Mittelstufe (ca. 12 bis 14 Jahre) Das Kapitel ist auf ungefähr 40 Minuten ausgelegt

Größe: px
Ab Seite anzeigen:

Download "Mittelstufe (ca. 12 bis 14 Jahre) Das Kapitel ist auf ungefähr 40 Minuten ausgelegt"

Transkript

1 Kommentar für Lehrkräfte zu Modul 3 Linsen und Fernrohre Linsen sind grundlegende optische Bauelemente. Ihre Funktionsweise ist aber alles andere als trivial. Sie eignen sich für ein breites Spektrum von Anwendungen. Dazu gehören Fernrohre, die uns den Blick auf astronomische Objekte ermöglichen. In diesem Modul arbeiten die Schüler mit Linsen und erkunden selbst deren interessante Wirkweise. Zusammenfassung: Die Schüler erfahren, wie konkave und konvexe Linsen Licht bündeln. Außerdem bauen sie ihre eigenen Galilei- und Kepler-Fernrohre und beobachten damit weit entfernte Objekte. Das Modul besteht aus einem Arbeitsblatt: Das Arbeitsblatt Wege des Lichts Entwickelt für: Mittelstufe (ca. 12 bis 14 Jahre) Dauer: Das Kapitel ist auf ungefähr 40 Minuten ausgelegt Was die Schüler bereits wissen sollten: Grundlegendes Wissen über Linsen Konkave und konvexe Linsen Was die Schüler lernen: Wie unterschiedliche Linsen das Licht bündeln Das physikalische Konzept des Brennpunkts Den Unterschied zwischen reellen und virtuellen Bildern Die Bauweise zweier verschiedener Fernrohre Wie die Vergrößerung eines Fernrohrs berechnet wird Das Konzept des Sehfelds Fähigkeiten, die die Schüler entwickeln: Teamarbeit Arbeit mit Linsen und Strahlenzeichungen Aufbau eigener Versuchsanordnungen und Herstellung eines Bezugs zwischen Beobachtung und Theorie Dieses Modul umfasst: 1 Arbeitsblatt 1 Merkblatt Teacher notes on Lenses and Telescopes page 1 of 7

2 Kapitel 1 Wege des Lichts Empfohlene Unterrichtsgliederung Die Schüler untersuchen konkave und konvexe Linsen und lernen so, wie und wo Linsen das Licht bündeln. Außerdem lernen sie reelle und virtuelle Bilder kennen. Dauer in Minuten Tätigkeit Material 0-20 Gruppenarbeit: Entdeckung, wie verschiedene Linsen das Licht bündeln und welche Eigenschaften die erzeugten Abbilder aufweisen. Erstellen und Ausfüllen einer Tabelle. Bearbeitung von Frage 2) 3 Linsen (+30 mm, -30 mm und 150 mm Brennweite) LED-Modul Nicht enthalten: Ein zu beobachtendes Objekt, z. B. ein Flaschendeckel oder eine kleine Zeichnung Bau von Galilei- und Kepler-Fernrohren Besprechung der Ergebnisse in der Klasse Hausaufgabe Keine Beschreibung des empfohlenen Unterrichtsaufbaus Lassen Sie die Schüler zu Beginn der Stunde die Linsen selbständig untersuchen. Bitten Sie die Schüler, ihre Ergebnisse in eine Tabelle, wie die im Arbeitsblatt dargestellte, einzutragen. Dabei sollen sie vor allem die Eigenschaften der Abbilder analysieren. Für diesen Versuch sollten die Schüler am besten einen Gegenstand mit einer deutlichen Ausrichtung verwenden, damit sie gleich bemerken, wenn er spiegelverkehrt ist. Dazu eignet sich z. B. ein Flaschendeckel mit Beschriftung oder ein auf Karton oder Papier gezeichneter Smiley. Nach diesem Versuch sollten die Schüler die Eigenschaften der einzelnen Linsen in der nachstehenden Tabelle zusammenfassen können. Mögliche Einträge: das Bild ist spiegelverkehrt oder richtig herum, größer oder kleiner usw. Art der Linse Brennweite Position des Objekts Bildabstand Ausrichtung des Bilds Bildgröße bikonvex +30 mm bikonvex +150 mm bikonkav -30 mm Teacher notes on Lenses and Telescopes page 2 of 7

3 Die Schüler sollten den Zusammenhang von Brennweite und Brennpunkt erfassen und erkennen, was mit dem Abbild passiert, wenn das Objekt sich im, vor oder weit weg vom Brennpunkt der Linse befindet. Nach diesem Versuch haben die Schüler womöglich zwei Fragen: Was passiert, wenn das Objekt nahe an der konkaven Linse ist und warum ist das Abbild wieder richtig herum, wenn das Objekt nahe an der konvexen Linse ist. Lassen Sie die Fragen offen und bitten Sie die Schüler, den nächsten Teil des Arbeitsblatts zu bearbeiten und die Antworten selbst abzuleiten. Reelle und virtuelle Bilder In Frage 2 entdecken die Schüler bei den Versuchen mit den bikonkaven und bikonvexen Linsen, dass Sie mit der ersten Linse ein scharfes Bild auf dem Schirm erzeugen können, mit der zweiten Linse aber nicht. In Punkt 3) werden die Begriffe reelles Bild und virtuelles Bild" erklärt. Sie können den Schülern das Verständnis mit entsprechenden Zeichnungen erleichtern. Dafür hier zwei Beispiele. Bei der bikonvexen Linse wird ein vergrößertes reelles Bild erzeugt, wenn das Objekt >f von der Linse entfernt ist. Reelle Bilder können auf einem Schirm betrachtet werden Bei der bikonkaven Linse wird ein verkleinertes virtuelles Bild erzeugt, wenn das Objekt >f von der Linse entfernt ist. Virtuelle Bilder können nicht auf einem Schirm betrachtet werden. Die Lichtstrahlen können zu einem Punkt hinter der Linse verfolgt werden und sehen aus, als würden sie von diesem Punkt kommen. Wenn Sie genug Zeit haben, können Sie der Klasse diesen Effekt mit einem einfachen Experiment demonstrieren. Stellen Sie die Linse mit -30 mm Brennweite auf einen Tisch. Halten Sie ein kleines Objekt mit einem Abstand von mehr als 30 mm hinter die Linse und bitten Sie einen Schüler, das Objekt mit beiden Augen durch die Linse zu betrachten. Lassen Sie den Schüler nun mit einem Finger auf die Position des Objekts zeigen und dabei weiterhin durch die Linse auf das Objekt schauen. Dabei ist es wichtig, dass der Schüler seinen Finger nicht durch die Linse sieht. Der Finger sollte also oberhalb der Linse sein. Der Schüler soll jetzt sagen, wenn sein Finger über dem Objekt ist, und den Finger dann nicht mehr bewegen. Dann kann der Schüler kontrollieren, wo sein Finger sich befindet. Wenn der Versuch richtig ausgeführt wird, müsste sich der Finger des Schülers immer zwischen der Linse und dem Objekt befinden. Das ist die Position des virtuellen Bilds. Teacher notes on Lenses and Telescopes page 3 of 7

