a) Prozent aller Äpfel sind leichter als 215 g. b) Äpfel sind schwerer als 201 g. c) Ein Viertel aller Äpfel sind leichter als g. d) Die Hälfte aller Äpfel wiegen zwischen 188 g und g. 2. Die Teilnehmer/innen eines Kurses haben einen Test geschrieben, bei dem man für jede Aufgabe einen Punkt bekommen konnte. Das abgebildete Histogramm zeigt das Ergebnis des Tests. Setzen Sie die fehlenden Zahlen ein bzw. streichen Sie die falschen Antworten: a) An dem Test nahmen Personen teil. b) Die meisten Teilnehmer bekamen Punkte. c) Personen erhielten weniger als 5 Punkte. d) Prozent aller Teilnehmer erhielten mehr als 6 Punkte. e) Die durchschnittliche Punktezahl betrug Punkte und die Standardabweichung war Punkte. f) Aus der Grafik geht hervor, dass der Test aus 8 Fragen bestand: richtig / falsch (begründen Sie Ihre Antwort!)

2 3. Die Tiefe eines Sees soll mit Echolot gemessen werden. Bei 10 Messungen wurden folgende Tiefen gemessen (in m): 118,14; 125,75; 124,48; 128,53; 117,18; 117,00; 120,46; 128,03; 131,70; 112,42 a) Berechnen Sie das arithmetische Mittel und die Standardabweichung. b) Welche beiden Messwerte würden Sie weglassen, damit Sie einen höheren Mittelwert erhalten, damit Sie eine niedrigere Standardabweichung erhalten? 4. Bauer Mecke hat 12 Kürbisse gewogen und die Gewichte notiert: 1,2 kg; 1,9 kg; 4,5 kg; 5,2 kg; 8,0 kg; 2,7 kg; 1,5 kg; 1,8 kg; 7,5 kg; 6,3 kg; 0,8 kg; kg Die letzte Zahl kann er nicht lesen, aber er weiß, dass das arithmetische Mittel 3,7 kg beträgt. Berechnen Sie das fehlende Gewicht und ermitteln Sie die Standardabweichung. 5. Fehlender Gurt als Todesfalle Aus einer Zeitungsmeldung: Die Asfinag gab am Mittwoch bekannt, dass im heurigen Jahr bereits 55 Menschen auf Österreichs Autobahnen oder Schnellstraßen (bei einem Unfall) ums Leben gekommen sind. Von diesen waren acht nicht angegurtet das ist jedes siebente Todesopfer. (Der Standard, ) Argumentieren Sie, ob man aufgrund dieser Zahlen eine Aussage über den Nutzen von Sicherheitsgurten machen kann. 6. Sie würfeln mit zwei Würfeln. Geben Sie an, welches Ereignis wahrscheinlicher ist: Die Augensumme beträgt 7. Die Augensumme beträgt mindestens Bei der Lotterie Sonnenschein gewinnt jedes fünfte Los, bei der Glückskäfer - Lotterie nur jedes zehnte. Argumentieren Sie, wann Ihre Chance, mindestens einen Preis zu gewinnen, höher ist: wenn Sie ein Sonnenschein -Los oder zwei Glückskäfer -Lose kaufen?

3 8. Eine Münze wird zweimal geworfen. Wie hoch ist die Wahrscheinlichkeit, dass sie beide Male auf die gleiche Seite fällt, a) wenn es sich um eine faire Münze handelt, b) wenn die Münze manipuliert ist, so dass sie bei drei von vier Versuchen Kopf zeigt? 9. Begründen Sie, mit welcher der folgenden Formeln die Wahrscheinlichkeit berechnet wird, bei 4-maligem Würfeln mit einem Würfeln mindestens einmal eine Sechs zu werfen: ( ) ( ) ( ) ( ) ( ) ( ) ( ) 10. In jedem fünften Brieflos befindet sich ein Anmeldekupon zur Brieflos-Show. Geben Sie an, was mit der folgenden Ungleichung in diesem Zusammenhang berechnet wird: ( ) % aller Österreicher/innen im Alter von 25 bis 64 Jahren haben Matura. Erklären Sie, welche Wahrscheinlichkeiten in diesem Zusammenhang mit folgenden Formeln berechnet werden: a) ( ) b) ( ) c) ( ) ( ) 12. Sie würfeln 10 mal mit einem Würfel. Argumentieren Sie, welche der folgenden Aussagen wahr sind: a) Die Wahrscheinlichkeit, mindestens zwei Sechser zu würfeln, beträgt 1 minus der Wahrscheinlichkeit, höchstens zwei Sechser zu würfeln, b) Wenn die Anzahl der Würfe verzehnfacht wird (d.h. Sie würfeln 100 mal), verzehnfacht sich auch der Erwartungswert für die Anzahl der Sechser. c) Es ist genauso wahrscheinlich, bei 10 Versuchen höchstens einen Sechser zu erhalten, wie bei 100 Versuchen höchstens 10 Sechser.

4 13. Der Graph zeigt die Dichtefunktion einer Normalverteilung mit dem Erwartungswert μ = 180 cm und der Standardabweichung σ = 6 cm. Skizzieren Sie eine Normalverteilung a) mit einem niedrigeren Erwartungswert und derselben Standardabweichung, b) mit demselben Erwartungswert und einer höheren Standardabweichung, c) mit einem höheren Erwartungswert und einer niedrigeren Standardabweichung. 14. Die Größe von 18-jährigen Burschen ist normalverteilt mit dem Erwartungswert μ = 180 cm und der Standardabweichung σ = 6 cm. Geben Sie, an, welche Wahrscheinlichkeiten in den folgenden Graphen dargestellt sind, und berechnen Sie diese Wahrscheinlichkeiten. a) b) c)

