Evolutionäre Algorithmen in der Spracherkennung

Größe: px
Ab Seite anzeigen:

Download "Evolutionäre Algorithmen in der Spracherkennung"

Transkript

1 Informatik Alexander Eslava Evolutionäre Algorithmen in der Spracherkennung Studienarbeit

2

3 Evolutionäre Algorithmen in der Spracherkennung Hauptseminar Einsatz Evolutionärer Strategien in Eingebetteten Systemen Alexander Eslava Lehrstuhl Informatik II Programmiersysteme Abstract Dieser Text stellt einige evolutionär optimierte Klassifikatoren vor, mit Fokus auf Erkennung von Phonemen in der Spracherkennung. Das sind zum einen GA-Clustering, ein genetischer Vektor-Quantisierer; außerdem ein GP- Klassifikator, welcher Programme entwickelt, die direkt aus dem rohen Zeitsignal Phoneme extrahieren; und schließlich Evolutionäre Neuronale Netze mit GA-Optimierung von Verbindungsgewichten, Topologie oder Aktivierungsfunktionen. 2. Signalfluss von Spracherkennungssytemen Der typische Vorgang der Spracherkennung [7] lässt sich grob folgendermaßen zusammenfassen: 1. Vorverarbeitung des Audiosignals. Das kann z.b. Rauschunterdrückung oder Filterung sein. 2. Feature-Extraktion. Dabei wird das Zeitsignal in eine Sequenz von Feature-Vektoren transformiert. Features sind Merkmale wie z.b. das Spektrum. 3. Phonem-Klassifikation. Ein Feature-Vektor wird auf eine Phonemklasse abgebildet. 1. Einleitung Evolutionäre Algorithmen werden zunehmend zur Anwendung in Lernverfahren der Mustererkennung interessant, insbesondere zur Erkennung von Sprache. Ziel dieses Textes ist es, die Anwendungsmöglichkeiten von EAs für die Spracherkennung aufzuzeigen. Es werden exemplarisch einige evolutionär optimierte Klassifikatoren vorgestellt. Das sind zum einen GA-Clustering, ein genetischer Vektor-Quantisierer; außerdem ein GP-Klassifikator, welcher Programme entwickelt, die direkt aus dem rohen Zeitsignal Phoneme extrahieren; und schließlich Evolutionäre Neuronale Netze mit GA-Optimierung von Verbindungsgewichten, Topologie oder Aktivierungsfunktionen. Der Rest dieser Arbeit ist folgendermaßen gegliedert: Abschnitt 2 gibt einen knappen Überblick über die Phasen eines typischen Spracherkennungsprozesses. Im Anschluss wird die Extraktion von Features aus dem Zeitsignal erläutert. Abschnitt 4 führt einige Begriffe zum Lernen und Erkennen von Phonemen ein. Die nächsten Abschnitte stellen die genannten Anwendungsgebiete vor, wobei im Abschnitt 8 über evolutionäre Neuronale Netze zuerst die Grundlagen behandelt werden. 4. Worterkennung. In der Folge von Phonemen werden Wörter gesucht, in der Regel durch Vergleichen mit sogenannten Hidden-Markov-Models. Bei Einzelworterkennung wird nur das ähnlichste Wort ausgegeben. Bei kontinuierlicher Sprache wird eine Menge von mehreren möglichen Worten ausgegeben. 5. Eine anschließende kontextabhängige Analyse (grammatisch oder statistisch) wählt in kontinuierlicher Sprache das plausibelste Wort aus der Menge aus. 3. Feature-Extraktion Das rohe Zeitsignal wird in kurze (typischerweise 10-20ms) gleichgroße überlappende Abschnitte (Frames) zerschnitten, und jeder Frame wird mit einer Amplitudenhüllkurve multipliziert [7]. Es folgt pro Frame eine Berechnung von mehreren diskriminierenden Merkmalen, und diese werden zu einem Feature-Vektor zusammengefasst. x = (x 1,..., x n ) R n

