Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung

Größe: px
Ab Seite anzeigen:

Download "Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung"

Transkript

1 Vorlesungsfolien Mathematik 3 WS 2010/11 Dr. Leonhard Wieser UMIT Einleitung Begriff Vektoranalysis: Kombination aus Linearer Algebra/Vektorrechnung mit Differential- und Integralrechnung Inhaltsangabe: - Einführung (Wiederholung, Grundbegriffe) - Differentialrechnung (Partielle Ableitung, Differentialoperatoren) - Integralrechnung (Mehrdimensionale Integrale)

2 Raumkurven Beispiele: Bewegung eines Planeten im Schwerefeld Beispiele: Gleichförmige Bewegung, Wurfparabel Tangente, Tangentenvektor Beispiele: - r(t) = (t², t³, 0) (s. Bild) - Wurfparabel

3 Bogenlänge von Kurven Herleitung: Summe über Längen der Abschnitte, Grenzwertbildung S = Bogenlänge unabhängig von Parametrisierung Beispiele: - Kreisbogen - Spirale r(t) = (cos t, sin t, t) Skalare Funktion, Vektorfelder Skalare Funktion: Beispiel (2D): f(x,y) = x e (-x²-y²)

4 Skalare Funktion, Vektorfelder Vektorfeld: Gravitationsfeld Geschwindigkeitsfeld rotierende Scheibe Partielle Differentiale, Kettenregel Partielle Ableitung: Jacobi-Matrix: Darstellung aller partiellen Ableitungen als Matrix Kettenregel:

5 Gradient Gegeben eine skalare Funktion f Bemerkung: Der Gradient ist ein Vektorfeld. Beispiele: Gradienten bilden von: - - f(x,y) = 1 x 2 y Richtungsableitung Idee: Änderungsrate einer skalaren Funktion in einer vorgegebenen Richtung Zusammenhang: Beispiel: Gradient von f(x,y) = 1 x 2 y 4 im Punkt (1, 0) mit mit verschiedenen Richtungen

6 Gradient als Flächennormale Fläche mit f als definierender Funktion grad f steht normal auf Fläche Beispiel: - Sphäre: f(x,y,z) = x 2 + y 2 + z 2 R 2 Potential Potential ist die skalare Funktion f zu einem Vektorfeld v so, dass grad f = v ist. Das Vektorfeld v heißt dann konservativ. Beispiele: - Konstantes Vektorfeld - Coulombsches Kraftfeld - Elektrisches Feld Elektrisches Potential - v(x,y,z) = (3x², 2yz, y²)

7 Beispiel Bildverarbeitung Bild aus Magnetresonanztomographie als Grauwertbild (links) und der Gradient davon ebenfalls als Grauwertbild (rechts) Kanten werden betont Divergenz Gegeben ein Vektorfeld v Beispiele: - Divergenz von v(x,y,z) = (x-y, xy, z²) - Divergenz des Elektrischen Feldes (Coulomb-Gesetz)

8 Kontinuitätsgleichung Gegeben: Vektorfeld v (Geschwindigkeitsfeld), gewichtet mit Dichte u=ρv Betrachte kleines Flächenstück und betrachte Flüsse durch die Kanten = Grenzübergang: Δt, Δx, Δy 0 Divergenz, geometrische Deutung Kontinuitätsgleichung: Beispiele: Nettoflüsse durch infinitesimal kleine Flächenelemente (in 3D: Volumselemente) y Gradientenfeld von f(x,y) = x e(-x²-y²) : v = grad f = e(-x²-y²) (1-2x 2, -2xy) div v in den Punkten (1,0), (-1,0), (0,-1)? x Geschwindigkeitsfeld einer rotierenden Kreisscheibe: v = ω (-y, x, 0) div v =?

9 Rotation Gegeben ein Vektorfeld v, die Rotation ist definiert als das Vektorfeld Definiert in 3D, in 2D entartet die Rotation zu einer skalaren Funktion. Geometrische Deutung: Kleine Kreisscheiben, die im gegebenen Vektorfeld rotieren Rotation Beispiele: Rotation von - v = ω (-y, x, 0) Eigenschaften: - div (rot v) = 0 - rot (grad f) = 0 Satz: Gegeben ein stetig partiell differenzierbares Vektorfeld v auf einem einfach zusammenhängenden Gebiet. Es gibt ein Potential f mit grad f = v genau dann, wenn rot v = 0. Beispiele: - v = (3x 2, 2yz, y 2 ) - v = (ye x, e x, 2z) - Elektrisches Potential

10 Doppelintegral (Flächenintegral) Integral einer Funktion über eine Fläche --> Volumen unter dem Funktionsgraphen Unterteilung in Rechtecke und Summation der Einzelvolumina Doppelintegral über zwei Einzelintegrale Volumen unter einer Fläche: Doppelintegral Beispiele R aufgespannt durch die Funktionen y = x und y = x² Funktion: f(x,y) = 1-xy Schwerpunkt eines Halbkreises:

11 Volumsintegral Integral einer Funktion f(x,y,z) über ein Gebiet im 3 aufeinanderfolgende Integrationen Beispiel: Dichtefunktion f(x,y,z) = x²y²z² Masse des Würfels 0 < x, y, z < 1? z x y Linienintegral Motivation: Verschiebungsarbeit an einem Körper in einem Kraftfeld Beispiel: - Wurfparabel im Schwerefeld

12 Linienintegral, konservative Vektorfelder Gegeben: Vektorfeld F und zugehöriges Potential f Linienintegral vom Weg unabhängig Linienintegral verschwindet über geschlossene Kurven Beispiel: f = x 3 +y 2 z, F = grad f =? C 1 : r(t) = (t, t 2, 0) C 2 : r(t) = (t, 0, 0) C 3 : r(t) = (1, t, 0) Integration von F über C 1 und Integration über C 2, C 3 Parametrisierung Flächen Parametrisierung der Oberfläche Beschreibung der Tangentenebene Beispiel: Sphäre mit Radius R

13 Oberflächenintegral, skalare Funktion Betrachte kleines Flächenelement in der parametrisierten Fläche Oberflächenintegral: Beispiel: Oberfläche einer Sphäre mit Radius R Oberflächenintegral, Vektorfelder Fluss durch ein kleines Flächenelement Flussintegral: Orientierung von Flächen beachten Möbius-Band: Beispiel für nicht orientierbare Fläche Beispiele: Fluss durch die Sphäre mit Radius R - F(x,y,z) = (x,y,z) = r - F(x,y,z) = = r/ r ³

14 Satz von Gauß Elektrisches Feld (Coulomb-Gesetz) Anwendungsbeispiele - Elektrischer Kraftfluss durch eine beliebige geschlossene Oberfläche hängt nur von der Ladung im Inneren ab, nicht von der Beschaffenheit der Oberfläche - Anwendung des Satzes von Gauß liefert die Beziehung mit der Ladungsdichte ρ ( Ladungen sind die Quellen des elektrischen Feldes ) Wärmeleitungsgleichung - Gleichung zwischen Wärmefluss durch geschlossene Oberfläche und Energieabnahme bzw. zunahme im Inneren. - Anwendung des Satzes von Gauß liefert die Wärmeleitungsgleichung T Temperatur Materialabhängige Größen: λ Wärmeleitfähigkeit, κ Spez. Wärmekapazität, ρ Dichte

Zusammenfassung: Flächenintegrale

Zusammenfassung: Flächenintegrale Zusammenfassung: Flächenintegrale Gerichtetes Flächenelement: "Fluss" durch Flächenelement: "Fläche über G": "Fluss" durch die Fläche : Für orthogonale Koordinaten: Betrag des Flächenelements: Richtung:

Mehr

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir Klassische Theoretische Physik TP-L - WS 2013/14 Mathematische Methoden 8.1.2014 Frank Bertoldi (Version 2) Abbildungen und Beispiele aus F. Embacher "Mathematische Grundlagen..." und "Elemente der theoretischen

Mehr

Grundzüge der Vektoranalysis

Grundzüge der Vektoranalysis KAPITEL 7 Grundzüge der Vektoranalysis 7. Satz von Green................................... 2 7.2 Satz von Stokes................................... 22 7.2. Zirkulation und Wirbelstärke..........................

Mehr

"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"

Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz

Mehr

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Themen des Tutoriums am 03.06.2015: Wiederholung: Ein glattes Flächenstück ist eine Menge M R 3, die eine reguläre Parametrisierung

Mehr

"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"

Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

Mathematik für Ingenieure A III Wintersemester 2008

Mathematik für Ingenieure A III Wintersemester 2008 1 / 35 Mathematik für Ingenieure A III Wintersemester 28 J. Michael Fried Lehrstuhl Angewandte Mathematik III 21.11.28 2 / 35 Wiederholung Divergenz und Rotation Gradient und Laplace-Operator Merkregeln

Mehr

Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche. suggestive Notation. "Ausfluss pro Volumenelement"

Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche. suggestive Notation. Ausfluss pro Volumenelement Zusammenfassung: Satz v. Gauß Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche Volumen Rand des Volumens = Oberfläche Symbolisch: suggestive Notation Geometrische Definition der

Mehr

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist.

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist. Beim Differenzieren von Vektoren im Zusammenhang mit den Kreisbewegungen haben wir bereits gesehen, dass ein Vektor als dreiwertige Funktion a(x, y, z) aufgefasst werden kann, die an jedem Punkt im dreidimensionalen

Mehr

Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. 1 Integration von Funktionen einer Veränderlichen

Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. 1 Integration von Funktionen einer Veränderlichen Institut für Wissenschaftliches Rechnen Dr. Ute Feldmann, Maximilian Becker Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. Die 3 Kreise mit Ampelfarben dienen der Selbsteinschätzung.