5 15. Die Größe von 18-jährigen Mädchen ist normalverteilt mit dem Erwartungswert μ = 168 cm und der Standardabweichung σ = 5 cm. Skizzieren Sie die Flächen, die den folgenden Wahrscheinlichkeiten entsprechen: a) Ein Mädchen ist größer als 175 cm: b) Ein Mädchen ist zwischen 160 cm und 170 cm groß: c) Die Größe eines Mädchens weicht um mehr als 8 cm vom Erwartungswert ab: Berechnen Sie auch die angegebenen Wahrscheinlichkeiten. 16. In einer Werbezusendung der Klassenlotterie heißt es: Schauen Sie gleich nach...! Wie hoch sind Ihre Gewinn-Chancen: 63,20 % oder 86,46 %? Oder gehören Sie sogar zu den wenigen Auserwählten in Wien, die mit dem GOLDENEN LOS und einer TOP-GEWINN-CHANCE von 95,02 % (...) ins Rennen gehen? Wenn ja, sind Sie ein Glückspilz! Laut Homepage der Klassenlotterie beträgt die Gewinnwahrscheinlichkeit für ein Los 63,2 %. a) Berechnen Sie die Wahrscheinlichkeit, mit zwei bzw. drei Losen mindestens einmal zu gewinnen. b) Argumentieren Sie, was von der Aussage in der Werbung zu halten ist.

6 Ergebnisse: 1. a) 75 % b) 30 Äpfel c) 234 g d) 188 g e) 215 g 2. a) 20 b) 6 c) 8 d) 25 % e) = 4,85, σ = 2,29 f) Falsch - es könnten auch mehr als 8 Fragen gewesen sein, aber niemand hat mehr als 8 richtige Antworten 3. a) = 122,37 m, σ = 5,91 m b) höheren Mittelwert: die beiden kleinsten Werte weglassen höhere Standardabweichung: kleinsten und größten Wert weglassen 4. x12 = 12 3,7 (1, ,8) = 3,0 kg; σ = 2,42 kg 5. Nein, man müsste den Anteil der Todesfälle an allen Unfällen bei angegurteten bzw. nicht angegurteten Autofahrern kennen. 6. Beide Wahrscheinlichkeiten sind. 7. Sonnenschein: P(Gewinn) = 0,2 Glückskäfer: P(mindestens 1 Gewinn) = 1-0,9² = 0,19, also kleiner 8. a) P(KK oder ZZ) = 0,5 b) P(KK oder ZZ) = 0, ( ) ( ) (Gegenereignis zu Es wird keine Sechs geworfen ) 10. n ist die Anzahl der Brieflose, die man kaufen müsste, um mit mindestens 97 % Wahrscheinlichkeit mindestens einen Anmeldekupon zu finden. 11. Von 10 zufällig ausgewählten Österreicher/innen haben (hat) a) alle 10 Matura b) mindestens eine(r) Matura c) genau 3 Matura 12. a) falsch (Gegenereignis zu mindestens 2 Sechser ist höchstens 1 Sechser ) b) richtig (μ = n p, d.h. wenn n verzehnfacht wird, wird auch μ verzehnfacht) c) falsch (P(X 1 bei 10 Versuchen) = 0,4845, P(X 10 bei 100 Versuchen) = 0,0427) 13.

7 14. a) Ein Bursch ist kleiner als 170 cm; P(X<170) = 0,0478 b) Ein Bursch ist größer als 185 cm; P(X>185) = 0,2023 c) Ein Bursch ist zwischen 175 cm und 186 cm groß; P(175<X<185) = 0, a) P(X>175) = 0,0807 b) P(160<X<170) = 0,6006 c) P( X-168 >8) = P(X<160) + P(X>176) = 0, a) 2 Lose: P(X 1) = 1 - (1-0,632) 2 = 0, Lose: P(X 1) = 1 - (1-0,632) 3 = 0,9502 b) Die Top-Gewinn-Chance hat nichts damit zu tun, ob man ein Glückspilz ist, sondern besteht nur darin, dass man drei Lose kauft.

Probematura Mathematik

Probematura Mathematik BRP Mathematik VHS Floridsdorf 05/06 2012 Seite 1/5 Probematura Mathematik Volkshochschule Floridsdorf / Frühjahr 2012 Beurteilungsschlüssel: 55-60 P.: 1, 8-5 P.: 2. 39-7 P.: 3, 30-39 P.: 5, 0-29 P.: 5

Mehr

Statistik Übungen WS 2017/18

Statistik Übungen WS 2017/18 Statistik Übungen WS 2017/18 Blatt 2: Wahrscheinlichkeitsrechnung 1. Die nach dem französischen Mathematiker Pierre-Simon de Laplace benannten Laplace- Experimente beruhen auf der Annahme, dass bei einem

Mehr

Statistik Übungen WS 2018/19

Statistik Übungen WS 2018/19 Statistik Übungen WS 2018/19 Blatt 2: Wahrscheinlichkeitsrechnung 1. Die nach dem französischen Mathematiker Pierre-Simon de Laplace benannten Laplace- Experimente beruhen auf der Annahme, dass bei einem

Mehr

Statistik Übungen SS 2019

Statistik Übungen SS 2019 Statistik Übungen SS 2019 Blatt 2: Wahrscheinlichkeitsrechnung 1. Die nach dem französischen Mathematiker Pierre-Simon de Laplace benannten Laplace- Experimente beruhen auf der Annahme, dass bei einem

Mehr

Statistik Übungen SS 2018

Statistik Übungen SS 2018 Statistik Übungen SS 2018 Blatt 2: Wahrscheinlichkeitsrechnung 1. Die nach dem französischen Mathematiker Pierre-Simon de Laplace benannten Laplace- Experimente beruhen auf der Annahme, dass bei einem

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Statistik und Wahrscheinlichkeit 1) Eine Schülergruppe hat an einem Mathematikwettbewerb teilgenommen. a) Die 12 Burschen der Schülergruppe haben folgende Punktezahlen erreicht: 32; 38; 40; 52; 53; 54;

Mehr

Abitur 2016 Mathematik Stochastik IV

Abitur 2016 Mathematik Stochastik IV Seite 1 http://www.abiturloesung.de/ Seite Abitur 016 Mathematik Stochastik IV Bei einem Zufallsexperiment wird eine ideale Münze so lange geworfen, bis zum zweiten Mal Zahl (Z) oder zum zweiten Mal Wappen

Mehr

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Aufgabe 1: Wieviele der folgenden Variablen sind quantitativ stetig? Schulnoten, Familienstand, Religion, Steuerklasse, Alter, Reaktionszeit, Fahrzeit,

Mehr

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X.