4 In Teil 4) erkennen die Schüler durch die Arbeit mit der bikonvexen Linse, dass kein scharfes Bild auf dem Schirm erzeugt wird, wenn das Objekt sich vor dem Brennpunkt befindet (< 30 mm von der Linse entfernt ist). Die Strahlen gehen auseinander, wie auf der folgenden Zeichnung dargestellt, und ein virtuelles Bild wird erzeugt. Galilei-Fernrohr und Kepler-Fernrohr Es gibt mehrere Möglichkeiten, den Schülern diesen Teil des Arbeitsblatts zu vermitteln. Im Folgenden werden zwei Optionen beschrieben: 2) Die Lebensläufe von Galileo und Kepler sind voller interessanter Fakten, mit deren Hilfe sie das Thema in seinen historischen Zusammenhang stellen können. So lernen die Schüler, warum das jeweilige Problem gelöst werden musste und was es in dieser historischen Epoche bedeutete, dieses Problem zu lösen. Wenn die Zeit knapp ist, können Sie die Klasse in eine Galileo-Gruppe und eine Kepler-Gruppe aufteilen und jede Gruppe jeweils nur ein Fernrohr bauen lassen. Danach können die Schüler der jeweiligen Gruppen die Funktionsweise demonstrieren und beide Bauformen miteinander vergleichen. Außerdem kann die Klasse darüber diskutieren, wofür sich die jeweilige Bauform besonders eignet. 2) Teilen Sie die Klasse in Gruppen von 2-3 Schülern auf und lassen Sie sie die Fragen 5-7 des Arbeitsblatts 3.1 gemeinsam durcharbeiten und die beiden Fernrohrtypen bauen. Danach wird das Ergebnis gemeinsam besprochen und Sie notieren die genannten Eigenschaften der beiden Bauformen an der Tafel. Anmerkung: Bitte beachten Sie, dass die Schüler für diesen Teil des Arbeitsblatts ein weit (mindestens 5-6 Meter) entferntes Objekt beobachten müssen. Am besten wäre der Blick aus dem Fenster auf ein entferntes Gebäude. Wenn dies nicht möglich ist, hängen Sie ein Poster an die am weitesten entfernte Wand des Klassenzimmers und lassen Sie die Schüler das Poster beobachten. Das Poster sollte Wörter oder Buchstaben enthalten, so dass die Schüler deutlich die vertikale Ausrichtung erkennen können. In Teil 5) diskutieren die Schüler, ob man ein Fernrohr mit nur einer Linse bauen kann oder nicht. Dabei kommt vielleicht die Frage auf, ob ein Vergrößerungsglas nicht im Grunde auch ein Fernrohr ist, weil es Objekte größer erscheinen lässt. Ein Vergrößerungsglas ist eine Bikonvexlinse, die Objekte vergrößert, welche ungefähr eine Brennweite weit von der Linse entfernt sind. Ein Fernrohr hingegen verwendet mindestens zwei Linsen, um sehr weit entfernte Objekte zu vergrößern. Daher sind für den Bau eines Fernrohrs mindestens zwei Linsen erforderlich. Teacher notes on Lenses and Telescopes page 4 of 7

5 In Teil 6) bauen die Schüler ein Galilei-Fernrohr. Die Schüler sollten erkennen, dass diese Kombination zweier Linsen ein kleineres Gesichtsfeld bietet (die Schüler sehen einen kleineren Bereich) und das Abbild aufrecht und seitenrichtig ist. Der Abstand zwischen den Linsen beim Galilei-Teleskop müsste der Summe der Brennweiten entsprechen, d.h. 120 mm. In Teil 7) bauen die Schüler ein Kepler-Fernrohr. Dieses bietet ein größeres Gesichtsfeld, das Bild steht jedoch auf dem Kopf. Der Abstand zwischen den Linsen, der ein scharfes Bild erzeugt, ist ebenfalls die Summe der Brennweiten, d.h. ~ 180 mm. In Teil 8) berechnen die Schüler die Vergrößerung der Fernrohre mit Hilfe der angegebenen Formel. Sie sollen erkennen, dass beide Teleskopbauweisen die gleiche Vergrößerung aufweisen, das Kepler-Fernrohr jedoch ein negatives Vorzeichen hat. Dies zeigt die Ausrichtung des Bilds an, d.h. dass die Keplersche Bauweise ein auf dem Kopf stehendes Bild erzeugt. Hintergrundinformationen Ein wenig Geschichte: Galileo und Kepler Galileos vollständiger Name lautet Galileo di Vincenzo Bonaiuti de' Galilei. Er wurde im Jahr 1564 in Pisa geboren und war ein berühmter Physiker, Mathematiker, Astronom und Philosoph, der in der so genannten Wissenschaftlichen Revolution eine wichtige Rolle spielte. Im Jahr 1589 wurde er Lektor für Mathematik an der Universität Pisa wechselte er an die Universität Padua, wo er bis 1610 Geometrie, Mechanik und Astronomie lehrte. In dieser Zeit machte Galileo bahnbrechende Entdeckungen in der Grundlagenwissenschaft (z. B. Kinematik und Astronomie) und in der angewandten Wissenschaft (Materialkunde und Verbesserung des Fernrohrs). Er interessierte sich jedoch auch für die Astrologie, die zu dieser Zeit zum Studium der Mathematik und der Astronomie gehörte. Am bekanntesten ist Galileo für seine Verteidigung des heliozentrischen Weltbilds, in dem die Sonne und nicht die Erde den Mittelpunkt des Universums bildet gelangen Galileo wichtige Verbesserungen des von Hans Lippershey im Vorjahr erfundenen Fernrohrs. Galileo baute Fernrohre mit dreifacher bis dreißigfacher Vergrößerung. Eine Zeit lang war er als Einziger in der Lage, Fernrohre mit einer Vergrößerung zu bauen, mit denen die Beobachtung von Himmelskörpern am Nachthimmel möglich war entdeckte Galileo drei der vier Jupitermonde und revolutionierte damit die Astronomie. Diese Beobachtung widerlegte die Theorie, dass alle Himmelskörper um die Erde kreisen. Galileo setzte seine Untersuchung der Monde sechzehn Monate lang fort und konnte Mitte 1611 eine erstaunlich genaue Schätzung ihrer Umlaufzeiten vorlegen eine Leistung, die Kepler für unmöglich gehalten hatte. Neben vielen anderen Entdeckungen war Galileo auch der erste Mensch, der die Phasen der Venus beobachtete. Diese Beobachtung trug zusammen mit den um Jupiter kreisenden Monden stark zum Übergang vom geozentrischen (die Erde als Mittelpunkt des Universums) zum heliozentrischen Weltbild bei. Johannes Kepler wurde 1571 geboren und war ein deutscher Mathematiker, Astronom und Astrologe. Er spielte eine wichtige Rolle für die wissenschaftliche Revolution des 17. Jahrhunderts und ist besonders für seine Gesetze der Planetenbewegung bekannt. Zu Keplers Zeit gab es keine klare Unterscheidung von Astronomie und Astrologie, jedoch eine strikte Trennung zwischen Astronomie und Physik. Kepler verwendete auch religiöse Argumente und Beweisführungen in seiner Arbeit. Er hatte eine starke Neigung zur Astronomie und beobachtete mit sechs Jahren den Kometen von 1577 und mit neun Jahren eine Mondfinsternis wurde Kepler Assistent von Tycho Brahe. Später wurde er dessen Nachfolger als kaiserlicher Hofmathematiker, eine Stellung, die er 11 Jahre lang innehatte. Er entwickelte durch unermüdliche Forschungen die ersten Theorien zur Entstehung von Mond- und Sonnenfinsternissen, das Abstandsgesetz, das die Stärke von Licht beschreibt, die Spiegelung durch flache und gekrümmte Spiegel und die Prinzipien der Lochkamera. Teacher notes on Lenses and Telescopes page 5 of 7