4 Gängige Features: Fourier-Leistungsspektrum (quadrierte Fourier- Koeffizienten) [7]: F ω = M 1 M 1 x j exp( 2πωj/M) j=0 ω = 0, 1,..., M/2 2 Dies ist eine Transformation vom Zeitbereich in den Frequenzbereich. Die Welle wird als Summe von Sinuswellen mit verschiedener Phasenlage und Amplitude zerlegt. Die Berechnung nach obiger Formel wäre zu ineffizient. Stattdessen verwendet man die Fast- Fourier-Transform (FFT). Abbildung 1. Mel Cepstrum Filterbank. Frequenzgänge der dreieckigen Bandpassfilter. Mel Cepstrum / Mel Frequency Cepstrum Coefficients (MFCC) [7]: Das Signal wird von einer Filterbank aus dreieckigen Bandpassfiltern zerlegt, und die Energie pro Frequenzband berechnet. c k := M 1 ω=0 log[h kω F ω ] H kω : Frequenzgang des k-ten von M dreieckigen Filters (Abb. 1) in Abhängigkeit von Frequenz ω. F ω : Fourier-Koeffizient M : Anzahl der diskreten Frequenzen γ l := M 1 k=0 γ l : MFCC an der Stelle l c k cos[l(2k + 1)π/(2M )] l = 1,..., M Die Auflösungen von Frequenz und Pegel sind logarithmisch, wie das menschliche Ohr. Daher ist das Mel Cepstrum biologisch plausibler als FFT. Nicht zuletzt deshalb ist es die populärste Feature-Menge. Zeitliche Differenzen von Features wie FFT, Mel Cepstrum. Es ist nicht ungewöhnlich, verschiedene Arten von Features in einen Vektor zu kombinieren. Zur Unterscheidung zwischen Sprache und Stille/Hintergrund/Rauschen (wichtig zur Erkennung von Wortgrenzen) wird ein Level- Detektor verwendet, der die Short-Time-Energy (Energie eines Frames) misst. Beim Auftreten eines Sprach-Frames werden die FFT- oder MFCC-Koeffizienten anhand der Short-Time-Energy normalisiert, was die Erkennung von Phonemen unabhängig von der Lautstärke ermöglicht. Abbildung 2. Klassen sind Regionen im Feature-Raum. Hier: Erkennung von Vokalen aus 2 Features. [6] 4. Phonemklassifikation In der Spracherkennung gibt es viele Wortuntereinheiten, in die man das Audiosignal zerlegen kann, z.b. Silbe, Halbsilbe, Doppelsilbe, Phon, Phonem und andere [7]. In dieser Arbeit definiere ich den in der Literatur nicht ganz einheitlich festgelegten Begriff Phonem als die kleinste Wortuntereinheit, das heisst, ein Audiosegment mit ungefähr konstantem Spektrum. Koartikulatorische Effekte beim Übergang zwischen Phonemen können die Erkennungsrate degradieren. Verbesserung bringt die Berücksichtigung des Kontextes (benachbarte Frames) oder zeitliche Änderungen der FFT oder MFCC als zusätzliche Features. Ziel ist die Zuordnung eines Feature-Vektors auf eine