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas Serie 9: Satz von Stokes und Divergenzsatz Bemerkungen: Die Aufgaben der Serie 9 bilden den Fokus der Übungsgruppen vom 28./30. April. 1. Berechnen

Mehr

1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor Thema: Vektoranalysis Studiengang: PT/LOT Analysis III Serie 3 Semester: WS 1/11 1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

Mehr

Aufgabe 2 Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

Aufgabe 2 Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor Thema: Vektoranalysis PT/LOT WS 13/14 Analysis III Serie 3 www.fh-jena.de/~puhl Aufgabe 1 Ein Massepunkt bewegt sich mit der Winkelgeschwindigkeit ω 1 auf einer Kreisbahn mit dem Radius R 1 und dem Mittelpunkt

Mehr

Repetitorium Analysis II für Physiker

Repetitorium Analysis II für Physiker Technische Universität München Larissa Hammerstein Vektoranalysis und Fourier-Transformation Lösungen Repetitorium Analysis II für Physiker Analysis II Aufgabe Skalarfelder Welche der folgenden Aussagen

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHEMIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHEMIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHEMIE UND LEBENSMITTELCHEMIE Integralrechnung für Funktionen mehrerer Variablen

Mehr

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt 9 19.12.2012 Aufgabe 35: Thema: Differenzierbarkeit a) Was bedeutet für eine Funktion f : R n R, dass f an der Stelle x 0 R n differenzierbar ist?

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze Ferienkurs Analysis 3 für Physiker Übung: Integralsätze Autor: enjamin Rüth Stand: 7. März 4 Aufgabe (Torus) Zu festem R > werden mittels ϱ T : [, R] [, π] [, π] R 3, ϕ ϑ Toruskoordinaten eingeführt. estimmen

Mehr

Teil 8. Vektoranalysis

Teil 8. Vektoranalysis Teil 8 Vektoranalysis 5 6 8. kalar- und Vektorfelder kalarfeld alternative chreibweisen: U = U(x, y, z) = U( r) R 3 P U(P ) R Visualisierung durch Niveaumengen oder Einschränkungen auf achsenparallele

Mehr

1 Mathematische Hilfsmittel

1 Mathematische Hilfsmittel Mathematische Hilfsmittel. Vektoranalysis Wiederholung Vektor: Länge und Richtung Vektoraddition: A + B = B + A (A + B) + C = A + (B + C) kartesische Koordinaten: B A + B = i (a i + b i )e i A+B Multiplikation

Mehr

INHALTSVERZEICHNIS. Seite 1 VEKTOREN UND EINFACHE GESETZMÄSSIGKEITEN

INHALTSVERZEICHNIS. Seite 1 VEKTOREN UND EINFACHE GESETZMÄSSIGKEITEN I INHALTSVERZEICHNIS Seite 1 VEKTOREN UND EINFACHE GESETZMÄSSIGKEITEN 1 1.1 Skalare und Vektoren 1.2 Art von Vektoren 1.3 Summe und Differenz von Vektoren 1.4 Parallele Vektoren 1.5 Betrag eines Vektors

Mehr

5.6 Potential eines Gradientenfelds.

5.6 Potential eines Gradientenfelds. die Zirkulation des Feldes v längs aufintegriert. 5.6 Potential eines Gradientenfelds. Die Ableitung einer skalaren Funktion ist der Gradient, ein Vektor bzw. vektorwertige Funktion (Vektorfeld). Wir untersuchen

Mehr

Höhere Mathematik Vorlesung 7

Höhere Mathematik Vorlesung 7 Höhere Mathematik Vorlesung 7 Mai 2017 ii Phantasie ist wichtiger als Wissen, denn Wissen ist begrenzt. Albert Einstein 7 Flächenintegrale Flächen Reguläre Flächen: ei D R 2 regulär. Unter einer Fläche

Mehr

Ziel (langfristig): wie lassen sich diese Eigenschaften mathematisch charakterisieren?

Ziel (langfristig): wie lassen sich diese Eigenschaften mathematisch charakterisieren? V4 Vektorfelder Vektorfelder haben oft Struktur: quellfrei, wirbelfrei Quellfeld Wirbelfeld Ziel (langfristig): wie lassen sich diese Eigenschaften mathematisch charakterisieren? Zunächst brauchen wir

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

= r ). Beispiele. 1) Kreis. Skizze mit Tangentialvektoren ( x. 2) Zykloide. Skizze für a = r = 1:

= r ). Beispiele. 1) Kreis. Skizze mit Tangentialvektoren ( x. 2) Zykloide. Skizze für a = r = 1: VEKTORANALYSIS Inhalt: 1) Parametrisierte Kurven 2) Vektorfelder 3) Das Linienintegral 4) Potentialfelder 1 Parametrisierte Kurven Definitionen xt () Kurve: x = x() t = y() t, t zt () xt () dxt () Tangentialvektor:

Mehr

Höhere Mathematik für Ingenieure 2

Höhere Mathematik für Ingenieure 2 Höhere Mathematik für Ingenieure 2 Prof. Dr. Swanhild Bernstein Sommersemester 218 Institut für Angewandte Analysis Kurven- und Parameterintegrale Parameterintegrale Typische Beispiele für Parameterintegrale

Mehr

Mathematik 2. 4y Springer Vieweg. Lehrbuch für ingenieurwissenschaftliche Studiengänge. Albert Fetzer Heiner Fränkel. 7. Auflage

Mathematik 2. 4y Springer Vieweg. Lehrbuch für ingenieurwissenschaftliche Studiengänge. Albert Fetzer Heiner Fränkel. 7. Auflage Albert Fetzer Heiner Fränkel Mathematik 2 Lehrbuch für ingenieurwissenschaftliche Studiengänge 7. Auflage Mit Beiträgen von Akad. Dir. Dr. rer. nat. Dietrich Feldmann Prof. Dr. rer. nat. Albert Fetzer

Mehr

1. Juli F k x k (X), X D. k=1 (X) F. x 2 (X) F 3. x 1 F 2. F 1 (X). rot F (X) = F n (X) = F j x i. , 1 i, j 3

1. Juli F k x k (X), X D. k=1 (X) F. x 2 (X) F 3. x 1 F 2. F 1 (X). rot F (X) = F n (X) = F j x i. , 1 i, j 3 . Juli 28 3 9 Vektoranalysis 9. Divergenz und otation Es sei D n offen und = [,..., n ] T sei stetig differenzierbares Vektorfeld. Unter der Divergenz des Vektorfeldes versteht man den Ausdruck div = n

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare Felder Kurvenintegrale. Aufgabe 9.2 Aufgabe 9.

Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare Felder Kurvenintegrale. Aufgabe 9.2 Aufgabe 9. 9. Mehrdimensionale Analysis 1/42 9. Mehrdimensionale Analysis Differentialrechnung für skalare Felder 2/42 Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare

Mehr

Analysis für Ingenieurstudenten Band 2

Analysis für Ingenieurstudenten Band 2 * Horst Stöcker (Hrsg.) Siegfried Fuchs Jens Konopka Manfred Schneider Analysis für Ingenieurstudenten Band 2 Mit 177 Aufgaben und Lösungen sowie 138 Abbildungen Verlag Harri Deutsch Thun und Frankfurt

Mehr

V4.3 Rotation, Satz von Stokes. Rotation: Vektorfeld: Definition: 'Rotation von ': (nur in d=3 Dimensionen definiert) Notationscheck:

V4.3 Rotation, Satz von Stokes. Rotation: Vektorfeld: Definition: 'Rotation von ': (nur in d=3 Dimensionen definiert) Notationscheck: V4.3 Rotation, Satz von Stokes Rotation: Vektorfeld: Definition: 'Rotation von ': (nur in d=3 Dimensionen definiert) Notationscheck: Erinnerung: Gradiententelder sind 'wirbelfrei': Für ein beliebiges (zweifach

Mehr

Divergenz und Rotation von Vektorfeldern

Divergenz und Rotation von Vektorfeldern Divergenz und Rotation von Vektorfeldern Mit Hilfe des Nabla-Operators können nun zwei weitere wichtige elementare Operationen definiert werden, welche formal der Bildung des Skalarproduktes bzw. des äußeren

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 11/12 Böse, Penn-Karras, Schneider

Technische Universität Berlin Fakultät II Institut für Mathematik WS 11/12 Böse, Penn-Karras, Schneider Technische Universität Berlin Fakultät II Institut für Mathematik WS / Böse, Penn-Karras, Schneider 5.4. Rechenteil April Klausur Analysis II für Ingenieure Musterlösung. Aufgabe 3 Punkte Wir haben g(x,

Mehr

Kapitel 11: Oberflächen- und Flussintegrale

Kapitel 11: Oberflächen- und Flussintegrale Kapitel 11: Oberflächen- und Flussintegrale Ziel: Berechnung von Integralen, deren Integrationsbereich eine 2-dim. Fläche in einem 3-dim. Raum ist (z.b. Fläche von Kugel) Motivation / Anwendungen: - z.b.

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 12: Integralsätze von Gauss und Stokes Prof. Dr. Erich Walter Farkas Mathematik I+II, 12. Integralsätze 1 / 25 1 Gauss-scher Integralsatz

Mehr

Wir erinnern zunächst an die verschiedenen Arten von Funktionen, die uns bisher begegnet sind: V : r 0 3 V ( r) 0 3

Wir erinnern zunächst an die verschiedenen Arten von Funktionen, die uns bisher begegnet sind: V : r 0 3 V ( r) 0 3 3 1. Mathematische Grundlagen Zur Vorbereitung fassen wir in diesem ersten Kapitel die wichtigsten mathematischen Konzepte zusammen, mit denen wir in der Elektrodynamik immer wieder umgehen werden. 1.1.