6 Er führte systematische Untersuchungen der Supernova von 1604 durch und entwickelte in Fortführung der Forschungen Brahes die drei nach ihm benannten Bewegungsgesetze: - Die Umlaufbahn jedes Planeten ist eine Ellipse, in deren einem Brennpunkt die Sonne steht. - Die Linie zwischen Planet und Sonne überstreicht in gleichen Zeiträumen gleich große Flächen.[1] - Das Quadrat der Umlaufzeit eines Planeten ist direkt proportional zur dritten Potenz der großen Bahnhalbachsen. Nachdem er von Galileos Beobachtungen mit dessen Fernrohr erfahren hatte, entwickelte er selbst Fernrohre und entdeckte, dass durch die Verwendung zweier Konvexlinsen eine stärkere Vergrößerung erzielt werden kann. Spiegelteleskope Ein Spiegelteleskop ist ein optisches Fernrohr, in dem ein oder mehrere Hohlspiegel Licht reflektieren und ein Abbild erzeugen. Das Spiegelteleskop wurde im 17. Jahrhundert als Alternative zum Linsenfernrohr entwickelt, das in dieser Zeit gravierende Farbfehler aufwies. Zwar erzeugt auch das Spiegelteleskop Abbildungsfehler, es konnte jedoch mit sehr großen Objektiven gebaut werden. Zum Bau eines großen Objektivs in einem Linsenfernrohr muss die Linse sehr genau geschliffen werden, große Spiegel sind technisch wesentlich einfacher herzustellen. Beinahe alle großen astronomischen Teleskope sind Spiegelteleskope. Der Bau des ersten Spiegelteleskops im Jahr 1668 wird allgemein Isaac Newton zugeschrieben. Es verwendete einen gewalzten Hauptspiegel aus Metall und einen kleinen Umlenkspiegel in einem System, das als Newton-Teleskop bekannt wurde. Da der Hauptspiegel das Licht in einem Punkt vor seiner eigenen Spiegelfläche bündelt, haben beinahe alle Spiegelteleskope einen Umlenkspiegel, Filmrahmen oder Detektor in der Nähe des Brennpunkts. Dies verhindert teilweise, dass das Licht den Hauptspiegel erreicht. Dadurch erfasst das System nicht nur weniger Licht, dieser Nachteil führt auch durch die Brechungseffekte zu einem Kontrastverlust im Abbild. Die Verwendung von Spiegeln vermeidet zwar chromatische Aberration, führt dafür aber zu anderen Abbildungsfehlern. Ein einfacher Hohlspiegel kann das Licht eines entfernten Objekts nicht in einem gemeinsamen Brennpunkt bündeln, weil die von den Rändern reflektierten Lichtstrahlen nicht mit den in der Mitte des Spiegels reflektierten Strahlen in einem Punkt zusammenlaufen. Dieser Fehler heißt sphärische Aberration oder Öffnungsfehler. Um dieses Problem zu vermeiden, verwenden die meisten Teleskope Parabolspiegel, da diese Form alle Lichtstrahlen in einem gemeinsamen Brennpunkt bündelt. Parabolspiegel bilden Objekte in der Mitte des von ihnen erzeugten Abbilds gut ab, wo die Strahlen zur optischen Achse parallel sind. Am Rand desselben Sehfelds weisen sie jedoch ebenfalls Abbildungsfehler auf. Mögliche Fragen der Schüler Wie viele Linsen haben Fernrohre und warum ist das so? Keine Linse ist perfekt. Das Bild eines Fernrohrs mit zwei Linsen ist in vieler Hinsicht fehlerhaft. Das Abbild ist beispielsweise gekrümmt und hat Farbfehler, weil die Linsen das Licht nach Wellenlänge oder Frequenz brechen. Außerdem ist die Abbildung nur in der Mitte des Okulars scharf. (Je größer die Wellenlänge ist, umso stärker wird das Licht gebrochen. Aus diesem Grund werden Objekte in verschiedenen Farben des elektromagnetischen Spektrums nicht im gleichen Brennpunkt abgebildet.) Viele dieser Probleme können durch eine Verbesserung des Okulars behoben werden, bei der im Okular mehrere Linsen eingesetzt werden. Heute werden in Fernrohren Linsen zur Korrektur von Helligkeit, Farbe, Bildqualität und Kontrast sowie zum Zweck einer möglichst kleinen Bauweise des Geräts verwendet. Teacher notes on Lenses and Telescopes page 6 of 7

7 Teacher notes on Lenses and Telescopes page 7 of 7

Versuch P1-31,40,41 Geometrische Optik. Vorbereitung. Von Jan Oertlin. 2. Dezember 2009

Versuch P1-31,40,41 Geometrische Optik. Vorbereitung. Von Jan Oertlin. 2. Dezember 2009 Versuch P1-31,40,41 Geometrische Optik Vorbereitung Von Jan Oertlin 2. Dezember 2009 Inhaltsverzeichnis 1. Brennweitenbestimmung...2 1.1. Kontrolle der Brennweite...2 1.2. Genaue Bestimmung der Brennweite

