Ein Würfel wird geworfen. Einsatz: Fr Gewinn: Fr. 6.--

Größe: px
Ab Seite anzeigen:

Download "Ein Würfel wird geworfen. Einsatz: Fr Gewinn: Fr. 6.--"

Transkript

1 1 Ein Würfel wird geworfen. : Fr : Fr Der Spieler hat gewonnen falls eine 6 erscheint. 2 Zwei Würfel werden geworfen. : Fr : Fr Der Spieler hat gewonnen falls die Augensumme gleich 6 ist.

2 3 Zwei Münzen werden geworfen : Fr : Fr Der Spieler hat gewonnen falls zwei mal Zahl erscheint. 4 Zwei Münzen werden geworfen : Fr : Fr Der Spieler hat gewonnen falls Kopf Zahl erscheint.

3 5 U R I In einer Urne sind drei Kärtchen mit den Buchstaben U R I. Die drei Kärtchen werden nacheinander gezogen (und nicht wieder zurück gelegt). : Fr : Fr Der Spieler hat gewonnen falls URI erscheint. 6 A N N A In einer Urne sind vier Kärtchen mit den Buchstaben A A N N. Die vier Kärtchen werden nacheinander gezogen (und nicht wieder zurück gelegt). : Fr : Fr Der Spieler hat gewonnen falls ANNA erscheint.

4 7 Eine Kugel wird gezogen. : Fr : Fr Der Spieler hat gewonnen falls die gezogenen Kugel weiss ist. 8 Es werden nacheinander zwei Kugeln gezogen, wobei vor der Ziehung der zweiten Kugel die erste Kugel wieder zurück gelegt und gemischt wird. : Fr : Fr Der Spieler hat gewonnen falls beide Kugeln weiss sind..

5 9 Zwei Kugeln werden gleichzeitig gezogen. : Fr : Fr Der Spieler hat gewonnen falls beide Kugeln weiss sind. 10 Es werden nacheinander zwei Kugeln gezogen, wobei vor der Ziehung der zweiten Kugel die erste Kugel wieder zurück gelegt und gemischt wird. : Fr : Fr Der Spieler hat gewonnen falls beide Kugeln schwarz sind.

6 11 Zwei Kugeln werden gleichzeitig gezogen. : Fr : Fr Der Spieler hat gewonnen falls beide Kugeln schwarz sind. 12 Es werden nacheinander zwei Kugeln gezogen, wobei vor der Ziehung der zweiten Kugel die erste Kugel wieder zurück gelegt und gemischt wird. : Fr : Fr falls beide Kugeln schwarz oder beide Kugeln weiss sind.

7 13 Zwei Kugeln werden gleichzeitig gezogen. : Fr : Fr falls beide Kugeln schwarz oder beide Kugeln weiss sind. 14 Es werden nacheinander zwei Kugeln gezogen, wobei vor der Ziehung der zweiten Kugel die erste Kugel wieder zurück gelegt und gemischt wird. : Fr : Fr Der Spieler hat gewonnen falls eine Kugel weiss und die andere schwarz ist.

8 15 Zwei Kugeln werden gleichzeitig gezogen. : Fr : Fr Der Spieler hat gewonnen falls eine Kugel weiss und die andere schwarz ist. 16 Der Spielleiter hält vier Schnüre in der Hand. Der Spieler knüpft an beiden Enden je zwei Schnüre zusammen. : Fr : Fr Der Spieler hat gewonnen falls ein geschlossener Kreis entsteht.

9 Lösungen Die Spielbank behält in jedem Fall den von Fr. 1. Beträgt die wahrscheinlichkeit 0.25 und werden dem Spieler im Falle eines es Fr. 4 ausbezahlt, so gewinnt (auf Dauer) niemand = 1 Angenommen der Spieler spielt 100 mal, so beträgt sein Fr Im Schnitt sollte er 25 mal gewinnen, dann beträgt sein Fr wahrscheinlichkeit = 1 bedeutet niemand gewinnt. 1 P = = 1 niemand gewinnt 2 P = Bank gewinnt 3 P = 1 4 = = 0.75 Bank gewinnt 4 P = 1 2 = = 1.50 Spieler gewinnt 5 P = = Bank gewinnt 6 P = = Spieler gewinnt 7 P = 2 5 = = 0.80 Bank gewinnt 8 P = = 4 25 = = 1.12 Spieler gewinnt 9 P = = 1 10 = = 0.70 Bank gewinnt 10 P = = 9 25 = = 1.08 Spieler gewinnt 11 P = = 3 10 = = 0.90 Bank gewinnt 12 P = P = P = P = = = = 1.04 Spieler gewinnt = 8 20 = = 0.80 Bank gewinnt = = = 0.96 Bank gewinnt = = = 1.20 Spieler gewinnt 16 P = = 1.33 Spieler gewinnt

ÜBUNG: ZUFALLSEREIGNISSE, BAUMDARSTELLUNGEN

ÜBUNG: ZUFALLSEREIGNISSE, BAUMDARSTELLUNGEN ÜBUNG: ZUFALLSEREIGNISSE, BAUMDARSTELLUNGEN Resultate auf zwei Stellen nach dem Komma runden. 1. Auf einer Speisekarte gibt es 3 Vorspeisen, 5 Hauptspeisen und 2 verschiedene Desserts. Wie viele verschiedene

Mehr

Stochastik (Laplace-Formel)

Stochastik (Laplace-Formel) Stochastik (Laplace-Formel) Übungen Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel