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 8: Satz von Green und Oberflächenintegrale Bemerkungen: Die Aufgaben der Serie 8 bilden den Fokus der Übungsgruppen vom./3. April.. Den Satz

Mehr

Lösungshinweise zur Klausur

Lösungshinweise zur Klausur Höhere Mathematik 3 26. 2. 214 Lösungshinweise zur Klausur für Studierende der Fachrichtungen kyb,mecha,phys Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind. (i)

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 Definition: Ein Skalarfeld ordnet jedem Punkt im dreidimensionalen Raum R 3 eine ahl () zu. Unter einem räumlichen Vektorfeld

Mehr

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx.

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx. HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik II Mathematik II für Bauingenieure Wiederholungsaufgaben zur Prüfungsklausur im Juli 2007 1 Integralrechnung Aufgabe 1 : Berechnen Sie die folgenden

Mehr

Mathematische Grundlagen

Mathematische Grundlagen G-CSC Goethe-Center for Scientific Computing der Universität Frankfurt 1. Übung zur Vorlesung Modellierung und Simulation 3 (WS 2012/13) Prof. Dr. G. Wittum Susanne Höllbacher, Martin Stepniewski, Christian

Mehr

Wiederholung: Integralsätze im Raum

Wiederholung: Integralsätze im Raum Wiederholung: Integralsätze im Raum Sei S R 2 ein glattes Flächenstück, d.h. man hat eine (reguläre) Parametrisierung Φ : D R 2 S R 3, (x, y) s = Φ(x, y). S Φ(x, y) T 1 dx T 2 dy Φ D (x, y) e 1 dx e 2

Mehr

Einführung in die höhere Mathematik 2

Einführung in die höhere Mathematik 2 Herbert Dallmann und Karl-Heinz Elster Einführung in die höhere Mathematik 2 Lehrbuch für Naturwissenschaftler und Ingenieure ab 1. Semester Mit 153 Bildern Friedr. Vieweg & Sohn Braunschweig /Wiesbaden

Mehr

- 1 - Zunächst das Integral über eine Bogenlänge. Ist in der x,y-ebene (oder im Raum) eine Kurve K vorgeben, so können wir das Integral

- 1 - Zunächst das Integral über eine Bogenlänge. Ist in der x,y-ebene (oder im Raum) eine Kurve K vorgeben, so können wir das Integral - 1 - Vektoranalysis In diesem Kapitel untersuchen wir vornehmlich Vektorfelder und charakterisieren sie durch ihre Wirbel- und Quellstärke. Verstärkt findet diese Vektor(feld)analysis Anwendung in der

Mehr

Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften

Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2011/12 Dr. K. Rothe Anleitungsaufgaben zu Analysis III für Studierende der Ingenieurwissenschaften Aufgabe 1: Für die folgenden Funktionen f : IR 2

Mehr

Abbildung 14: Ein Vektorfeld im R 2

Abbildung 14: Ein Vektorfeld im R 2 Vektoranalysis 54 Vektoranalysis Wir wollen nun Vektorfelder betrachten. Es sei U R n. Ein Vektorfeld im R n ist eine Abbildung v : U R n, die jedem Punkt x ihres sbereichs U einen Vektor v(x) zuordnet.

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof. Dr. H. Brenner Osnabrück SS 212 Mathematik für Anwender II Vorlesung 58 Der Satz von Green Wir betrachten eine kompakte eilmenge R 2, deren Rand R sich stückweise durch reguläre Kurven parametrisieren

Mehr

C4.6: Oberflächenintegrale

C4.6: Oberflächenintegrale C4.6: Oberflächenintegrale Ziel: Berechnung von Integralen, deren Integrationsbereich eine 2-dim. Fläche in einem 3-dim. Raum ist (z.b. Fläche von Kugel) Motivation / Anwendungen: - z.b. Elektrostatik:

Mehr

Höhere Mathematik III für Physiker Analysis 2

Höhere Mathematik III für Physiker Analysis 2 Ralitsa Bozhanova Jonas Kindervater Ferienkurs im Anschluss an das Wintersemester 2008 Höhere Mathematik III für Physiker Analysis 2 16. bis 20. Februar 2009 1 Inhaltsverzeichnis Inhaltsverzeichnis 1 Der

Mehr

Totale Ableitung und Jacobi-Matrix

Totale Ableitung und Jacobi-Matrix Totale Ableitung und Jacobi-Matrix Eine reelle Funktion f : R n R m ist in einem Punkt x differenzierbar, wenn f (x + h) = f (x) + f (x)h + o( h ) für h 0. Totale Ableitung 1-1 Totale Ableitung und Jacobi-Matrix