Mehr

Geschichte der Astronomie

Geschichte der Astronomie Geschichte der Astronomie Klassische Astronomie - Himmelsmechanik Christian-Weise-Gymnasium Zittau - FB Physik - Mirko Hans 1 Die Wägung der Weltsysteme Quelle: G.B. Riccioli, Almagestum Novum (Bologna

Mehr

Lilienthaler Fernrohrbau. Wie funktioniert ein Spiegelteleskop? Wer hat s erfunden? Das Newton-Teleskop Das Cassegrain-Teleskop Das Maksutow-Teleskop

Lilienthaler Fernrohrbau. Wie funktioniert ein Spiegelteleskop? Wer hat s erfunden? Das Newton-Teleskop Das Cassegrain-Teleskop Das Maksutow-Teleskop Lilienthaler Fernrohrbau Wie funktioniert ein Spiegelteleskop? Wer hat s erfunden? Das Newton-Teleskop Das Cassegrain-Teleskop Das Maksutow-Teleskop Wer hat s erfunden? Das erste Spiegelteleskop entwickelte

Mehr

HTW Chur Photonics, Optik 1, T. Borer Aufgaben /19

HTW Chur Photonics, Optik 1, T. Borer Aufgaben /19 Aufgaben 13 Optische Instrumente Mikroskop, Teleskop Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt

Mehr

Aufgaben 13.1 Studieren Sie im Lehrbuch Tipler/Mosca den folgenden Abschnitt: Optische Instrumente (Teil Das Mikroskop, Seiten 1072 und 1073)

Aufgaben 13.1 Studieren Sie im Lehrbuch Tipler/Mosca den folgenden Abschnitt: Optische Instrumente (Teil Das Mikroskop, Seiten 1072 und 1073) Aufgaben 13 Optische Instrumente Mikroskop, Teleskop Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt

Mehr

Erstellt von Oliver Stamm 1/ / 22:12. Physik- Bericht Optische Geräte

Erstellt von Oliver Stamm 1/ / 22:12. Physik- Bericht Optische Geräte Erstellt von Oliver Stamm 1/1 29.09.00 / 22:12 Physik- Bericht Optische Geräte Erstellt von Oliver Stamm 2/2 29.09.00 / 22:12 Das Auge Um überhaupt von optischen

Mehr

Praktikum Angewandte Optik Versuch: Aufbau eines Fernrohres

Praktikum Angewandte Optik Versuch: Aufbau eines Fernrohres Praktikum Angewandte Optik Versuch: Aufbau eines Fernrohres Historisches und Grundlagen: Generell wird zwischen zwei unterschiedlichen Typen von Fernrohren unterschieden. Auf der einen Seite gibt es das

Mehr

Bildentstehung, Spiegel und Linsen Bildentstehung und Bildkonstruktion bei dünnen sphärischen Linsen

Bildentstehung, Spiegel und Linsen Bildentstehung und Bildkonstruktion bei dünnen sphärischen Linsen Aufgaben 7 Bildentstehung, Spiegel und Linsen Bildentstehung und Bildkonstruktion bei dünnen sphärischen Linsen Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten

Mehr

Kapitel Optische Abbildung durch Brechung

Kapitel Optische Abbildung durch Brechung Kapitel 3.8.3 Optische Abbildung durch Brechung Dicke Linsen, Linsensysteme, Optische Abbildungssysteme Dicke Linse Lichtwege sind nicht vernachlässigbar; Hauptebenen werden eingeführt Dicke Linse Lichtwege

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Linsen und optische Geräte

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Linsen und optische Geräte Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt: Linsen und optische Geräte Das komplette Material finden Sie hier: School-Scout.de Lernwerkstatt Linsen und optische

Mehr

Bildentstehung, Spiegel und Linsen Bildentstehung bei Planspiegeln und sphärischen Spiegeln

Bildentstehung, Spiegel und Linsen Bildentstehung bei Planspiegeln und sphärischen Spiegeln Aufgaben 4 Bildentstehung, Spiegel und Linsen Bildentstehung bei Planspiegeln und sphärischen Spiegeln Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten

Mehr

Bildentstehung, Spiegel und Linsen Bildentstehung bei Planspiegeln und sphärischen Spiegeln

Bildentstehung, Spiegel und Linsen Bildentstehung bei Planspiegeln und sphärischen Spiegeln Aufgaben 4 Bildentstehung, Spiegel und Linsen Bildentstehung bei Planspiegeln und sphärischen Spiegeln Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte Das komplette Material finden Sie hier: School-Scout.de Titel:

Mehr

Vorbereitung zur geometrischen Optik

Vorbereitung zur geometrischen Optik Vorbereitung zur geometrischen Optik Armin Burgmeier (347488) Gruppe 5 9. November 2007 Brennweitenbestimmungen. Kontrollieren der Brennweite Die angegebene Brennweite einer Sammellinse lässt sich überprüfen,

Mehr

Versuch O02: Fernrohr, Mikroskop und Teleobjektiv

Versuch O02: Fernrohr, Mikroskop und Teleobjektiv Versuch O02: Fernrohr, Mikroskop und Teleobjektiv 5. März 2014 I Lernziele Strahlengang beim Refraktor ( Linsenfernrohr ) Strahlengang beim Mikroskop Strahlengang beim Teleobjektiv sowie Einblick in dessen

Mehr

Spiegelsymmetrie. Tiefeninversion führt zur Spiegelsymmetrie Koordinatensystem wird invertiert

Spiegelsymmetrie. Tiefeninversion führt zur Spiegelsymmetrie Koordinatensystem wird invertiert Ebener Spiegel Spiegelsymmetrie Tiefeninversion führt zur Spiegelsymmetrie Koordinatensystem wird invertiert Konstruktion des Bildes beim ebenen Spiegel Reelles Bild: Alle Strahlen schneiden sich Virtuelles

Mehr

Entstehung des Regenbogens durch Brechung-Reflexion-Brechung

Entstehung des Regenbogens durch Brechung-Reflexion-Brechung Vorlesung Physik III WS 0/03 Entstehung des Regenbogens durch Brechung-Relexion-Brechung Vorlesung Physik III WS 0/03 Entstehung des Regenbogens durch Brechung-Relexion-Brechung Vorlesung Physik III WS

Mehr

Sehwinkel, Winkelvergrösserung, Lupe

Sehwinkel, Winkelvergrösserung, Lupe Aufgaben 2 Optische Instrumente Sehwinkel, Winkelvergrösserung, Lupe Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Dienstag

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Dienstag Physik-Department Ferienkurs zur Experimentalphysik 3 Matthias Golibrzuch,Daniel Jost Dienstag Inhaltsverzeichnis Technische Universität München Das Huygensche Prinzip 2 Optische Abbildungen 2 2. Virtuelle

Mehr

Kapitel 1 Optik: Bildkonstruktion. Spiegel P` B P G. Ebener Spiegel: Konstruktion des Bildes von G.