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X. Fragenkatalog zur Übung Methoden der empirischen Sozialforschung WS 2014/15 Hier finden Sie die denkbaren Fragen zum ersten Teil der Übung. Das bedeutet, dass Sie zu diesem Teil keine anderen Fragen im

Mehr

Abbildung 1: Dieses Quiz soll Ihnen helfen, die Residuenplots besser zu verstehen. Am Schluss kommen noch vermischte Aufgaben zur Wiederholung.

Abbildung 1: Dieses Quiz soll Ihnen helfen, die Residuenplots besser zu verstehen. Am Schluss kommen noch vermischte Aufgaben zur Wiederholung. Residuals vs Fitted Normal Q Q Residuals 2 1 0 1 2 16 18 30 Standardized residuals 2 1 0 1 2 18 30 16 5 10 15 20 25 30 Fitted values 2 1 0 1 2 Theoretical Quantiles Abbildung 1: Dieses Quiz soll Ihnen

Mehr

Nachklausur Statistik

Nachklausur Statistik Aufgabe 1 2 3 4 5 6 7 8 9 10 Punkte Summe Punkte Gesamtpunkte: Nachklausur Statistik Hinweise: Die Klausur besteht aus 5 Seiten mit insgesamt 10 Aufgaben. Sie müssen aus jeder der beiden Kategorien jeweils

Mehr

Die tatsächlichen Breiten und Höhen der Säulen und damit der Flächeninhalt bleiben unverändert:

Die tatsächlichen Breiten und Höhen der Säulen und damit der Flächeninhalt bleiben unverändert: Flächeninhalte als Wahrscheinlichkeiten Eine Zufallsvariable X kann die Werte, 2, 3, 4, 5 oder 6 annehmen. Die zugehörigen Wahrscheinlichkeiten sind rechts in einem Stabdiagramm dargestellt. k 2 3 4 5

Mehr

Auswertung und Lösung

Auswertung und Lösung Residuals vs Fitted Normal Q Q Residuals 2 1 0 1 2 16 18 30 Standardized residuals 2 1 0 1 2 18 30 16 5 10 15 20 25 30 Fitted values 2 1 0 1 2 Theoretical Quantiles Abbildung 1: Dieses Quiz soll Ihnen

Mehr

Die tatsächlichen Breiten und Höhen der Säulen und damit der Flächeninhalt bleiben unverändert:

Die tatsächlichen Breiten und Höhen der Säulen und damit der Flächeninhalt bleiben unverändert: Flächeninhalte als Wahrscheinlichkeiten Eine Zufallsvariable X kann die Werte,, 3, 4, 5 oder 6 annehmen. Die zugehörigen Wahrscheinlichkeiten sind rechts in einem Stabdiagramm dargestellt. k 3 4 5 6 P

Mehr

Diskrete Zufallsvariable*

Diskrete Zufallsvariable* Diskrete Zufallsvariable* Aufgabennummer: 1_37 Aufgabentyp: Aufgabenformat: Multiple Choice (1 aus 6) Grundkompetenz: WS 3.1 Typ 1 T Typ Die unten stehende Abbildung zeigt die Wahrscheinlichkeitsverteilung

Mehr

Statistik Übungen Sommeruni 2018

Statistik Übungen Sommeruni 2018 Statistik Übungen Sommeruni 2018 Blatt 2: Wahrscheinlichkeitsrechnung 1. Die nach dem französischen Mathematiker Pierre-Simon de Laplace benannten Laplace- Experimente beruhen auf der Annahme, dass bei

Mehr

Statistik Übungen WS 2016

Statistik Übungen WS 2016 Statistik Übungen WS 2016 Blatt 2: Wahrscheinlichkeitsrechnung 1. Die nach dem französischen Mathematiker Pierre-Simon de Laplace benannten Laplace- Experimente beruhen auf der Annahme, dass bei einem

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Biomathematik für Mediziner, Klausur WS 2000/2001 Seite 1

Biomathematik für Mediziner, Klausur WS 2000/2001 Seite 1 Biomathematik für Mediziner, Klausur WS 2000/2001 Seite 1 Aufgabe 1: Von 2 gleichartigen Maschinen eines pharmazeutischen Betriebes stellt die erste 40% und die zweite 60% der Produkte her. Dabei verursacht

Mehr

Statistik Übungen SS 2017

Statistik Übungen SS 2017 Statistik Übungen SS 2017 Blatt 2: Wahrscheinlichkeitsrechnung 1. Die nach dem französischen Mathematiker Pierre-Simon de Laplace benannten Laplace- Experimente beruhen auf der Annahme, dass bei einem

Mehr

ÜBUNG: ZUFALLSEREIGNISSE, BAUMDARSTELLUNGEN

ÜBUNG: ZUFALLSEREIGNISSE, BAUMDARSTELLUNGEN ÜBUNG: ZUFALLSEREIGNISSE, BAUMDARSTELLUNGEN Resultate auf zwei Stellen nach dem Komma runden. 1. Auf einer Speisekarte gibt es 3 Vorspeisen, 5 Hauptspeisen und 2 verschiedene Desserts. Wie viele verschiedene

Mehr

Biomathematik für Mediziner

Biomathematik für Mediziner Institut für Medizinische Biometrie, Informatik und Epidemiologie der Universität Bonn (Direktor: Prof. Dr. Max P. Baur) Biomathematik für Mediziner Klausur SS 2002 Aufgabe 1: Franz Beckenbauer will, dass

Mehr

Handelt es sich bei den folgenden um diskrete oder stetige Zufallsvariablen?