Mehr

Erwartungswert. c Roolfs

Erwartungswert. c Roolfs Erwartungswert 2e b a 4e Der Sektor a des Glücksrads bringt einen Gewinn von 2e, der Sektor b das Doppelte. Um den fairen Einsatz zu ermitteln, ist der durchschnittlich zu erwartende Gewinn pro Spiel zu

Mehr

Mathematik 31 Wahrscheinlichkeit 01 Name: Vorname: Datum:

Mathematik 31 Wahrscheinlichkeit 01 Name: Vorname: Datum: Mathematik Wahrscheinlichkeit 0 Name: Vorname: Datum: Aufgabe : In einer Urne liegen Kugeln mit den Nummern,,,,. Für den Einsatz von Fr. kann man zwei Zahlen nennen und danach zwei Kugeln ziehen. Zieht

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Einführung in die Wahrscheinlichkeitsrechnung. In einer Urne befinden sich 3 schwarze und weiße Kugel. Wir entnehmen der Urne eine Kugel, notieren die Farbe und legen die Kugel in die Urne zurück. Dieses

Mehr

4. Schularbeit/7C/2-stündig Schularbeit. 7C am

4. Schularbeit/7C/2-stündig Schularbeit. 7C am 4. Schularbeit 7C am 24.5.2017 Name: Note: Beispiel-Nr. 1 2 3 4 5 6 7 8 9 10 11 12 AP Teil 1: Teil 2: Punkte Teil 1 (inkl. AP) Punkte Teil 2 Gesamtpunkte Notenschlüssel: 0 7 P von Teil 1 (inkl. Anrechnungspunkte

Mehr

38 % Wie groß ist die Wahrscheinlichkeit, dass von den beiden gezogenen Kugeln eine rot und eine weiß ist? Lösung:

38 % Wie groß ist die Wahrscheinlichkeit, dass von den beiden gezogenen Kugeln eine rot und eine weiß ist? Lösung: 10 Aufgaben im Dokument Aufgabe P8/2008 In einem Behälter liegen fünf blaue, drei weiße und zwei rote Kugeln. Mona zieht eine Kugel, notiert die Farbe und legt die Kugel wieder zurück. Danach zieht sie

Mehr

Vereinfache so weit als möglich. Gib das Ergebnis als einen vollständig gekürzten Bruch an.

Vereinfache so weit als möglich. Gib das Ergebnis als einen vollständig gekürzten Bruch an. Kantonsschule Rychenberg FMS Aufnahmeprüfung 2018 Seite 2 von 19 Aufgabe 1: Termumformungen (4 Punkte) Vereinfache so weit als möglich. Gib das Ergebnis als einen vollständig gekürzten Bruch an. a) b)

Mehr

Klausuraufschrieb. ß $ Zwei verschiedenfarbige Kugeln: Höchstens eine Kugel ist rot: Das Gegenereignis ist beide Kugeln sind rot, somit gilt: # # #

Klausuraufschrieb. ß $ Zwei verschiedenfarbige Kugeln: Höchstens eine Kugel ist rot: Das Gegenereignis ist beide Kugeln sind rot, somit gilt: # # # Lösung P8/2008 Es handelt sich um Ziehen mit Zurücklegen. Aufstellung der Einzelwahrscheinlichkeit für die verschiedenfarbigen Kugeln. Berechnung der Wahrscheinlichkeit für zwei gleichfarbige Kugeln. Berechnung

Mehr

BSZ für Bau- und Oberflächentechnik des Landkreises Zwickau Außenstelle Limbach-Oberfrohna STOCHASTIK

BSZ für Bau- und Oberflächentechnik des Landkreises Zwickau Außenstelle Limbach-Oberfrohna STOCHASTIK . Ordnen Sie die in den folgenden Bildern dargestellten Wahrscheinlichkeitsfunktionen nach den Erwartungswerten ihrer Zufallsgröße X mit x, 2,, 4, 5 größten Erwartungswert. i. Beginnen Sie mit dem Bild

Mehr

Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn.

Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn. Wahrscheinlichkeiten Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn. Bestimme die Wahrscheinlichkeit, dass Anna a) ein Ass, b) einen Buben, c)

Mehr

Pfadwahrscheinlichkeiten

Pfadwahrscheinlichkeiten Pfadwahrscheinlichkeiten Die Wahrscheinlichkeit, beim zweimaligen Würfeln eine Doppelsechs zu erzielen, beträgt 6. Das Ergebnis legt die Vermutung nahe, dass wir lediglich, also die Wahrscheinlichkeit,

Mehr

C : Genau ein Wurf ergibt Augenzahl D:.Wenigstens ein Wurf ergibt Augenzahl 2

C : Genau ein Wurf ergibt Augenzahl D:.Wenigstens ein Wurf ergibt Augenzahl 2 Lapace-Experimente ================================================================== 1. a) Wie groß ist die W'keit, beim Werfen eines Laplace-Würfels eine Sechs zu erhalten? b) Wie groß ist die W'keit,

Mehr

1 Bestimme mit Hilfe eines Baumdiagramms die Wahrscheinlichkeit, beim dreimaligen Werfen einer Münze a) zweimal Kopf und einmal Zahl zu erhalten.