Kapitel 1 Optik: Bildkonstruktion. Spiegel P` B P G. Ebener Spiegel: Konstruktion des Bildes von G. Optik: Bildkonstruktion Spiegel P G P` B X-Achse Ebener Spiegel: g = b g b G = B Konstruktion des Bildes von G. 1. Zeichne Strahl senkrecht von der Pfeilspitze zum Spiegel (Strahl wird in sich selbst reflektiert)

Mehr

Das Sonnensystem. Teil 1. Peter Hauschildt 6. Dezember Hamburger Sternwarte Gojenbergsweg Hamburg

Das Sonnensystem. Teil 1. Peter Hauschildt 6. Dezember Hamburger Sternwarte Gojenbergsweg Hamburg Das Sonnensystem Teil 1 Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 6. Dezember 2016 1 / 42 Übersicht Allgemeiner Überblick Bahnen der Planeten historisch:

Mehr

Das holländische Fernrohr (Artikelnr.: P )

Das holländische Fernrohr (Artikelnr.: P ) Lehrer-/Dozentenblatt Das holländische Fernrohr (Artikelnr.: P1069200) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-10 Lehrplanthema: Optik Unterthema: Optische Geräte Experiment:

Mehr

Astro Stammtisch Peine

Astro Stammtisch Peine Astro Stammtisch Peine ANDREAS SÖHN OPTIK FÜR DIE ASTRONOMIE ANDREAS SÖHN: OPTIK FÜR DIE ASTRONOMIE < 1 Grundsätzliches Was ist Optik? Die Optik beschäftigt sich mit den Eigenschaften des (sichtbaren)

Mehr

Die Wende vom geozentrischen zum heliozentrischen Planetensystem

Die Wende vom geozentrischen zum heliozentrischen Planetensystem Die Wende vom geozentrischen zum heliozentrischen Planetensystem 1. Planetensysteme der Antike 2. Bewegungen in verschiedenen Bezugssystemen 3. Welches ist das "richtige" Bezugssystem? 4. Nikolaus Kopernikus

Mehr

Optische Bank für Schüler, Komplettset

Optische Bank für Schüler, Komplettset Optische Bank für Schüler, Komplettset Übersicht Mit der optischen Bank als Komplettset können Schüler selbständig Grundlagenversuche zur Strahlenoptik durchführen. Alle Komponenten, inklusive der dreigeteilten

Mehr

Vorbereitung: Bestimmung von e/m des Elektrons

Vorbereitung: Bestimmung von e/m des Elektrons Vorbereitung: Bestimmung von e/m des Elektrons Carsten Röttele 21. November 2011 Inhaltsverzeichnis 1 Allgemeine Linsen 2 2 Bestimmung der Brennweite 3 2.1 Kontrolle einer Brennweite...........................

Mehr

Grundlagen der Experimentalphysik 3 (Optik, Wellen und Teilchen)

Grundlagen der Experimentalphysik 3 (Optik, Wellen und Teilchen) Grundlagen der Experimentalphysik 3 (Optik, Wellen und Teilchen) WS 2010/11 Prof. Dr. Tilman Pfau 5. Physikalisches Institut Aufgabe 1: Parabolspiegel 6(1,1,1,2,1) Punkte a) Will man ein breites, paralleles

Mehr

Stiftsschule Engelberg Physik / Modul Optik 2./3. OG Schuljahr 2016/2017

Stiftsschule Engelberg Physik / Modul Optik 2./3. OG Schuljahr 2016/2017 4 Linsen 4.1 Linsenformen Optische Linsen sind durchsichtige Körper, welche (im einfachsten Fall) auf beiden Seiten von Kugelflächen oder auf der einen Seite von einer Kugelfläche, auf der anderen Seite

Mehr

Technische Raytracer

Technische Raytracer Technische Raytracer 2 s 2 (1 (n u) 2 ) 3 u 0 = n 1 n 2 u n 4 n 1 n 2 n u 1 n1 n 2 5 Abbildung 19.23 MM Double Gauss - U.S. Patent 2,532,751 Scale: 1.30 ORA 03-Jun-13 Abbildung Ein zweidimensionales Bild

Mehr

Versuch P1-31,40,41 Geometrische Optik. Auswertung. Von Ingo Medebach und Jan Oertlin. 9. Dezember 2009

Versuch P1-31,40,41 Geometrische Optik. Auswertung. Von Ingo Medebach und Jan Oertlin. 9. Dezember 2009 Versuch P1-31,40,41 Geometrische Optik Auswertung Von Ingo Medebach und Jan Oertlin 9. Dezember 2009 Inhaltsverzeichnis 1. Brennweitenbestimmung...2 1.1. Kontrolle der Brennweite...2 1.2. Genaue Bestimmung

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Vom einfachen Fernrohr zum Hubble-Teleskop

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Vom einfachen Fernrohr zum Hubble-Teleskop Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Vom einfachen Fernrohr zum Hubble-Teleskop Das komplette Material finden Sie hier: School-Scout.de 1 von 32 Vom einfachen Fernrohr

Mehr

Übungsblatt 4 Grundkurs IIIa für Physiker

Übungsblatt 4 Grundkurs IIIa für Physiker Übungsblatt 4 Grundkurs IIIa für Physiker Othmar Marti, othmar.marti@physik.uni-ulm.de 3. 6. 2002 1 Aufgaben für die Übungsstunden Reflexion 1, Brechung 2, Fermatsches Prinzip 3, Polarisation 4, Fresnelsche

Mehr

9.5.6.Linsenfehler Chromatische Aberrationen Sphärische Aberrationen Koma Astigmatismus Verzeichnung

9.5.6.Linsenfehler Chromatische Aberrationen Sphärische Aberrationen Koma Astigmatismus Verzeichnung Demtröder Kapitel 11. Optische Instrumente 11.1. Das Auge 11.2. Vergrößernde optische Elemente 11.2.1. Die Lupe 11.2.2. Das Mikroskop 11.2.3. Das Fernrohr 9.5.6.Linsenfehler Chromatische Aberrationen Sphärische

Mehr

Photonik Technische Nutzung von Licht

Photonik Technische Nutzung von Licht Photonik Technische Nutzung von Licht Abbildung Wiederholung Lichtdetektion Photoelektrischer Effekt Äußerer P.E.: Elektron wird aus Metall herausgeschlagen und hat einen Impuls Anwendung: Photomultiplier,

Mehr

Linsen und Optische Geräte

Linsen und Optische Geräte AB4 Linsen und optische Geräte 1 Linsen und Optische Geräte Öffne diese Website 1 und lies dir das Gespräch durch. Dann versuche mit Hilfe der Geschichte und den angegebenen Links die folgenden Arbeitsaufgaben

Mehr

4 Optische Linsen. Als optische Achse bezeichnet man die Gerade die senkrecht zur Symmetrieachse der Linse steht und durch deren Mittelpunkt geht.