Handelt es sich bei den folgenden um diskrete oder stetige Zufallsvariablen? 1. Handelt es sich bei den folgenden um diskrete oder stetige Zufallsvariablen? a.) Anzahl der Kunden, die an der Kasse in der Schlange stehen. b.) Die Menge an Energie, die pro Tag von einem Energieversorgungsunternehmen

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Bühlmann ETH Zürich Sommer 2010 Wahrscheinlichkeit und Statistik BSc D-INFK 1. (10 Punkte) Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete

Mehr

Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Sommersemester 2017

Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Sommersemester 2017 Prof. Dr. Christoph Karg 10.7.2017 Hochschule Aalen Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik Sommersemester 2017 Name: Unterschrift: Klausurergebnis Aufgabe 1 (10 Punkte) Aufgabe

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

Serie 9, Musterlösung

Serie 9, Musterlösung WST www.adams-science.org Serie 9, Musterlösung Klasse: 4U, 4Mb, 4Eb Datum: FS 18 1. Mädchen vs. Knaben 442187 Unter 3000 in einer Klinik neugeborenen Kindern befanden sich 1578 Knaben. Testen Sie mit

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Was du wissen musst: Die Begriffe Zufallsexperiment, Ereignisse, Gegenereignis, Zufallsvariable und Wahrscheinlichkeit sind dir geläufig. Du kannst mehrstufige Zufallsversuche

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Bühlmann ETH Zürich Winter 2010 Wahrscheinlichkeit und Statistik BSc D-INFK 1. (10 Punkte) Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete

Mehr

Übungen zu Wahrscheinlichkeitstheorie Judith Kloas, Wolfgang Woess, Jonas Ziefle SS 2016

Übungen zu Wahrscheinlichkeitstheorie Judith Kloas, Wolfgang Woess, Jonas Ziefle SS 2016 Übungen zu Wahrscheinlichkeitstheorie Judith Kloas, Wolfgang Woess, Jonas Ziefle SS 2016 43) [3 Punkte] Sei φ(t) die charakteristische Funktion der Verteilungsfunktion F (x). Zeigen Sie, dass für jedes

Mehr

DIFFERENZIAL- UND INTEGRALRECHNUNG. 7. bzw. 8. Klasse

DIFFERENZIAL- UND INTEGRALRECHNUNG. 7. bzw. 8. Klasse DIFFERENZIAL- UND INTEGRALRECHNUNG 7. bzw. 8. Klasse 28. FREIER FALL Für einen frei fallenden Körper ist eine Zeit Weg Funktion s(t) durch s(t) Dabei ist g 0 m/s² die Fallbeschleunigung. a) Welchen Weg

Mehr

Qualität und Zuverlässigkeit - Statistik Master MB Aufgaben zum Kapitel 2: Zufallsgröÿen und ihre Verteilungen

Qualität und Zuverlässigkeit - Statistik Master MB Aufgaben zum Kapitel 2: Zufallsgröÿen und ihre Verteilungen Fachbereich Grundlagenwissenschaften Prof. Dr. Viola Weiÿ Sommersemester 08 Qualität und Zuverlässigkeit - Statistik Master MB Aufgaben zum Kapitel : Zufallsgröÿen und ihre Verteilungen. Bei einer Klausur

Mehr

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc. Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 24.02.2014 Holger Wuschke B.Sc. Siedler von Catan, Rühlow 2014 Organisatorisches 0. Begriffe in der Stochastik (1) Ein Zufallsexperiment

Mehr

Übung zur Vorlesung Statistik I WS Übungsblatt 12

Übung zur Vorlesung Statistik I WS Übungsblatt 12 Übung zur Vorlesung Statistik I WS 2013-2014 Übungsblatt 12 20. Januar 2014 Die folgenden ufgaben sind aus ehemaligen Klausuren! ufgabe 38.1 (1 Punkt: In einer Studie werden 10 Patienten therapiert. Die

Mehr

( n ) 1 6 ( 6 ) 5 = ( 5 6 ) ( 6 ) ( 6 ) ( ) n 5. ( 6 ) 5n

( n ) 1 6 ( 6 ) 5 = ( 5 6 ) ( 6 ) ( 6 ) ( ) n 5. ( 6 ) 5n Hans Walser Mathematik 2 für Naturwissenschaften Frühjahrssemester 204 Übung 4 24. - 27. März 204 Aufgabe 4. Würfelwürfe a) Xanthippe wirft 6 Würfel gleichzeitig. Mit welcher Wahrscheinlichkeit erhält

Mehr

Discrete Probability - Übung

Discrete Probability - Übung F H Z > F A C H H O C H S C H U L E Z E N T R A L S C H W E I Z H T A > H O C H S C H U L E F Ü R T E C H N I K + A R C H I T E K T U R L U Z E R N A b t e i l u n g I n f o r m a t i k Discrete Probability

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

Pfadwahrscheinlichkeiten

Pfadwahrscheinlichkeiten Pfadwahrscheinlichkeiten Die Wahrscheinlichkeit, beim zweimaligen Würfeln eine Doppelsechs zu erzielen, beträgt 6. Das Ergebnis legt die Vermutung nahe, dass wir lediglich, also die Wahrscheinlichkeit,

Mehr

1. Pfadwahrscheinlichkeiten. 2. Hinweise zu den Aufgaben. 3. Verzweigungen. 4. Aufgaben. 5. Pfaddiagramm Aufgabe. 7. Mehrstufiges

1. Pfadwahrscheinlichkeiten. 2. Hinweise zu den Aufgaben. 3. Verzweigungen. 4. Aufgaben. 5. Pfaddiagramm Aufgabe. 7. Mehrstufiges . Pfadwahrscheinlichkeiten 2. Hinweise zu den Aufgaben. Verzweigungen 4. Aufgaben 5. Pfaddiagramm Aufgabe 6. Glücksräder 7. Mehrstufiges Pfadwahrscheinlichkeiten Die Wahrscheinlichkeit, beim zweimaligen

Mehr

BOXPLOT 1. Begründung. Boxplot A B C

BOXPLOT 1. Begründung. Boxplot A B C BOXPLOT 1 In nachstehender Tabelle sind drei sortierte Datenreihen gegeben. Zu welchem Boxplot gehört die jeweilige Datenreihe? Kreuze an und begründe Deine Entscheidung! Boxplot A B C Begründung 1 1 1