1 Bestimme mit Hilfe eines Baumdiagramms die Wahrscheinlichkeit, beim dreimaligen Werfen einer Münze a) zweimal Kopf und einmal Zahl zu erhalten. 1 Bestimme mit Hilfe eines Baumdiagramms die Wahrscheinlichkeit, beim dreimaligen Werfen einer Münze a) zweimal Kopf und einmal Zahl zu erhalten. b) erst Zahl, dann zweimal Kopf zu erhalten. c**) mindestens

Mehr

alte Maturaufgaben zu Stochastik

alte Maturaufgaben zu Stochastik Stochastik 01.02.13 alte Maturaufgaben 1 alte Maturaufgaben zu Stochastik 1 07/08 1. (8 P.) In einer Urne liegen 5 rote, 8 gelbe und 7 blaue Kugeln. Es werden nacheinander drei Kugeln gezogen, wobei die

Mehr

D. Ulmet IT 4 Blatt 5 Stochastik I SS 2005

D. Ulmet IT 4 Blatt 5 Stochastik I SS 2005 D. Ulmet IT 4 Blatt 5 Stochastik I SS 2005 Aufgabe 1: Von den Ereignissen A, B und C trete a) nur A ein, b) genau eines ein, c) höchstens eines ein, d) mindestens eines ein, e) mindestens eines nicht ein,

Mehr

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt.

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt. . Mehrstufige Zufallsversuche und Baumdiagramme Entsprechend der Anmerkung in. wollen wir nun auf der Basis von bekannten Wahr- scheinlichkeiten weitere Schlüsse ziehen. Dabei gehen wir immer von einem

Mehr

Übungen zu Wahrscheinlichkeitstheorie Judith Kloas, Wolfgang Woess, Jonas Ziefle SS 2016

Übungen zu Wahrscheinlichkeitstheorie Judith Kloas, Wolfgang Woess, Jonas Ziefle SS 2016 Übungen zu Wahrscheinlichkeitstheorie Judith Kloas, Wolfgang Woess, Jonas Ziefle SS 2016 43) [3 Punkte] Sei φ(t) die charakteristische Funktion der Verteilungsfunktion F (x). Zeigen Sie, dass für jedes

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Was du wissen musst: Die Begriffe Zufallsexperiment, Ereignisse, Gegenereignis, Zufallsvariable und Wahrscheinlichkeit sind dir geläufig. Du kannst mehrstufige Zufallsversuche

Mehr

3. Anwendungen aus der Kombinatorik

3. Anwendungen aus der Kombinatorik 3. Anwendungen aus der Kombinatorik 3.1. Ziehen mit Zurücklegen 1) Würfeln Wie gross ist die Wahrscheinlichkeit für genau 2 Sechser in 7 Würfen? 2) Glücksrad Ein Glücksrad zeigt "1" mit Wahrscheinlichkeit

Mehr

5. KLASSENARBEIT MATHEMATIK G9A

5. KLASSENARBEIT MATHEMATIK G9A 5. KLASSENARBEIT MATHEMATIK G9A 11.04.2014 Aufgabe 1 2 3 4 5 6 Punkte (max) 2 4 4 8 4 2 Punkte (1) Eine Münze wird dreimal geworfen. Gib zu jedem der folgenden Ereignisse das Gegenereignis an! (a) Man

Mehr

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus,

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus, V. Stochastik ================================================================== 5.1 Zählprinzip Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein

Mehr

7 Unabhängigkeit von Ereignissen; bedingte Wahrscheinlichkeit

7 Unabhängigkeit von Ereignissen; bedingte Wahrscheinlichkeit Übungsmaterial 7 Unabhängigkeit von reignissen; bedingte Wahrscheinlichkeit 7. Unabhängigkeit von reignissen Wir betrachten folgendes Beispiel: Zwei unterscheidbare Münzen werden geworfen. Man betrachtet

Mehr

Stochastik. Pfadregeln Erwartungswert einer Zufallsvariablen bedingte Wahrscheinlichkeit. berufliche Gymnasien Oberstufe.

Stochastik. Pfadregeln Erwartungswert einer Zufallsvariablen bedingte Wahrscheinlichkeit. berufliche Gymnasien Oberstufe. Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen bedingte Wahrscheinlichkeit berufliche Gymnasien Oberstufe Alexander Schwarz www.mathe-aufgaben.com Oktober 2015 1 Aufgabe 1: Eine Urne enthält

Mehr

Level 1 Grundlagen Blatt 1. Dokument mit 19 Aufgaben

Level 1 Grundlagen Blatt 1. Dokument mit 19 Aufgaben Level 1 Grundlagen Blatt 1 Dokument mit 19 Aufgaben Aufgabe A1 Ein Glücksrad hat drei Sektoren mit den Farben Rot, Gelb und Grün. Das Rad bleibt mit einer Wahrscheinlichkeit von 0,1 so stehen, dass der

Mehr

Level 1 Grundlagen Blatt 2. Dokument mit 16 Aufgaben

Level 1 Grundlagen Blatt 2. Dokument mit 16 Aufgaben Level Grundlagen Blatt 2 Dokument mit 6 Aufgaben Aufgabe A In einer Klasse von 25 Schülern soll für einen Wettbewerb eine Mannschaft von 5 Schülern gebildet werden. Da man sich nicht einigen kann wird

Mehr

Laplace-Formel. Übungsaufgaben

Laplace-Formel. Übungsaufgaben Laplace-Formel Übungsaufgaben Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel wird einmal

Mehr

Aufgaben zum Wahrscheinlichkeitsrechnen

Aufgaben zum Wahrscheinlichkeitsrechnen 1.) Wie groß ist die Wahrscheinlichkeit, beim einmaligen Werfen mit einem Würfel keine 4 zu werfen? % 2.) Wie groß ist beim einmaligen Werfen von zwei verschieden farbigen Würfeln die Wahrscheinlichkeit,...