4 Optische Linsen. Als optische Achse bezeichnet man die Gerade die senkrecht zur Symmetrieachse der Linse steht und durch deren Mittelpunkt geht. 4 Optische Linsen 4.1 Linsenarten Eine Linse ist ein rotationssymmetrischer Körper der meist aus Glas oder transparentem Kunststoff hergestellt ist. Die Linse ist von zwei Kugelflächen begrenzt (Kugelflächen

Mehr

Vorkurs Physik des MINT-Kollegs

Vorkurs Physik des MINT-Kollegs Vorkurs Physik des MINT-Kollegs Optik MINT-Kolleg Baden-Württemberg 1 KIT 03.09.2013 Universität desdr. Landes Gunther Baden-Württemberg Weyreter - Vorkurs und Physik nationales Forschungszentrum in der

Mehr

Geometrische Optik Die Linsen

Geometrische Optik Die Linsen 1/1 29.09.00,19:40Erstellt von Oliver Stamm Geometrische Optik Die Linsen 1. Einleitung 1.1. Die Ausgangslage zum Experiment 2. Theorie 2.1. Begriffe und Variablen 3. Experiment 3.1.

Mehr

Übungen zur Optik (E3-E3p-EPIII) Blatt 8

Übungen zur Optik (E3-E3p-EPIII) Blatt 8 Übungen zur Optik (E3-E3p-EPIII) Blatt 8 Wintersemester 2016/2017 Vorlesung: Thomas Udem ausgegeben am 06.12.2016 Übung: Nils Haag (Nils.Haag@lmu.de) besprochen ab 12.12.2016 Die Aufgaben ohne Stern sind

Mehr

Astrophysik I WS 2017/2018 Stefanie Walch-Gassner I. Physikalisches Institut der Universität zu Köln

Astrophysik I WS 2017/2018 Stefanie Walch-Gassner I. Physikalisches Institut der Universität zu Köln Astrophysik I WS 2017/2018 Stefanie Walch-Gassner I. Physikalisches Institut der Universität zu Köln Vorlesung 1: Einführung/Weltbild Vorlesung 1: Einführung/Weltbild Organisation: Vorlesung (Stefanie

Mehr

Hochschule Düsseldorf University of Applied Sciences. 01. Oktober 2015 HSD. Physik. Quelle: Wikipedia

Hochschule Düsseldorf University of Applied Sciences. 01. Oktober 2015 HSD. Physik. Quelle: Wikipedia Physik Quelle: Wikipedia Wie lerne ich erfolgreich? Gruppenarbeit Lernerfolg überprüfen Gegenseitig,aus dem Kopf erklären Arbeitsbelastung einteilen Schwere Fächer zuerst Lernen Sie nie allein! Selber

Mehr

1. Licht, Lichtausbreitung, Schatten, Projektion

1. Licht, Lichtausbreitung, Schatten, Projektion 1. Licht, Lichtausbreitung, Schatten, Projektion Was ist Licht? Definition: Die Optik ist das Gebiet der Physik, das sich mit dem Licht befasst. Der Begriff aus dem Griechischen bedeutet Lehre vom Sichtbaren.

Mehr

Hochschule Düsseldorf University of Applied Sciences. 29. September 2016 HSD. Physik. Donec quis nunc. Quelle: Wikipedia

Hochschule Düsseldorf University of Applied Sciences. 29. September 2016 HSD. Physik. Donec quis nunc. Quelle: Wikipedia Physik Donec quis nunc Quelle: Wikipedia Wie lerne ich erfolgreich? Gruppenarbeit Lernerfolg überprüfen Gegenseitig,aus dem Kopf erklären Arbeitsbelastung einteilen Schwere Fächer zuerst Wie lerne ich

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Übung Qi Li, Bernhard Loitsch, Hannes Schmeiduch Dienstag, 06.03.0 Vergrößerungslinse Sie sollen mit einer Linse ein 0fach vergrößertes Bild eines Gegenstandes G auf einem

Mehr

Ferienkurs Experimentalphysik 3 - Übungsaufgaben Geometrische Optik

Ferienkurs Experimentalphysik 3 - Übungsaufgaben Geometrische Optik Ferienkurs Experimentalphysik 3 - Übungsaufgaben Geometrische Optik Matthias Brasse, Max v. Vopelius 24.02.2009 Aufgabe 1: Zeigen Sie mit Hilfe des Fermatschen Prinzips, dass aus der Minimierung des optischen

Mehr

Optische Systeme. Physikalisches Grundpraktikum III

Optische Systeme. Physikalisches Grundpraktikum III Physikalisches Grundpraktikum III Universität Rostock :: Fachbereich Physik 11 Optische Systeme Name: Daniel Schick BetreuerIn: Dr. Enenkel Versuch ausgeführt: 01.12.04 Protokoll erstellt: 02.12.04 1 Ziel:

Mehr

Astronomische Beobachtungen und Weltbilder

Astronomische Beobachtungen und Weltbilder Astronomische Beobachtungen und Weltbilder Beobachtet man den Himmel (der Nordhalbkugel) über einen längeren Zeitraum, so lassen sich folgende Veränderungen feststellen: 1. Die Fixsterne drehen sich einmal

Mehr

Musterprüfung Welche Winkel werden beim Reflexions- und Brechungsgesetz verwendet?

Musterprüfung Welche Winkel werden beim Reflexions- und Brechungsgesetz verwendet? 1 Musterprüfung Module: Linsen Optische Geräte 1. Teil: Linsen 1.1. Was besagt das Reflexionsgesetz? 1.2. Welche Winkel werden beim Reflexions- und Brechungsgesetz verwendet? 1.3. Eine Fläche bei einer

Mehr

Lösungen zur Geometrischen Optik Martina Stadlmeier f =

Lösungen zur Geometrischen Optik Martina Stadlmeier f = Lösungen zur Geometrischen Optik Martina Stadlmeier 24.03.200. Dicke Linse a) nach Vorlesung gilt für die Brechung an einer gekrümmten Grenzfläche f = n2 n 2 n r Somit erhält man für die Brennweiten an

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #22 01/12/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Sammellinse Hauptstrahlen durch einen Sammellinse: Achsenparallele Strahlen verlaufen nach der

Mehr

Vorlesung 7: Geometrische Optik

Vorlesung 7: Geometrische Optik Vorlesung 7: Geometrische Optik, Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed Geometrische Optik Beschäftigt sich mit dem Verhalten von Lichtstrahlen (= ideal schmales Lichtbündel)