Mehr

TU DORTMUND Sommersemester 2018

TU DORTMUND Sommersemester 2018 Fakultät Statistik. April 08 Blatt Aufgabe.: Wir betrachten das Zufallsexperiment gleichzeitiges Werfen zweier nicht unterscheidbarer Würfel. Sei A das Ereignis, dass die Augensumme beider Würfel ungerade

Mehr

A3.Die Lebensdauer eines elektronischen Gerätes werde als normalverteilt angenommen. Der Erwartungswert betrage

A3.Die Lebensdauer eines elektronischen Gerätes werde als normalverteilt angenommen. Der Erwartungswert betrage Aufgaben ~ Beispiele A1. Wir spielen Roulette mit einem Einsatz von 5 mit der Glückszahl 15. Die Wahrscheinlichkeiten und Auszahlungen beim Roulette sind in folgender Tabelle zusammengefasst: Ereignis

Mehr

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7:

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7: Discrete Probability - Übungen (SS5) Felix Rohrer Wahrscheinlichkeitstheorie 1. KR, Abschnitt 6.1, Aufgabe 5: Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Augensumme von zwei geworfenen Würfeln

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 4.6 und 4.7 besser zu verstehen. Auswertung und Lösung Abgaben: 59 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 4.78 1 Frage

Mehr

Wahrscheinlichkeit3 Binomialverteilung/Bernoulli-Formel

Wahrscheinlichkeit3 Binomialverteilung/Bernoulli-Formel Wahrscheinlichkeit3 Binomialverteilung/Bernoulli-Formel Aufgaben Lösen Sie A1 und A sowohl mit der Bernoulli-Formel als auch mit dem TR(BV), die anderen Aufgaben lösen sie mit dem TR(BV). A1 Eine Familie

Mehr

ω ) auftritt. Vervollständige den Satz, sodass eine mathematisch richtige Aussage entsteht. Wähle dazu die richtigen Satzteile aus.

ω ) auftritt. Vervollständige den Satz, sodass eine mathematisch richtige Aussage entsteht. Wähle dazu die richtigen Satzteile aus. Ein Zufallsexperiment ist ein Vorgang, der unter exakt festgelegten Bedingungen abläuft, unter diesen Bedingungen beliebig oft wiederholbar ist und dessen Ausgang ω Ω nicht eindeutig vorhersehbar ist.

Mehr

Übungsblatt 7 zur Vorlesung Wahrscheinlichkeitsrechnung und mathematische Statistik für Informatiker

Übungsblatt 7 zur Vorlesung Wahrscheinlichkeitsrechnung und mathematische Statistik für Informatiker Aufgabe Aufgabe 2 Übungsblatt 7 zur Vorlesung Wahrscheinlichkeitsrechnung und mathematische Statistik für Informatiker.2.202 Aufgabe Aufgabe 2 Bei einem Zufallsexperiment werden zwei Würfel geworfen und

Mehr

Beispiele: Beim Zahlenlotto sollte jede Sechserserie von Zahlen mit derselben Wahrscheinlichkeit auftreten.

Beispiele: Beim Zahlenlotto sollte jede Sechserserie von Zahlen mit derselben Wahrscheinlichkeit auftreten. 3. Laplaceexperimente. Beispiele: Beim Zahlenlotto sollte jede Sechserserie von Zahlen mit derselben Wahrscheinlichkeit auftreten. Laplace-Münze: p(k) = p(z) = / Laplace-Würfel: p() =... = p(6) = / 6.

Mehr

Wahrscheinlichkeitsrechnung und Statistik. 11. Vorlesung /2019

Wahrscheinlichkeitsrechnung und Statistik. 11. Vorlesung /2019 Wahrscheinlichkeitsrechnung und Statistik 11. Vorlesung - 2018/2019 Quantil der Ordnung α für die Verteilung des beobachteten Merkmals X ist der Wert z α R für welchen gilt z 1 2 heißt Median. P(X < z

Mehr

Statistik-Klausur vom

Statistik-Klausur vom Statistik-Klausur vom 27.09.2010 Bearbeitungszeit: 60 Minuten Aufgabe 1 Ein international tätiges Unternehmen mit mehreren Niederlassungen in Deutschland und dem übrigen Europa hat seine überfälligen Forderungen

Mehr

Intransitive Würfel Lösungen

Intransitive Würfel Lösungen Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Intransitive Würfel Lösungen Hier sind nochmal Efrons Würfel für euch abgebildet: Würfel A Würfel B Würfel C Würfel D Aufgabe (Würfelexperiment

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Dominik Faas Stochastik Wintersemester 00/0 Klausur vom 09.06.0 Aufgabe (++4=9 Punkte) Bei einer Umfrage wurden n Personen befragt, an wievielen Tagen

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Embrechts ETH Zürich Sommer 2015 Wahrscheinlichkeit und Statistik BSc D-INFK Name: Vorname: Stud. Nr.: Das Folgende bitte nicht ausfüllen! Aufg. Summe Kontr. Pkte.-Max. 1 10 2 10 3 10 4 10

Mehr

Klausur Statistik 2 RE Statistik für Soziologen Do,

Klausur Statistik 2 RE Statistik für Soziologen Do, Klausur Statistik 2 RE Statistik für Soziologen Do, 24. 9. 2009 Name...Vorname... Matrikelnummer... Einsichtnahme: Fr, 2. Oktober BITTE DEUTLICH UND LESERLICH SCHREIBEN! Es wird nur gewertet, was in diesem

Mehr

mathphys-online Abschlussprüfung Berufliche Oberschule 2009 Mathematik 12 Nichttechnik - S II - Lösung

mathphys-online Abschlussprüfung Berufliche Oberschule 2009 Mathematik 12 Nichttechnik - S II - Lösung Abschlussprüfung Berufliche Oberschule 9 Mathematik Nichttechnik - S II - Lösung Beim Glücksspiel "Roulette" verwendet man eine drehbare Scheibe mit 3 abwechselnd roten und schwarzen Nummernfächern sowie

Mehr

Aufgabe 4 Ein fairer Würfel wird 36-mal geworfen. Berechne die Wahrscheinlichkeit dafür, dass die Augenzahl 6 in der erwarteten Anzahl eintritt.