Mehr

Stochastik. Erwartungswert einer Zufallsvariablen. Allg. Gymnasien: Ab Klasse 10 Berufliche Gymnasien: Ab Klasse 11.

Stochastik. Erwartungswert einer Zufallsvariablen. Allg. Gymnasien: Ab Klasse 10 Berufliche Gymnasien: Ab Klasse 11. Stochastik einer Zufallsvariablen Allg. Gymnasien: Ab Klasse 10 Berufliche Gymnasien: Ab Klasse 11 Alexander Schwarz www.mathe-aufgaben.com Juli 2018 1 Aufgabe 1: Ein Glücksrad besteht aus Feldern, die

Mehr

Stochastik: Erwartungswert Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 10 Alexander Schwarz

Stochastik: Erwartungswert Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 10 Alexander Schwarz Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 0 Alexander Schwarz www.mathe-aufgaben.com November 20 Aufgabe : Ein Glücksrad besteht aus Feldern, die folgendermaßen beschriftet sind:.feld:

Mehr

Vorkurs Mathematik. Christoph Hindermann. Wahrscheinlichkeitstheorie

Vorkurs Mathematik. Christoph Hindermann. Wahrscheinlichkeitstheorie Kapitel 4 Christoph Hindermann Vorkurs Mathematik 1 4.0 Motivation Wenn 100 Münzen geworfen werden, wie ist dann die Wahrscheinlichkeit, dass genau 50 davon Kopf zeigen? Angenommen, es befinden sich 300

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

Bernoulli-Kette. f) Verallgemeinere das letzte Ergebnis. g) Veranschauliche die Ereignisse in dem Diagramm.

Bernoulli-Kette. f) Verallgemeinere das letzte Ergebnis. g) Veranschauliche die Ereignisse in dem Diagramm. Bernoulli-Kette Die Anzahl der 0/-Folgen der Länge n mit k Einsen sollte bekannt sein. Wir haben 0 Äpfel in einer Reihe vor uns liegen. Jeder Apfel ist mit 40%-iger Wahrscheinlichkeit wurmstichig ( =).

Mehr

UE Statistik 1, SS 2015, letztes Update am 5. März Übungsbeispiele

UE Statistik 1, SS 2015, letztes Update am 5. März Übungsbeispiele UE Statistik, SS 05, letztes Update am 5. März 05 Übungsbeispiele Beispiele mit Musterlösungen finden Sie auch in dem Buch Brannath, W., Futschik, A., Krall, C., (00) Statistik im Studium der Wirtschaftswissenschaften..

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

1 Grundlagen Wahrscheinlichkeitsrechung

1 Grundlagen Wahrscheinlichkeitsrechung 1 Grundlagen Wahrscheinlichkeitsrechung 1.1 Grundbegriffe Alle möglichen Ereignisse eines Zufallsexperiments fassen wir in einer Ereignismenge Ω zusammen. Ereignisse sind Teilmengen von Ω. Umfasst das

Mehr

Vier-Felder-Tafel und bedingte Wahrscheinlichkeit

Vier-Felder-Tafel und bedingte Wahrscheinlichkeit Vier-Felder-Tafel und bedingte Wahrscheinlichkeit erkrankt nicht erkrankt geimpft 47 125 nicht geimpft 21 Summe 201 Ergänze die Vier-Felder-Tafel und stelle die Zusammenhänge in einem Pfaddiagramm dar,

Mehr

Gruber, Erfolg im ABI, Pflichtteil. matheskript B STOCHASTIK WAHRSCHEINLICHKEITSRECHNUNG STATISTIK PFLICHTTEIL ÜBUNGEN Klasse.

Gruber, Erfolg im ABI, Pflichtteil. matheskript B STOCHASTIK WAHRSCHEINLICHKEITSRECHNUNG STATISTIK PFLICHTTEIL ÜBUNGEN Klasse. matheskript B STOCHASTIK WAHRSCHEINLICHKEITSRECHNUNG STATISTIK PFLICHTTEIL ÜBUNGEN 12. 13. Klasse Jens Möller INHALTE Baumdiagramme Ziehen mit und ohne Zurücklegen Binomialverteilungen Erwartungswerte

Mehr

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen.1 Pfadregeln.1.1 Pfadmultiplikationsregel Eine faire Münze und

Mehr

Aufgabe 1: Termumformungen

Aufgabe 1: Termumformungen Kantonsschule Rychenberg FMS-Aufnahmeprüfung 2018 Seite 1 von 11 Aufgabe 1: Termumformungen Vereinfache so weit als möglich. Gib das Ergebnis als einen vollständig gekürzten Bruch an. 5m 3 1 2 (4m 5 2

Mehr

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7:

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7: Discrete Probability - Übungen (SS5) Felix Rohrer Wahrscheinlichkeitstheorie 1. KR, Abschnitt 6.1, Aufgabe 5: Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Augensumme von zwei geworfenen Würfeln

Mehr

4 x

4 x Quadratwurzeln und reelle Zahlen. Bestimme die Definitionsmenge des Wurzelterms in G = R a) T(x) = x b) x c) x d) x e) x +. Vereinfache a) 0 + 90 b) 6 7 + 08 7 7 c) 0 0 + d) 6. Mache den Nenner rational

Mehr

Vorlesung Statistik WING ASW Melanie Kaspar, Prof. Dr. B. Grabowski 1

Vorlesung Statistik WING ASW Melanie Kaspar, Prof. Dr. B. Grabowski 1 Melanie Kaspar, Prof. Dr. B. Grabowski 1 Aus diesen Eigenschaften lassen sich alle weiteren Eigenschaften ableiten: Beweis zu 1) Melanie Kaspar, Prof. Dr. B. Grabowski 2 Aufgabe Die Wahrscheinlichkeit