Mehr

OPTIK. Geometrische Optik Wellen Beugung, Interferenz optische Instrumente

OPTIK. Geometrische Optik Wellen Beugung, Interferenz optische Instrumente Physik für Pharmazeuten OPTIK Geometrische Optik Wellen Beugung, Interferenz optische Instrumente geometrische Optik Wellengleichungen (Maxwellgleichungen) beschreiben "alles" Evolution exakt berechenbar

Mehr

Aufgaben zur Einführung in die Physik 1 (Ergebnisse der Übungsaufgaben)

Aufgaben zur Einführung in die Physik 1 (Ergebnisse der Übungsaufgaben) Aufgaben zur Einführung in die Physik 1 (Ergebnisse der Übungsaufgaben) WS 2009/10 1 Die Lochkamera 2. (a) Durch maßstabsgetreue Zeichnung oder durch Rechnung mit Strahlensatz ergibt sich: Die Größe der

Mehr

Versuche P1-31,40,41. Vorbereitung. Thomas Keck Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 8.11.

Versuche P1-31,40,41. Vorbereitung. Thomas Keck Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 8.11. Versuche P1-31,40,41 Vorbereitung Thomas Keck Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 8.11.2010 1 1 Vorwort Für den Versuch der geometrischen Optik gibt es eine Fülle

Mehr

Mehrlinsen- und Mehrspiegelsysteme Mehrspiegelsysteme, Abbildungsfehler

Mehrlinsen- und Mehrspiegelsysteme Mehrspiegelsysteme, Abbildungsfehler Aufgaben 10 Mehrlinsen- und Mehrspiegelsysteme Mehrspiegelsysteme, Abbildungsfehler Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. -

Mehr

Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt

Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Hecht, Perez, Tipler, Gerthsen

Mehr

Linsen und Linsenfehler

Linsen und Linsenfehler Linsen und Linsenfehler Abb. 1: Abbildung des Glühfadens einer Halogenlampe durch ein Pinhole Geräteliste: Pinhole (

Mehr

Mehrlinsen- und Mehrspiegelsysteme Mehrspiegelsysteme, Abbildungsfehler

Mehrlinsen- und Mehrspiegelsysteme Mehrspiegelsysteme, Abbildungsfehler Aufgaben 10 Mehrlinsen- und Mehrspiegelsysteme Mehrspiegelsysteme, Abbildungsfehler Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. -

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Optische Geräte - Stationenlernen. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Optische Geräte - Stationenlernen. Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Optische Geräte - Stationenlernen Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT Stationenlernen: Optische Geräte

Mehr

Vom geozentrischen Weltbild zum heliozentrischen Weltbild der Neuzeit

Vom geozentrischen Weltbild zum heliozentrischen Weltbild der Neuzeit zum Matthias Nadenau 2010... 2013 Matthias Nadenau 1 / 13 zum zum Matthias Nadenau 2 / 13 Quellen im Alten Testament zum 16 Gott machte die beiden großen Lichter, das größere, das über den Tag herrscht,

Mehr

Ergänzungs-Set geometrische Optik

Ergänzungs-Set geometrische Optik Ergänzungs-Set geometrische Optik Geometrische Optik mit Diodenlaser und Metalltafel 1007520 Ergänzungs-Set geometrische Optik plus 1075205 Die Spalte Benötigte Geräte listet den für den jeweiligen Versuch

Mehr

Versuch 005 / Versuch 403

Versuch 005 / Versuch 403 38 Versuch 005 / Versuch 403 Dünne Linsen und Spiegel In diesem Versuch werden die Brennweiten von verschiedenen Sammel- und Zerstreuungslinsen sowie von einem Hohlspiegel bestimmt. Dies geschieht mit

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #22 27/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Optische Instrumente Allgemeine Wirkungsweise der optischen Instrumente Erfahrung 1. Von weiter

Mehr

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis Physikalisches Anfängerpraktikum Gruppe Mo-6 Wintersemester 2005/06 Julian Merkert (229929) Versuch: P-40 Geometrische Optik - Vorbereitung - Vorbemerkung Die Wellennatur des Lichts ist bei den folgenden

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 200/20 8. Übungsblatt - 3.Dezember 200 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe ( ) (7 Punkte) Gegeben sei

Mehr

Historie der Astronomie

Historie der Astronomie Kurzvortrag: Historie der Astronomie Astronomievereinigung Rottweil 27. Februar 2010, Zimmern o.r. Herbert Haupt Lehrerfortbildung, 2007 Oberjoch, 5-7 October 2006 Andrea Santangelo, IAAT, KC-Tü Historie

Mehr

(21. Vorlesung: III) Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen )

(21. Vorlesung: III) Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen ) . Vorlesung EP (. Vorlesung: III) Elektrizität und Magnetismus. Wechselstrom. Elektromagnetische Wellen ) IV) Optik = Lehre vom Licht. Licht = sichtbare elektromagnetische Wellen 3. Geometrische Optik

Mehr

Auflösung optischer Instrumente

Auflösung optischer Instrumente Aufgaben 12 Beugung Auflösung optischer Instrumente Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt

Mehr

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm Grundkurs IIIa für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Hecht Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3a-2002

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #21 30/11/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Brechungsgesetz Das Fermat sches Prinzip: Das Licht nimmt den Weg auf dem es die geringste Zeit

Mehr

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm Grundkurs IIIa für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Hecht Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3a-2002

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Stiftsschule Engelberg Physik / Modul Optik 2./3. OG Schuljahr 2016/2017

Stiftsschule Engelberg Physik / Modul Optik 2./3. OG Schuljahr 2016/2017 2 Reflexionen 2.1 Reflexion und Reflexionsgesetz Wir unterscheiden zwei Arten der Spiegelung: regelmässige und unregelmässige Reflexion (= Streuung). Auf rauen Oberflächen eines Körpers wird das Licht

Mehr

Optische Abbildungen. Versuch im Physikalischen Praktikum im Maschinenwesen-Fakultätsgebäude. Schüler-Skript und Versuchsanleitung

Optische Abbildungen. Versuch im Physikalischen Praktikum im Maschinenwesen-Fakultätsgebäude. Schüler-Skript und Versuchsanleitung Versuch im Physikalischen Praktikum im Maschinenwesen-Fakultätsgebäude Bearbeitet von Kathrin Nagel und Dr. Werner Lorbeer Stand: 06. November 2013 Inhaltsverzeichnis 1 Phänomene... 3 1.1 Beobachtungen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte Das komplette Material finden Sie hier: School-Scout.de Thema:

Mehr

Bestimmung der Brennweiten von Zerstreuungslinsen und Linsensystemen (Artikelnr.: P )