Aufgabe 4 Ein fairer Würfel wird 36-mal geworfen. Berechne die Wahrscheinlichkeit dafür, dass die Augenzahl 6 in der erwarteten Anzahl eintritt. Dokument mit 26 Aufgaben Aufgabe 1 Ein Jäger trifft sein Ziel mit einer Wahrscheinlichkeit 40 %. Mit welcher Wahrscheinlichkeit erzielt er bei zehn Schüssen a) genau sechs Treffer b) mehr als sechs Treffer?

Mehr

Statistik Zusätzliche Beispiele WS 2018/19

Statistik Zusätzliche Beispiele WS 2018/19 Statistik Zusätzliche Beispiele WS 208/9 Blatt 2: Wahrscheinlichkeitsrechnung. Erstellen Sie zur Zufallsgröße Augensumme von drei fairen Würfeln eine Tabelle der Wahrscheinlichkeitsfunktion und vergleichen

Mehr

Eindimensionale Zufallsvariablen

Eindimensionale Zufallsvariablen Eindimensionale Grundbegriffe Verteilungstypen Diskrete Stetige Spezielle Maßzahlen für eindimensionale Erwartungswert Varianz Standardabweichung Schwankungsintervalle Bibliografie Bleymüller / Gehlert

Mehr

Bachelor BEE Statistik Übung: Blatt 1 Ostfalia - Hochschule für angewandte Wissenschaften Fakultät Versorgungstechnik Aufgabe (1.1): Gegeben sei die folgende Messreihe: Nr. ph-werte 1-10 6.4 6.3 6.7 6.5

Mehr

Biomathematik für Mediziner, Klausur SS 2000 Seite 1

Biomathematik für Mediziner, Klausur SS 2000 Seite 1 Biomathematik für Mediziner, Klausur SS 2000 Seite 1 Aufgabe 1: Bei der Diagnose einer bestimmten Krankheit mit einem speziellen Diagnoseverfahren werden Patienten, die tatsächlich an der Krankheit leiden,

Mehr

Wahrscheinlichkeit und Zufall

Wahrscheinlichkeit und Zufall Wahrscheinlichkeit und Zufall Klassische Probleme der Wahrscheinlichkeitsrechnung 23. Juni 2009 Dr. Katja Krüger Universität Paderborn Inhalt Die Wetten des Chevalier de Méréé Warten auf die erste Sechs

Mehr

38 % Wie groß ist die Wahrscheinlichkeit, dass von den beiden gezogenen Kugeln eine rot und eine weiß ist? Lösung:

38 % Wie groß ist die Wahrscheinlichkeit, dass von den beiden gezogenen Kugeln eine rot und eine weiß ist? Lösung: 10 Aufgaben im Dokument Aufgabe P8/2008 In einem Behälter liegen fünf blaue, drei weiße und zwei rote Kugeln. Mona zieht eine Kugel, notiert die Farbe und legt die Kugel wieder zurück. Danach zieht sie

Mehr

Diskrete Strukturen I

Diskrete Strukturen I Universität Kassel Fachbereich 10/1 PD Dr. Sebastian Petersen 14.09.2017 Klausur zur Vorlesung Diskrete Strukturen I Es können maximal 40 Punkte erreicht werden. Version mit Lösungsskizze Zur Notation:

Mehr

Zufallsgröße: X : Ω R mit X : ω Anzahl der geworfenen K`s

Zufallsgröße: X : Ω R mit X : ω Anzahl der geworfenen K`s 4. Zufallsgrößen =============================================================== 4.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Statistik 1 Beispiele zum Üben

Statistik 1 Beispiele zum Üben Statistik 1 Beispiele zum Üben 1. Ein Kühlschrank beinhaltet 10 Eier, 4 davon sind faul. Wir nehmen 3 Eier aus dem Kühlschrank heraus. (a Bezeichne die Zufallsvariable X die Anzahl der frischen herausgenommenen

Mehr

Biomathematik für Mediziner, Klausur WS 2003/2004 Seite 1

Biomathematik für Mediziner, Klausur WS 2003/2004 Seite 1 Biomathematik für Mediziner, Klausur WS 2003/2004 Seite 1 Aufgabe 1: Prüfe, welche der folgenden Merkmale qualitativ sind: (a) Blutgruppe (b) Pulsfrequenz (c) Erkrankung an Scharlach (d) Teilnahme an einem

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

WAHRSCHEINLICHKEITSLEHRE

WAHRSCHEINLICHKEITSLEHRE Wahrscheinlichkeitstheorie Herbert Paukert 1 WAHRSCHEINLICHKEITSLEHRE Version 2.0 Herbert Paukert Drei Zufallsexperimente [ 02 ] Wahrscheinlichkeitstheorie I [ 05 ] Wahrscheinlichkeitstheorie II [ 12 ]

Mehr

Biomathematik für Mediziner, Klausur SS 2001 Seite 1

Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Aufgabe 1: Von den Patienten einer Klinik geben 70% an, Masern gehabt zu haben, und 60% erinnerten sich an eine Windpockeninfektion. An mindestens einer

Mehr

Stochastik 03 Zufallsgröÿen und Verteilung

Stochastik 03 Zufallsgröÿen und Verteilung 29. August 2018 Grundlagen der Stochastik (bis Klasse 10) Grundlagen der Statistik (bis Klasse 10) Zufallsgrößen und Verteilungen Beurteilende Statistik (Testen von Hypothesen) Bernoulli-Experimente Ziele

Mehr

Bernoulli-Kette. f) Verallgemeinere das letzte Ergebnis. g) Veranschauliche die Ereignisse in dem Diagramm.

Bernoulli-Kette. f) Verallgemeinere das letzte Ergebnis. g) Veranschauliche die Ereignisse in dem Diagramm. Bernoulli-Kette Die Anzahl der 0/-Folgen der Länge n mit k Einsen sollte bekannt sein. Wir haben 0 Äpfel in einer Reihe vor uns liegen. Jeder Apfel ist mit 40%-iger Wahrscheinlichkeit wurmstichig ( =).