Mehr

PROBEPRÜFUNG MATHEMATIK I UND II

PROBEPRÜFUNG MATHEMATIK I UND II PROBEPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften Für diese Probeprüfung sind ca 4 Stunden vorgesehen. Die eigentliche Prüfung wird signifikant

Mehr

6.4 Oberflächenintegrale 1. und 2. Art

6.4 Oberflächenintegrale 1. und 2. Art 6.4 Oberflächenintegrale. und. Art 6.4. Integration über Flächen im Raum Es gibt verschiedene Möglichkeiten der arstellung von Flächen im Raum:. explizite arstellung als Graph z = f(x, y), was aber eigentlich

Mehr

2.4 Eigenschaften des Gradienten

2.4 Eigenschaften des Gradienten 2.4 Eigenschaften des Gradienten Niveauflächen: Die Niveauflächen (D = 2 Höhenlinien) einer Funktion f sind die durch die Gleichung f(x, y, z) = c = const bestimmten Flächen(scharen); für jeden Wert von

Mehr

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth REPETITORIUM DER HÖHEREN MATHEMATIK Gerhard Merziger Thomas Wirth 6 INHALTSVERZEICHNIS Inhaltsverzeichnis Fl Formelsammlung F2 Formelsammlung Alphabete 11 Zeichenindex 12 1 Grundbegriffe 14 1.1 Logische

Mehr

Ableitungen von skalaren Feldern Der Gradient

Ableitungen von skalaren Feldern Der Gradient Ableitungen von skalaren Feldern Der Gradient In der letzten Vorlesung haben wir das zu einem konservativen Kraftfeld zugehörige Potential V ( r) = F ( s) d s + V ( r0 ) kennengelernt und als potentielle

Mehr

Satz von Stokes. Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt. Satz von Stokes 1-1

Satz von Stokes. Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt. Satz von Stokes 1-1 Satz von Stokes Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt rot F ds = F d r. S C Satz von Stokes 1-1 Satz von Stokes Für ein stetig differenzierbares

Mehr

1.3.2 Partielle und totale Ableitung

1.3.2 Partielle und totale Ableitung 0 1.3. Partielle und totale Ableitung Ziel: Verallgemeinerung der Differential- und Integralrechnung auf mehrere Dimensionen Eine Verallgemeinerung von einfachen (eindimensionalen, 1D skalaren Funktion

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 11: e Prof. Dr. Erich Walter Farkas Mathematik I+II, 11. Linienintegrale 1 / 39 1 Ein einführendes Beispiel 2 3 Prof. Dr. Erich

Mehr

Technische Universität München. Probeklausur Lösung SS 2012

Technische Universität München. Probeklausur Lösung SS 2012 Technische Universität München Andreas Wörfel & Carla Zensen Ferienkurs Analysis für Physiker Probeklausur Lösung SS Aufgabe Differenzierbarkeit / Punkte: [4,, 3, 4] Es sei f(x, y) = sin(x3 + y 3 ) x +

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS 7/8 W. Stannat, A. Gündel-vom ofe..8 Februar Klausur Analysis II für Ingenieurwissenschaften Lösungsskizze Analysis II für Ingenieurwissenschaften

Mehr

Oberflächenintegrale

Oberflächenintegrale KAPITEL Oberflächenintegrale. Integration über Flächen im Raum.................. 36.2 Flächeninhalt.............................. 366.3 Oberflächenintegrale. und 2. Art.................. 369 Lernziele

Mehr

11. Vorlesung Wintersemester

11. Vorlesung Wintersemester 11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y

Mehr

Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau

Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau Mathematische Grundlagen Mit den folgenden mathematischen Grundlagen sollten

Mehr

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 Mathematik I+II für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 I. Wiederholung Schulwissen 1.1. Zahlbereiche 1.2. Rechnen mit reellen Zahlen 1.2.1. Bruchrechnung 1.2.2. Betrag 1.2.3. Potenzen 1.2.4. Wurzeln

Mehr

Linien- und Oberflächenintegrale

Linien- und Oberflächenintegrale Linien- und berflächenintegrale Bei den früheren eindimensionalen Integralen wurde in der Regel entlang eines Intervalls einer Koordinatenachse integriert. Bei einem Linienintegral wird der Integrationsweg

Mehr

Wie man dieses (Weg-)Integral berechnet, kann man sich mit der folgenden Merkregel im Kopf halten. Man schreibt d~r = d~r

Wie man dieses (Weg-)Integral berechnet, kann man sich mit der folgenden Merkregel im Kopf halten. Man schreibt d~r = d~r Vektoranalysis 3 Die Arbeit g Zum Einstieg eine kleine Veranschaulichung. Wir betrachten ein Flugzeug, das irgendeinen beliebigen Weg zurücklegt. Ausserdem seien gewisse Windverhältnisse gegeben, so dass