Mehr

Die Formel für Kombinationen wird verwendet, wenn

Die Formel für Kombinationen wird verwendet, wenn 1. Übung: Kombinatorik Aufgabe 1 Die Formel für Kombinationen wird verwendet, wenn a) Alle n Elemente angeordnet werden sollen. b) Aus n Elementen k Elemente gezogen werden sollen. c) Die Reihenfolge der

Mehr

Aufgaben sind zum größten Teil ohne CAS zu lösen. Kontrolle mit CAS ist eine gute Übung

Aufgaben sind zum größten Teil ohne CAS zu lösen. Kontrolle mit CAS ist eine gute Übung Aufgaben sind zum größten Teil ohne CAS zu lösen. Kontrolle mit CAS ist eine gute Übung Analysis Aufgabe 2 Bestimmen Sie jeweils die Gleichung einer Funktion f mit folgenden Eigenschaften: a) Die Funktion

Mehr

Diskrete Strukturen. Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds16/ 1. Februar 2017 Vorlesung 21

Diskrete Strukturen. Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds16/ 1. Februar 2017 Vorlesung 21 Diskrete Strukturen Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds16/ 1. Februar 2017 Vorlesung 21 Quasiendliche Wahrscheinlichkeitsräume Definition quasiendlicher Wahrscheinlichkeitsraum

Mehr

Beispiele: Beim Zahlenlotto sollte jede Sechserserie von Zahlen mit derselben Wahrscheinlichkeit auftreten.

Beispiele: Beim Zahlenlotto sollte jede Sechserserie von Zahlen mit derselben Wahrscheinlichkeit auftreten. 3. Laplaceexperimente. Beispiele: Beim Zahlenlotto sollte jede Sechserserie von Zahlen mit derselben Wahrscheinlichkeit auftreten. Laplace-Münze: p(k) = p(z) = / Laplace-Würfel: p() =... = p(6) = / 6.

Mehr

Übungen zur Kombinatorik

Übungen zur Kombinatorik 1. Das Paradoxon des Chevalier de Méré: De Méré fand es paradox, dass beim Würfeln mit drei Würfeln die Augenzahlsumme 11 häufiger zustande kam als die Augenzahlsumme 12. Wie lauten die tatsächlichen Wahrscheinlichkeiten

Mehr

Spielgeräte: Von Wahrscheinlichkeiten bis Binomialverteilung

Spielgeräte: Von Wahrscheinlichkeiten bis Binomialverteilung Bernoulli-Kette, und hypergeometrische Verteilung: F. 2. 32 Spielgeräte: Von Wahrscheinlichkeiten bis Die folgende Stationenarbeit dient dazu, die Begriffe der Oberstufenstochastik (Wahrscheinlichkeit;

Mehr

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 016

Mehr

1 Das Phänomen Zufall

1 Das Phänomen Zufall 1 Das Phänomen Zufall Im täglichen Leben werden wir oft mit Vorgängen konfrontiert, bei denen der Zufall eine Rolle spielt. Bereits als Kind lernt man die Tücken des Zufalls kennen, wenn man beim Spiel

Mehr

Übungsaufgaben Wahrscheinlichkeit

Übungsaufgaben Wahrscheinlichkeit Übungsaufgaben Wahrscheinlichkeit Aufgabe 1 (mdb500405): In einer Urne befinden sich gelbe (g), rote (r), blaue (b) und weiße (w) Kugel (s. Bild). Ohne Hinsehen sollen aus der Urne in einem Zug Kugeln

Mehr

Aufgaben zur Wahrscheinlichkeit. Beispielsammlung 3. Themen: Zufallsvariable Wahrscheinlichkeitsverteilung Erwartungswert Standardabweichung

Aufgaben zur Wahrscheinlichkeit. Beispielsammlung 3. Themen: Zufallsvariable Wahrscheinlichkeitsverteilung Erwartungswert Standardabweichung Wahrscheinlichkeitsrechnung Aufgaben zur Wahrscheinlichkeit Beispielsammlung 3 Themen: Zufallsvariable Wahrscheinlichkeitsverteilung Erwartungswert Standardabweichung Es liegen fast keine Binomialverteilungen

Mehr

KLASSENARBEIT MATHEMATIK G9

KLASSENARBEIT MATHEMATIK G9 KLASSENARBEIT MATHEMATIK G9 25.03.2015 Aufgabe 1 2 3 4 5 6 7 Punkte (max) 4 6 4 3 4 4 5 Punkte (1) Berechne a) 16 1 2 = b) 27 1 3 = c) 2 x 4 y = d) x 2 + xy x + y (2) Es werden 3 Kranke ausgewählt und

Mehr

Aufgabe A1 Ein Glücksrad hat vier Sektoren, wovon die ersten beiden die Winkelgröße 60 haben. Für die Winkelgrößen und des dritten und vierten Sektors

Aufgabe A1 Ein Glücksrad hat vier Sektoren, wovon die ersten beiden die Winkelgröße 60 haben. Für die Winkelgrößen und des dritten und vierten Sektors Level Grundlagen Blatt Dokument mit Aufgaben Aufgabe A Ein Glücksrad hat vier Sektoren, wovon die ersten beiden die Winkelgröße 60 haben. Für die Winkelgrößen und des dritten und vierten Sektors gilt.