Mehr

Würfel-Aufgabe Bayern LK 2006

Würfel-Aufgabe Bayern LK 2006 Würfel-Aufgabe Bayern LK 2006 Die Firma VEGAS hat ein neues Gesellschaftsspiel entwickelt, bei dem neben Laplace-Würfeln auch spezielle Vegas-Würfel verwendet werden, die sich äußerlich von den Laplace-Würfeln

Mehr

Vorlesung Statistik, WING, ASW Wahrscheinlichkeit in Laplace Versuchen. Kombinatorische Formeln. Bedingte Wahrscheinlichkeit

Vorlesung Statistik, WING, ASW Wahrscheinlichkeit in Laplace Versuchen. Kombinatorische Formeln. Bedingte Wahrscheinlichkeit Wahrscheinlichkeit in Laplace Versuchen Kombinatorische Formeln Bedingte Wahrscheinlichkeit Multiplikationssatz Unabhängigkeit Melanie Kaspar 1 Formel der totalen Wahrscheinlichkeit Satz von Bayes Melanie

Mehr

Zufallsvariable X. 30 e. 40 e = 33,33...% 6

Zufallsvariable X. 30 e. 40 e = 33,33...% 6 Zufallsvariable Wir führen ein Zufallsexperiment mit Ergebnisraum Ω durch. Eine Zufallsvariable X ordnet jedem möglichen Ergebnis einen Zahlenwert zu. Eine Zufallsvariable ist also eine Funktion X : Ω

Mehr

Übungen mit dem Applet Zentraler Grenzwertsatz

Übungen mit dem Applet Zentraler Grenzwertsatz Zentraler Grenzwertsatz 1 Übungen mit dem Applet Zentraler Grenzwertsatz 1 Statistischer Hintergrund... 1.1 Zentraler Grenzwertsatz... 1. Beispiel Würfeln... 1.3 Wahrscheinlichkeit und relative Häufigkeit...3

Mehr

Technische Universität Dresden 13. Februar 2017 Institut für Numerische Mathematik Prof. Dr. O. Sander, Dr. M. Herrich

Technische Universität Dresden 13. Februar 2017 Institut für Numerische Mathematik Prof. Dr. O. Sander, Dr. M. Herrich Technische Universität Dresden 13. Februar 2017 Institut für Numerische Mathematik Prof. Dr. O. Sander, Dr. M. Herrich Klausur Mathematik III Modul Integraltransformationen, Integralrechnung für Funktionen

Mehr

Übungsblatt 9 (25. bis 29. Juni)

Übungsblatt 9 (25. bis 29. Juni) Statistik 2 Dr. Andrea Beccarini Dipl.-Vw. Dipl.-Kffr. Heike Bornewasser-Hermes Sommersemester 2012 Übungsblatt 9 (25. bis 29. Juni) Stetiges Verteilungsmodell und Gemeinsame Verteilung Stetiges Verteilungsmodell

Mehr

Betrachten Sie folgenden Datensatz mit Körpergewichten von 10 Personen: Person Körpergewicht in kg

Betrachten Sie folgenden Datensatz mit Körpergewichten von 10 Personen: Person Körpergewicht in kg WS 2010/11 Prof. Dr. Ingo Klein Musterklausuraufgaben zur Statistik I Aufgabe 1: Betrachten Sie folgenden Datensatz mit Körpergewichten von 10 Personen: Person 1 2 3 4 5 6 7 8 9 10 Körpergewicht in kg

Mehr

In der nachstehenden Abbildung 1 ist der Graph der zugehörigen Dichtefunktion dargestellt. 0,1 Körner pro Packung

In der nachstehenden Abbildung 1 ist der Graph der zugehörigen Dichtefunktion dargestellt. 0,1 Körner pro Packung c) Ein Händler bietet Saatmais in Packungen mit einer bestimmten Anzahl von Körnern an. Der Inhalt der Packungen ist annähernd normalverteilt mit einem Erwartungswert = 50 250 Körner und einer Standardabweichung

Mehr

1. Bernoulli-Kette mehrere Seiten. 2. Bernoulli-Kette Aufgaben. 3. Elfmeterschießen. 4. Galton-Brett n = 4, n = Galton-Brett n = 12

1. Bernoulli-Kette mehrere Seiten. 2. Bernoulli-Kette Aufgaben. 3. Elfmeterschießen. 4. Galton-Brett n = 4, n = Galton-Brett n = 12 . Bernoulli-Kette mehrere Seiten 2. Bernoulli-Kette Aufgaben. Elfmeterschießen 4. Galton-Brett n = 4, n = 6 5. Galton-Brett n = 2 6. Galton-Brett n = 0 7. Galton-Brett vereinfachte Darstellung 8. Bernoulli-Kette,

Mehr

Arbeitsblatt Wahrscheinlichkeit

Arbeitsblatt Wahrscheinlichkeit EI 8a 2010-11 MATHEMATIK Arbeitsblatt Wahrscheinlichkeit gelöst! 1. Aufgabe Wahrscheinlichkeit (hier wird dann auch mal gerundet!) a) Merksatz: Wahrscheinlichkeiten kann man immer (nicht ganz. dann, wenn

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜBUNG - LÖSUNGEN. Zweimaliges Werfen eines Würfels mit Berücksichtigung der Reihenfolge a. Ergebnismenge (Ereignisraum)

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Aufgabe 2 Die Abbildung zeigt den Graphen einer ganzrationalen Funktion f.