Mehr

5 Der Gaußsche und Stokes sche Integralsatz

5 Der Gaußsche und Stokes sche Integralsatz HM III = MATH III FT 2013 50 5 Der Gaußsche und Stokes sche Integralsatz Der Gaußsche Integralsatz umgangssprachlich am eispiel strömender Flüssigkeiten: Die Flüssigkeitsmenge, die durch die Oberfläche

Mehr

19.3 Oberflächenintegrale

19.3 Oberflächenintegrale 19.3 Oberflächenintegrale Definition: Sei D R 2 ein Gebiet und p : D R 3 eine C 1 -Abbildung x = p(u) mit x R 3 und u = (u 1, u 2 ) T D R 2 Sind für alle u D die beiden Vektoren und u 1 linear unabhängig,

Mehr

12. Partielle Ableitungen

12. Partielle Ableitungen H.J. Oberle Analysis III WS 2012/13 12. Partielle Ableitungen 12.1 Partielle Ableitungen erster Ordnung Gegeben: f : R n D R, also eine skalare Funktion von n Variablen x = (x 1,..., x n ) T. Hält man

Mehr

Mathematische Einführung

Mathematische Einführung Lehrstuhl für Technische Elektrophysik Technische Universität München Übungen zu "Elektrizitätslehre" (Prof. Wachutka) Mathematische Einführung Die vorliegende Einführung in die Mathematik zur Vorlesung

Mehr

(Gaußscher Integralsatz)

(Gaußscher Integralsatz) Der Gaußsche Integralsatz Beim Oberflächenintegral O F n da beschreibt der Integrand den senkrechten Durchsatz des Vektorfeldes durch das Flächenelement da. Insgesamt liefert das Integral über eine geschlossene

Mehr

Übungsaufgaben zu Höherer Analysis, WS 2002/03. Aufgaben zu Doppelintegralen.

Übungsaufgaben zu Höherer Analysis, WS 2002/03. Aufgaben zu Doppelintegralen. Übungsaufgaben zu Höherer Analysis, WS 2002/03 Aufgaben zu Doppelintegralen. (A) Bestimmen Sie den Schwerpunkt des Gebietes 0 x π 2, 0 y cos x. (Antwort: s = ( π 2, π 8 )) (A2) Berechnen Sie die folgenden

Mehr

Mathematik für Ingenieure A III Wintersemester 2008

Mathematik für Ingenieure A III Wintersemester 2008 1 / 48 Mathematik für Ingenieure A III Wintersemester 2008 J. Michael Fried Lehrstuhl Angewandte Mathematik III 7.11.2008 2 / 48 Wiederholung Potentialfelder, Stammfunktionen für Vektorwertige Abbildungen

Mehr

Prüfungsvorbereitung HM 3 für kyb, mecha, phys WS 10/11

Prüfungsvorbereitung HM 3 für kyb, mecha, phys WS 10/11 Mathematik Online Kurs Prüfungsvorbereitung HM 3 für kyb, mecha, phys WS 10/11 http://www.mathematik-online.org/ 2 http://www.mathematik-online.org/ Mathematik Online Kurs Prüfungsvorbereitung HM 3 für

Mehr

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve.

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve. 1 Ableitungen Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen γ 1 (t) γ(t) = γ n (t) Bild(γ) = {γ(t) t I} heißt auch die Spur der Kurve Beispiel:1)

Mehr

Serie 7: Kurvenintegrale

Serie 7: Kurvenintegrale D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 7: Kurvenintegrale Bemerkungen: Die Aufgaben der Serie 7 bilden den Fokus der Übungsgruppen vom 4./6. April.. Ordnen Sie den Kurven -8 die

Mehr

Mehrfachintegrale 1-E1. Ma 2 Lubov Vassilevskaya

Mehrfachintegrale 1-E1. Ma 2 Lubov Vassilevskaya Mehrfachintegrale 1-E1 1-E2 Mehrfachintegrale c Die Erweiterung des Integralbegriffs führt zu den Mehrfachintegralen, die in den naturwissenschaftlich-technischen Anwendungen u.a. bei der Berechnung der

Mehr

A1: Diplomvorprüfung HM II/III SS

A1: Diplomvorprüfung HM II/III SS A: Diplomvorprüfung HM II/III SS 8 378 Aufgabe 5 + 7 + 6 8 Punkte a Führen Sie für den Bruch x+x x+3 b Berechnen Sie den Wert der Reihe k3 eine Partialbruchzerlegung durch k+k k+3 c Untersuchen Sie die

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 12/13 Prof. Dr. G. Bärwolff, Prof. Dr. F. Tröltzsch

Technische Universität Berlin Fakultät II Institut für Mathematik WS 12/13 Prof. Dr. G. Bärwolff, Prof. Dr. F. Tröltzsch Technische Universität Berlin Fakultät II Institut für Mathematik WS /3 Prof. Dr. G. Bärwolff, Prof. Dr. F. Tröltzsch 6.4.3 Rechenteil April Klausur Analysis II für Ingenieure. Aufgabe Punkte a Es gilt:

Mehr

Satz von Gauß. Satz von Gauß 1-1

Satz von Gauß. Satz von Gauß 1-1 atz von Gauß Für ein stetig differenzierbares Vektorfeld F auf einem regulären räumlichen Bereich V, der durch eine Fläche mit nach außen orientiertem vektoriellen Flächenelement d berandet wird, gilt

Mehr

Wochenaufgaben: Teil 1

Wochenaufgaben: Teil 1 Fachrichtung Mathematik Wochenaufgaben: Teil 1 Wiederholen Sie Kapitel 13 und Abschnitt 14.1. (Fernstudenten: Teil 3, A1, A3, A5.1 bzw. Kapitel 12 und Abschnitt 13.1. meines Skriptes). 1. Was ist eine

Mehr

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man:

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man: AM3: Differenzial- und Integralrechnung im R n 1 Begriffe f : x 1 f 1 (x 1, x 2,..., x n ) x 2... f 2 (x 1, x 2,..., x n )... x n f m (x 1, x 2,..., x n ) }{{}}{{} R n R m aus Platzgründen schreibt man:

Mehr

1.4 Gradient, Divergenz und Rotation

1.4 Gradient, Divergenz und Rotation .4 Gradient, Divergenz und Rotation 5.4 Gradient, Divergenz und Rotation Die Begriffe Gradient, Divergenz und Rotation erfordern die partiellen Ableitung aus Abschnitt.. sowie das Konzept des Differentialoperators.

Mehr

KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung

KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung KAPITEL III Elektrostatik Hier fehlt die obligatorische Einleitung... Im stationären Fall vereinfachen sich die Maxwell Gauß und die Maxwell Faraday-Gleichungen für die elektrische Feldstärke E( r) die

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Simone Warzel Max Lein TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physik (Analysis 3) Wintersemester 29/2 Lösungsblatt 2 (27..29) Zentralübung 4. Parametrisierung einer

Mehr

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const.

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const. 13 Flächenintegrale 64 13 Flächenintegrale Im letzten Abschnitt haben wir Integrale über Kurven betrachtet. Wir wollen uns nun mit Integralen über Flächen beschäftigen. Wir haben bisher zwei verschiedene

Mehr

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 1 Bearbeitung: 28.10.2011

Mehr

Die Maxwell-Gleichungen

Die Maxwell-Gleichungen Die Maxwell-Gleichungen 1 Mathematische Grundlagen Wenn man erstmals mit der Elektrodynamik konfrontiert wird, hat man vermutlich mit der ektoranalysis und dem damit verbundenen Auftreten von partiellen

Mehr

12. Übungsblatt zur Mathematik II für MB

12. Übungsblatt zur Mathematik II für MB Fachbereich Mathematik Prof. Dr. U. Reif R. Hartmann, T. Koch SS 1 5.7.21 12. Übungsblatt zur Mathematik II für MB Aufgabe 39 Divergenz Berechnen Sie die Divergenz folgender Vektorfelder: xyz + 2xy F 1

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 10/11 Böse, von Renesse, Stephan, Weiser

Technische Universität Berlin Fakultät II Institut für Mathematik WS 10/11 Böse, von Renesse, Stephan, Weiser Technische Universität Berlin Fakultät II Institut für Mathematik WS 10/11 Böse, von Renesse, Stephan, Weiser 28.02.2011 Februar Klausur Analysis II für Ingenieure Name:...................................

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2016 Vorlesung 1 (mit freundlicher Genehmigung von Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Mathematische

Mehr

Mathematik C (ET) UE WS 2014/ Übungsblatt. 7+t Berechnen Sie das Kurvenintegral (die physikalische Arbeit)

Mathematik C (ET) UE WS 2014/ Übungsblatt. 7+t Berechnen Sie das Kurvenintegral (die physikalische Arbeit) Mathematik (ET) UE WS 2014/2015 1. Übungsblatt 1. Berechnen Sie (a) die Bogenlänge der Kurve : x(t) = (b) den Gradient von f(x,y,z) = 4x y 2 +5z. ( t 7+t 2 ) mit 1 t 3, 2. Berechnen Sie das Kurvenintegral

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Band 2: Differential- und Integralrechnung für Funktionen mehrerer Variablen, gewöhnliche und partielle Differentialgleichungen, Fourier-Analysis Mit

Mehr

Ordnen Sie die Bilder den zugehörigen Funktionen z = f(x, y) zu:

Ordnen Sie die Bilder den zugehörigen Funktionen z = f(x, y) zu: 6. Februar 2012 Lösungshinweise Theorieteil Aufgabe 1: Die folgenden Bilder zeigen drei Niveaumengen N 0 {(x, y) R 2 : f(x, y) 0}: Ordnen Sie die Bilder den zugehörigen Funktionen z f(x, y) zu: (a) z (x

Mehr