Mehr

1,00 2,00 3,00 4,00 Bestimme den Gewinnerwartungswert. Entscheide, ob das Spiel fair ist.

1,00 2,00 3,00 4,00 Bestimme den Gewinnerwartungswert. Entscheide, ob das Spiel fair ist. Level Grundlagen Blatt Dokument mit 3 Aufgaben Aufgabe A Ein Glücksrad hat vier Sektoren, wovon die ersten beiden die Winkelgröße 60 haben. Für die Winkelgrößen und des dritten und vierten Sektors gilt.

Mehr

Wahrscheinlichkeitsrechnung Vermischte Aufgaben 2 Lösungen

Wahrscheinlichkeitsrechnung Vermischte Aufgaben 2 Lösungen Wahrscheinlichkeitsrechnung Vermischte Aufgaben 2 Lösungen 1. Eine Münze wird viermal hintereinander geworfen. Mit welcher Wahrscheinlichkeit erhält man a) dreimal Z, einmal W, b) mindestens dreimal Z,

Mehr

Kurs 2 Stochastik EBBR Vollzeit (1 von 2)

Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 281 Bremen Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Name: Ich 1. 2. 3. 4.. 6. 7. So schätze ich meinen Lernzuwachs ein.

Mehr

1. Eine Tombola mit Losen wirbt mit dem Spruch: Jedes vierte Los gewinnt!

1. Eine Tombola mit Losen wirbt mit dem Spruch: Jedes vierte Los gewinnt! 1. Eine Tombola mit 10000 Losen wirbt mit dem Spruch: Jedes vierte Los gewinnt! Wie deuten Sie dieses Versprechen? Sie kaufen vier Lose. Ist es sicher, dass darunter ein Gewinnlos ist? Wie sieht es bei

Mehr

5. Der Lottoschwachsinn!

5. Der Lottoschwachsinn! JKU goes school: Erlebuis Statistik (Andreas Quatember) 1/20 5. Der Lottoschwachsinn! Die Wahrscheinlichkeit eines Ereignisses ist eine Zahl, die zwischen 0 und 1 liegt. Die Wahrscheinlichkeit 0 bedeutet:

Mehr

P A P( A B) Definition Wahrscheinlichkeit

P A P( A B) Definition Wahrscheinlichkeit Unabhaengige Ereignisse edingte Wahrscheinlichkeit Definition Wahrscheinlichkeit Die Wahrscheinlichkeit eines Ereignisses ist das Verhältnis der günstigen Ergebnisse zur Gesamtmenge der Ergebnisse nzahl

Mehr

Wahrscheinlichkeitsrechnung 1. Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften.

Wahrscheinlichkeitsrechnung 1. Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften. Wahrscheinlichkeitsrechnung 1. Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften. 2. Geben Sie vier Zufallsexperimente mit ihrer jeweiligen an. 3. In einer Obstkiste

Mehr

Download. Hausaufgaben: Statistik und Wahrscheinlichkeit. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben: Statistik und Wahrscheinlichkeit. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Download Otto Mayr Hausaufgaben: Statistik und Wahrscheinlichkeit Üben in drei Differenzierungsstufen Downloadauszug aus dem Originaltitel: Hausaufgaben: Statistik und Wahrscheinlichkeit Üben in drei Differenzierungsstufen

Mehr

Beispielaufgaben Mathematik Grundkurs

Beispielaufgaben Mathematik Grundkurs Beispielaufgaben Land Zentrale schriftliche Abiturprüfung Beispielaufgaben Grundkurs Aufgabenvorschlag Teil 1 für Prüflinge Hilfsmittel: nicht für Aufgabenstellung 1: Gesamtbearbeitungszeit: Nachschlagewerk

Mehr

Level 1 Grundlagen Blatt 2

Level 1 Grundlagen Blatt 2 Level 1 Grundlagen Blatt 2 Dokument mit 1 Aufgaben Aufgabe A9 Ein Glücksrad besteht aus 3 Feldern, die folgendermaßen beschriftet sind: 1.Feld: 2,00 2. Feld: 5,00 3. Feld: 0,00 Das 1. Feld hat einen Mittelpunktswinkel

Mehr

1 Du sollst auf diesem «Lottoschein» Zahlen ankreuzen.

1 Du sollst auf diesem «Lottoschein» Zahlen ankreuzen. Roulette und Zahlenlotto 18 1 5 1 Du sollst auf diesem «Lottoschein» Zahlen ankreuzen. 1 2 3 4 5 6 7 8 9 Wie viele Möglichkeiten hast du, wenn du A zwei Zahlen ankreuzen darfst? = 9 8 2 1 B zwei gerade

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen)

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen) Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜUNG. - LÖSUNGEN. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen Die Urne enthält 4 weiße und 8 rote Kugeln.