Aufgabe 2 Die Abbildung zeigt den Graphen einer ganzrationalen Funktion f. Aufgabe 1 Die Abbildung zeigt den Graphen G f einer für 1 x 3 mit x R definierten Funktion f, die bei x= 1; x=1und x=3 Nullstellen besitzt. Die Funktion F mit F( x)= 1 6 ( x2 +2 x+3 ) 3 ist eine Stammfunktion

Mehr

Lösungen zu Übungsaufgaben Blatt 9

Lösungen zu Übungsaufgaben Blatt 9 Diskrete Zufallsgrößen Zu Aufgabe Die zufällige Anzahl X von Ausfällen eines Servers pro Jahr genüge folgender Verteilung: ai 0 3 4 5 6 >6 pi /0 /0 3/0 /0 /0 /0 /0 0 Ein Ausfall des Servers verursacht

Mehr

4. Schularbeit/7C/2-stündig Schularbeit. 7C am

4. Schularbeit/7C/2-stündig Schularbeit. 7C am 4. Schularbeit 7C am 24.5.2017 Name: Note: Beispiel-Nr. 1 2 3 4 5 6 7 8 9 10 11 12 AP Teil 1: Teil 2: Punkte Teil 1 (inkl. AP) Punkte Teil 2 Gesamtpunkte Notenschlüssel: 0 7 P von Teil 1 (inkl. Anrechnungspunkte

Mehr

Stochastik (Laplace-Formel)

Stochastik (Laplace-Formel) Stochastik (Laplace-Formel) Übungen Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel

Mehr

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung?

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung? Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße Von Florian Modler In diesem Artikel möchte ich einen kleinen weiteren Exkurs zu meiner Serie Vier Wahrscheinlichkeitsverteilungen geben

Mehr

1. Sigma-Umgebung. 2. σ-umgebung Ergebnisse Regeln. 3. σ-umgebung mit der Normalverteilung. 4. zσ-umgebung. 5. z = Φ 1 ( 1+α 2

1. Sigma-Umgebung. 2. σ-umgebung Ergebnisse Regeln. 3. σ-umgebung mit der Normalverteilung. 4. zσ-umgebung. 5. z = Φ 1 ( 1+α 2 1. Sigma-Umgebung 2. σ-umgebung Ergebnisse Regeln 3. σ-umgebung mit der Normalverteilung 4. zσ-umgebung 5. z = Φ 1 ( 1+α 2 ) 6. Sigma-Regeln Graphen für 68,3%, 90%, 95% 7. Wie wirkt sich eine Vergrößerung

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 10. Vorlesung - 017 Quantil der Ordnung α für die Verteilung des beobachteten Merkmals X ist der Wert z α R für welchen gilt z 1 heißt Median. P(X < z α ) α P(X z α ). Falls X stetige zufällige Variable

Mehr

PRÜFUNG STATISTIK VO. 30. Jänner Name...Vorname... Einsichtnahme: Do, 4. Februar 2010 BITTE DEUTLICH UND LESERLICH SCHREIBEN!

PRÜFUNG STATISTIK VO. 30. Jänner Name...Vorname... Einsichtnahme: Do, 4. Februar 2010 BITTE DEUTLICH UND LESERLICH SCHREIBEN! PRÜFUNG STATISTIK VO 30. Jänner 2010 Name...Vorname... Matrikelnummer... Einsichtnahme: Do, 4. Februar 2010 BITTE DEUTLICH UND LESERLICH SCHREIBEN! Es wird nur gewertet, was in diesem Exemplar steht. Exemplar

Mehr

Wirtschaftsstatistik-Klausur am

Wirtschaftsstatistik-Klausur am Wirtschaftsstatistik-Klausur am 0.07.017 Aufgabe 1 Ein Handy- und PC-Hersteller verfügt über ein exklusives Filialnetz von 900 Filialen. Der Gewinn (in GE) der Filialen ist in der folgenden Tabelle nach

Mehr

Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an.

Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel GlücksPasch an. Aufgabe 4 Glückspasch" (16 Punkte) Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an. Spielregeln: Einsatz 1. Der Mitspieler würfelt mit 2 Oktaederwürfeln. Fällt ein Pasch,

Mehr

Lösungen zu Übungs-Blatt 8 Wahrscheinlichkeitsrechnung

Lösungen zu Übungs-Blatt 8 Wahrscheinlichkeitsrechnung Lösungen zu Übungs-Blatt Wahrscheinlichkeitsrechnung Diskrete Zufallsgrößen Zu Aufgabe ) Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung?

Mehr

Basistext - Wahrscheinlichkeitsrechnung

Basistext - Wahrscheinlichkeitsrechnung Basistext - Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung beschäftigt sich mit Vorgängen, die in ihrem Ausgang unbestimmt sind. Sie versucht mögliche Ergebnisse der Vorgänge zu quantifizieren.

Mehr

S1. a. Drücken Sie allgemein p durch die anderen in der Formel verwendeten Größen aus! Wie groß ist p, wenn a = 0.08, u = 1.96 und n = 120?

S1. a. Drücken Sie allgemein p durch die anderen in der Formel verwendeten Größen aus! Wie groß ist p, wenn a = 0.08, u = 1.96 und n = 120? S1. a. Drücken Sie allgemein p durch die anderen in der Formel verwendeten Größen aus! Wie groß ist p, wenn a = 0.08, u = 1.96 und n = 120? a = u p ( 1 p) n b. Wenn am 28. Oktober (Nach Auszählen der Briefwähler)

Mehr

Vorlesung 8b. Zweistufige Zufallsexperimente. Teil 1

Vorlesung 8b. Zweistufige Zufallsexperimente. Teil 1 Vorlesung 8b Zweistufige Zufallsexperimente Teil 1 1 Stellen wir uns ein zufälliges Paar X = (X 1, X 2 ) vor, das auf zweistufige Weise zustande kommt: es gibt eine Regel, die besagt, wie X 2 verteilt

Mehr

Teilaufgabe 1.1 (4 BE) Fertigen Sie ein Baumdiagramm für dieses Gewinnspiel an und zeigen Sie, dass die Wahrscheinlichkeit

Teilaufgabe 1.1 (4 BE) Fertigen Sie ein Baumdiagramm für dieses Gewinnspiel an und zeigen Sie, dass die Wahrscheinlichkeit Abiturprüfung Berufliche Oberschule 2006 Mathematik 3 Technik - B II - Lösung Teilaufgabe.0 Im Rahmen einer Werbesendung wird ein Gewinnspiel durchgeführt. Dafür wird ein Kandidat zufällig aus dem Publikum

Mehr