Bestimmung der Brennweiten von Zerstreuungslinsen und Linsensystemen (Artikelnr.: P ) Bestimmung der Brennweiten von Zerstreuungslinsen und Linsensystemen (Artikelnr.: P1410501) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-10 Lehrplanthema: Optik Unterthema: Linsengesetze

Mehr

Tutorium Physik 2. Optik

Tutorium Physik 2. Optik 1 Tutorium Physik 2. Optik SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 11. OPTIK - REFLEXION 11.1 Einführung Optik:

Mehr

Beobachtungsinstrumente

Beobachtungsinstrumente Beobachtungsinstrumente Präsentation von Isabelle Weber, Klasse 11 Gliederung 1. Erfindung Das Teleskop 2. Das Astronomische Fernrohr 2.1 Optisches Prinzip 2.2 Optische Fehler und ihre Beseitigung 2.3

Mehr

Datum: Erasmus+ Name: There s something new under the sun. Lösungsblatt. Die Astronomie: Die Wissenschaft der Himmelskörper und des Weltalls.

Datum: Erasmus+ Name: There s something new under the sun. Lösungsblatt. Die Astronomie: Die Wissenschaft der Himmelskörper und des Weltalls. Lösungsblatt Weißt du noch was Astronomie bedeutet? Wenn nicht, schlage in deinen Arbeitsblättern zum Thema Weltall nach und erkläre: Die Astronomie: Die Wissenschaft der Himmelskörper und des Weltalls.

Mehr

Bei den Planetenwegen, die man durchwandern kann, sind die Dinge des Sonnensystems 1 Milliarde mal verkleinert dargestellt.

Bei den Planetenwegen, die man durchwandern kann, sind die Dinge des Sonnensystems 1 Milliarde mal verkleinert dargestellt. Distanzen und Grössen im Planetenweg Arbeitsblatt 1 Bei den Planetenwegen, die man durchwandern kann, sind die Dinge des Sonnensystems 1 Milliarde mal verkleinert dargestellt. Anders gesagt: Der Massstab

Mehr

Medium Luft zueinander, wenn diese Linse ein reelles, gleich großes und umgekehrtes Bild eines Medium Luft zueinander, wenn diese Linse ein reelles, verkleinertes und umgekehrtes Bild eines Medium Luft

Mehr

Strahlengang und Brennweite bei einer Konkavlinse

Strahlengang und Brennweite bei einer Konkavlinse Lehrer-/Dozentenblatt Strahlengang und Brennweite bei einer Konkavlinse (Artikelnr.: P1065500) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-10 Lehrplanthema: Optik Unterthema:

Mehr

Ferienkurs Experimentalphysik III

Ferienkurs Experimentalphysik III Ferienkurs Experimentalphysik III Musterlösung Dienstag - Spiegel, Linsen und optische Geräte Monika Beil, Michael Schreier 28. Juli 2009 Aufgabe Bestimmen Sie das Verhältnis der Brennweiten des Auges

Mehr

Stiftsschule Engelberg Physik / Modul Optik 1. OG Schuljahr 2016/2017

Stiftsschule Engelberg Physik / Modul Optik 1. OG Schuljahr 2016/2017 2 Reflexionen 2.1 Reflexion und Reflexionsgesetz Wir unterscheiden zwei Arten der Spiegelung: regelmässige und unregelmässige Reflexion (= Streuung). Auf rauen Oberflächen eines Körpers wird das Licht

Mehr

Mehrlinsen- und Mehrspiegelsysteme Mehrlinsensysteme

Mehrlinsen- und Mehrspiegelsysteme Mehrlinsensysteme Aufgaben 9 Mehrlinsen- und Mehrspiegelsysteme Mehrlinsensysteme Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder

Mehr

Weißes Licht wird farbig

Weißes Licht wird farbig B1 Experiment Weißes Licht wird farbig Das Licht, dass die Sonne oder eine Glühlampe aussendet, bezeichnet man als weißes Licht. Lässt man es auf ein Glasprisma fallen, so entstehen auf einem Schirm hinter

Mehr

Optische Systeme (5. Vorlesung)

Optische Systeme (5. Vorlesung) 5.1 Optische Systeme (5. Vorlesung) Yousef Nazirizadeh 20.11.2006 Universität Karlsruhe (TH) Inhalte der Vorlesung 5.2 1. Grundlagen der Wellenoptik 2. Abbildende optische Systeme 2.1 Lupe / Mikroskop

Mehr

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum B. Versuch og : Optische Geräte. 4. Auflage 2017 Dr. Stephan Giglberger

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum B. Versuch og : Optische Geräte. 4. Auflage 2017 Dr. Stephan Giglberger U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum B Versuch og : Optische Geräte 4. Auflage 2017 Dr. Stephan Giglberger Inhaltsverzeichnis

Mehr

08. NACH. 107-HUYGENS :48 Uhr Seite 1 GESCHICHTE 48

08. NACH. 107-HUYGENS :48 Uhr Seite 1 GESCHICHTE 48 48 GESCHICHTE Von Wilfried Tost CHRISTIAAN HUYGENS Leben für die W i s s e n s c h a f t Christiaan Huygens wurde vor 375 Jahren, am 14. April 1629, in Den Haag geboren. Durch die finanzielle Absicherung

Mehr

VL: Schöpfungslehre, Anthropologie, Eschatologie -Systematischer Teil-

VL: Schöpfungslehre, Anthropologie, Eschatologie -Systematischer Teil- Prof Dr. Lucia Scherzberg WS 09/10 VL: Schöpfungslehre, Anthropologie, Eschatologie -Systematischer Teil- Professur für Systematische Theologie Gebäude A4 2, Zi. 3.27 Tel. 0681/302-4377 LScherzberg(at)t-online.de

Mehr

Schülerversuch: Optik. Kernschatten, Halbschatten

Schülerversuch: Optik. Kernschatten, Halbschatten Kernschatten, Halbschatten Die Begriffe Kernschatten und Halbschatten sollen erarbeitet werden und die Unterschiede zwischen einer möglichst punktförmigen und einer ausgedehnten Lichtquelle erkannt werden.

Mehr

HTW Chur Photonics, Optik 1, T. Borer Aufgaben /19

HTW Chur Photonics, Optik 1, T. Borer Aufgaben /19 Aufgaben Optische Instrumente Auge Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt analysieren

Mehr

Astronomische Messungen im Bereich des sichtbaren Lichts

Astronomische Messungen im Bereich des sichtbaren Lichts Europäische Südsternwarte in Chile Astronomische Messungen im Bereich des sichtbaren Lichts 1. Vorbemerkungen 2. Posi2onen von Himmelskörpern 3. Tycho Brahe 4. Beobachtungsinstrumente 5. Auflösung von

Mehr