Mehr

Vorbereitung für die Arbeit: Satz des Pythagoras

Vorbereitung für die Arbeit: Satz des Pythagoras Vorbereitung für die Arbeit: Satz des Pythagoras Satz des Pythagoras: 1. Die Dreiecke sind nicht im Richtigen Maßstab gezeichnet. Welcher der Dreiecke ist rechtwinklig. 2. Berechne die Längen der fehlenden

Mehr

4 Übungsaufgaben zu Kapitel 4

4 Übungsaufgaben zu Kapitel 4 4 Übungsaufgaben zu Kapitel 4 4.1 Aufgabe. In einer Schachtel liegen vier mit 1 bis 4 nummerierte Kugeln. Wie lautet die Ergebnismenge, wenn zwei Kugeln mit einem Griff gezogen werden? 4.2 Aufgabe. Welche

Mehr

2 STOCHASTISCHE GRUNDBEGRIFFE

2 STOCHASTISCHE GRUNDBEGRIFFE 2 STOCHASTISCHE GRUNDBEGRIFFE 2.4 Wahrscheinlichkeitsräume 1. Man vereinfache soweit wie möglich (AB A B): (a) (A B)(A B c ) (b) (A B)(B C) (c) (A B)(A c B)(A B c ) (d) (AB) (AB c ) (e) (A B)(A c B)(A

Mehr

A B A B A B C. Beispiel 1 Wie viele Möglichkeiten gibt es 3 verschiedene Kugeln: A, B und C auf verschiedene Arten auf 3 Plätze anzuordnen?

A B A B A B C. Beispiel 1 Wie viele Möglichkeiten gibt es 3 verschiedene Kugeln: A, B und C auf verschiedene Arten auf 3 Plätze anzuordnen? eispiel 1 Wie viele Möglicheiten gibt es 3 verschiedene Kugeln:, und auf verschiedene rten auf 3 Plätze anzuordnen? Lösung Es gibt also 6 Möglicheiten, 3 verschiedene Kugeln auf 3 verschiedene Plätze anzuordnen.

Mehr

Level 1 Grundlagen Blatt 3. gezogen? Kugeln rot ist?

Level 1 Grundlagen Blatt 3. gezogen? Kugeln rot ist? Level Grundlagen Blatt 3 Dokument mit 6 Aufgaben Aufgabe A20 Die Flächen eines Tetraederwürfels sind mit den Zahlen bis 4 beschriftet. Als gewürfelt gilt die Zahl, auf der der Würfel zu liegen kommt. Der

Mehr

1. a) Löse die Gleichung nach x auf. 10 3(4x 8) = 2(18 7x) b) Löse die Gleichung nach x auf. x x = 4. 2 von 13

1. a) Löse die Gleichung nach x auf. 10 3(4x 8) = 2(18 7x) b) Löse die Gleichung nach x auf. x x = 4. 2 von 13 1. a) Löse die Gleichung nach x auf. 10 3(4x 8) = 2(18 7x) b) Löse die Gleichung nach x auf. 2x + 4 8 x 4 6 = 4 2 von 13 2. a) Fülle die Lücken in der Tabelle aus. x y x 4y x 2 2(y x) 4 2 3 14 b) Vereinfache

Mehr

Diskrete Strukturen I

Diskrete Strukturen I Universität Kassel Fachbereich 10/1 PD Dr. Sebastian Petersen 14.09.2017 Klausur zur Vorlesung Diskrete Strukturen I Es können maximal 40 Punkte erreicht werden. Version mit Lösungsskizze Zur Notation:

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 10/1 13.03.2013 Klausur: Diskrete Strukturen I Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede Aufgabe ein neues Blatt an. Beschreiben Sie

Mehr

WAHRSCHEINLICHKEIT. Erinnere dich

WAHRSCHEINLICHKEIT. Erinnere dich Thema Nr.9 WAHRSCHEINLICHKEIT Erinnere dich Zufallsexperiment Ein Experiment, bei dem verschiedene Ergebnisse möglich sind und bei dem das Ergebnis nur vom Zufall abhängt heißt Zufallsexperiment. Beispiele

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Grundbegriffe: Experiment: ein Vorgang, den man unter gleichen Voraussatzungen beliebig oft wiederholen kann. Ergebnis ω : Ausgang eines Experiments Ergebnismenge Ω : Menge

Mehr

Zusammengesetzte Zufallsexperimente - Baumdiagramme und Pfadregeln ==================================================================

Zusammengesetzte Zufallsexperimente - Baumdiagramme und Pfadregeln ================================================================== Zusammengesetzte Zufallsexperimente - Baumdiagramme und Pfadregeln ================================================================== Ein Zufallsexperiment heißt zusammegesetzt, wenn es es die Kombination

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 0/ 5.03.0 Dr. Sebastian Petersen Klausur: Diskrete Strukturen I Aufgabe. (8 Punkte) a) Sei X = {0, }. Geben Sie die Potenzmenge P (X) (durch Auflisten ihrer Elemente) an.

Mehr

Grundraum eines Zufallsversuchs*

Grundraum eines Zufallsversuchs* Grundraum eines Zufallsversuchs* Aufgabennummer: 1_377 Aufgabentyp: Aufgabenformat: offenes Format Grundkompetenz: WS.1 Typ 1 T Typ In einer Urne befinden sich zwei Kugeln, die mit den Zahlen 0 bzw. 1

Mehr

Vorlesung Statistik, H&A Mathe, Master M

Vorlesung Statistik, H&A Mathe, Master M Beispiel: Die Wahrscheinlichkeit dafür, dass ein Bewerber von Firma A angenommen wird ist P(A) = 0,2. Die Wahrscheinlichkeit von Firma B angenommen zu werden beträgt P(B) = 0,3. Von mindestens einer der

Mehr

Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an.

Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel GlücksPasch an. Aufgabe 4 Glückspasch" (16 Punkte) Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an. Spielregeln: Einsatz 1. Der Mitspieler würfelt mit 2 Oktaederwürfeln. Fällt ein Pasch,

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 10/16 13.09.01 Klausur: Diskrete Strukturen I Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede Aufgabe ein neues Blatt an. Beschreiben Sie

Mehr

Übung zur Stochastik

Übung zur Stochastik Übung zur Stochastik 1.) Die G-Partei hat bei der vergangenen Kommunalwahl in einer Stadt mit etwa 700 000 wahlberechtigten Bürgern rund 9 % der Stimmen erhalten. Nun werden 1 000 rein zufällig ausgewählte

Mehr

Repetitionsaufgaben schriftliche Matur 2016 Teil 1

Repetitionsaufgaben schriftliche Matur 2016 Teil 1 Kantonsschule Solothurn Repetitionsaufgaben Matura 16 Teil 1 RYS Repetitionsaufgaben schriftliche Matur 2016 Teil 1 1. Gleichungen / Funktionen / Kurzaufgaben 1.1. a) x + 10 = 16 b) by + cy = mb + mc c)

Mehr

Schritt 1: Höhe des Dreiecks berechnen. Schritt 2: y berechnen. Schritt 3: c berechnen. Schritt 4: b berechnen. Lösung: M GYM K09 BY 4.

Schritt 1: Höhe des Dreiecks berechnen. Schritt 2: y berechnen. Schritt 3: c berechnen. Schritt 4: b berechnen. Lösung: M GYM K09 BY 4. Aufgabe 1 Schritt 1: Höhe des Dreiecks berechnen Die Höhe z teilt das Dreieck in zwei rechtwinklige Dreiecke. Die Höhe z berechnest du mithilfe des Satz des Pythagoras (z und x sind die Katheten, a die

Mehr

BESONDERE LEISTUNGSFESTSTELLUNG Schuljahr 2014/2015 MATHEMATIK

BESONDERE LEISTUNGSFESTSTELLUNG Schuljahr 2014/2015 MATHEMATIK Prüfungstag: 28. Mai 2015 (HAUPTTERMIN) Prüfungsbeginn: 08:00 Uhr BESONDERE LEISTUNGSFESTSTELLUNG Schuljahr 2014/2015 MATHEMATIK Hinweise für die Teilnehmerinnen und Teilnehmer Bearbeitungszeit: 180 Minuten

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

Blatt 6: Grundlagen der Wahrscheinlichkeitstheorie MAE 3

Blatt 6: Grundlagen der Wahrscheinlichkeitstheorie MAE 3 School of Engineering Winterthur Zürcher Hochschule für Angewandte Wissenschaften Blatt 6: Grundlagen der Wahrscheinlichkeitstheorie MAE 3 Aufgabe 1: Ein homogener Würfel wird zwei Mal geworfen. Wie groß

Mehr

Tag der Mathematik 2017

Tag der Mathematik 2017 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind nicht zugelassen.

Mehr

Roulette und Zahlenlotto 18

Roulette und Zahlenlotto 18 1 7 Miniroulette mit 9 Zahlen Spielregeln Bei Gewinn wird der Wetteinsatz verdoppelt, wenn auf «gerade», «ungerade», «rot» oder «schwarz» gesetzt wurde. vervierfacht, wenn auf (1, 2), (3, 4), (5, 6) oder

Mehr

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK BESONDERE LEISTUNGSFESTSTELLUNG 003 MATHEMATIK Arbeitszeit: Hilfsmittel: 150 Minuten 1. Formeln und Tabellen für die Sekundarstufen I und II. Berlin: Paetec, Ges. für Bildung und Technik. Formeln und Tabellen

Mehr

Aufgaben für die Klassenstufen 11/12

Aufgaben für die Klassenstufen 11/12 Aufgaben für die Klassenstufen 11/12 Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben OE1, OE2, OE3 Aufgaben OG1, OG2, OG3, OG4 Aufgaben OS1, OS2, OS3, OS4, OS5, OS6, OS7, OS8 Aufgabe OE1: Ein

Mehr

Problemlösen Kombinationen - Wahrscheinlichkeit

Problemlösen Kombinationen - Wahrscheinlichkeit Problemlösen Kombinationen - Wahrscheinlichkeit Zusammengestellt aus dem Mathebuch der Bezirksschule Brugg Anzahl möglicher Anordnungen bei 3 Elementen Wie viele mögliche Anordnungen lassen sich aus drei

Mehr

Gymnasium Muttenz Maturitätsprüfung 2014 Mathematik Profile A und B

Gymnasium Muttenz Maturitätsprüfung 2014 Mathematik Profile A und B Gymnasium Muttenz Maturitätsprüfung 2014 Mathematik Profile A und B Name, Vorname:... Hinweise: Klasse:... Die Prüfung dauert 4 Stunden. Es können maximal 48 Punkte erreicht werden. Es werden alle Aufgaben

Mehr

A3.Die Lebensdauer eines elektronischen Gerätes werde als normalverteilt angenommen. Der Erwartungswert betrage

A3.Die Lebensdauer eines elektronischen Gerätes werde als normalverteilt angenommen. Der Erwartungswert betrage Aufgaben ~ Beispiele A1. Wir spielen Roulette mit einem Einsatz von 5 mit der Glückszahl 15. Die Wahrscheinlichkeiten und Auszahlungen beim Roulette sind in folgender Tabelle zusammengefasst: Ereignis

Mehr

a) Im Berührungspunkt müssen die y-werte und die Steigungen übereinstimmen:

a) Im Berührungspunkt müssen die y-werte und die Steigungen übereinstimmen: . ANALYSIS Gegeben ist die kubische Parabel f: y = x 3 6x + 8x + a) Die Gerade g: y = k x + berührt die Parabel an der Stelle x = x 0 > 0. Bestimmen Sie den Parameter k. b) Berechnen Sie den Inhalt der

Mehr