5 von K Klassen: R n {0,..., K}, x y Anschaulich gesehen sind Klassen Regionen im Feature- Raum (Abb. 2) Unsupervised Learning Beim Unsupervised Learning, auch genannt Clustering und Vector Quantization, werden dem Klassifikator N Trainingsbeispiele x i (Trainingsmenge S) ohne Angabe der gewünschten Ausgabe präsentiert. S = { x 1,..., x N } Der Feature-Raum wird selbstständig in K Sektoren (Clusters), entsprechend K Klassen, partitioniert. Dabei wächst die lokale Granularität (Dichte von Clusters) mit der lokalen Dichte von Beispielvektoren (je mehr Beispiele in einem Gebiet, desto feiner die Auflösung dort). Jeder Cluster C k wird repräsentiert durch einen Vektor z i, dem Cluster- Zentrum oder Code-Book-Vektor. Diese bilden das Code- Book. Ein Eingabevektor wird auf die Klasse mit minimalen euklidischen Abstand des Cluster-Zentrums abgebildet. Der Vektor wird sozusagen auf den nächsten Code-Book- Vektor gerundet. Damit erhält man eine adaptive Datenreduktion des Feature-Raums Supervised Learning Beim Supervised Learning wird zu jedem Trainingsbeispiel die Klasse mitangegeben. Diese dient beim Training als gewünschte Ausgabe des Klassifikators (Target-Wert = Output-Wert). S = {( x 1, y 1 ),..., ( x N, y N )} Ziele sind nicht nur das Lernen der Beispiele (korrekte Separation der Trainingsmenge), sondern auch die Generalisierungsfähigkeit: Neue Eingabevektoren aus einer Testmenge sollen mit möglichst hoher Wahrscheinlichkeit korrekt klassifiziert werden. Die Trainingsmenge wird somit interpoliert, das heisst aus den Beispielen versucht das System, die tatsächliche Klassenzugehörigkeitsfunktion zu approximieren. 5 K-Means-Algorithmus Ein einfacher und populärer Clustering-Algorithmus ist K-Means [7]: 1. Initialisierung von z i : Wähle aus Trainingsmenge S zufällig K Punkte als Clusterzentren aus. 2. WIEDERHOLE 3. Klassifiziere Trainingsbeispiele gemäss nächstem Cluster-Zentrum y( x i ) = argmin x i z k x i C k k {1,...,K} C k := { x y( x) = k} 4. Aktualisiere Clusterzentren als Schwerpunkte: z k = N k 1 x i, N k := S C k x i C k 5. BIS keine Änderung mehr Es ist ein Gradientenabstiegsverfahren (schrittweise Optimierung entgegen der Ableitung der Fehlerfunktion) und stagniert deshalb leicht in einem lokalen Minimum. 6 GA-Clustering GA-Clustering [6] kombiniert K-Means mit einem genetischen Algorithmus. Die Koordinaten eines Cluster- Zentrums, reell kodiert, bilden ein Gen im Chromosom. Zur Initialisierung wählt man zufällig eine Teilmenge der Trainingspunkte als Clusterzentren aus. Die Fitness-Funktion ist die Clustering-Metrik: M = z k x i k x i S C k Selektion erfolgt proportional zur Fitness (Roulette- Wheel-Selection). Als Crossover gibt es Single-Point mit konstanter Wahrscheinlichkeit. Die Mutation geschieht mit fester Wahrscheinlichkeit nach der Regel: v = v + 2δv mit δ [ 1; +1] uniforme Zufallsvariable und v eine Variable im Chromosom. Den Experimenten in [6] zufolge liefert GA-Clustering deutlich bessere Lösungen als K-Means. 7 GP-Klassifikator In [8] wird ein GP-Klassifikator zur Phonemerkennung vorgestellt, welcher auf genetisch optimierten Programmen basiert. Besonders erstaunlich ist, dass die Feature- Extraktion übersprungen wird. Stattdessen wird ein Frame aus dem zeitlichen Audiosignal direkt quasi als Feature- Vektor verwendet. Dieses Vorgehen stellt eine Ausnahme unter den Phonemerkennungsalgorithmen dar, denn meistens wird das Signal in den Frequenzbereich transformiert.

Mustererkennung. Übersicht. Unüberwachtes Lernen. (Un-) Überwachtes Lernen Clustering im Allgemeinen k-means-verfahren Gaussian-Mixture Modelle

Mustererkennung. Übersicht. Unüberwachtes Lernen. (Un-) Überwachtes Lernen Clustering im Allgemeinen k-means-verfahren Gaussian-Mixture Modelle Mustererkennung Unüberwachtes Lernen R. Neubecker, WS 01 / 01 Übersicht (Un-) Überwachtes Lernen Clustering im Allgemeinen k-means-verfahren 1 Lernen Überwachtes Lernen Zum Training des Klassifikators

Mehr

1 Einleitung. 2 Clustering

1 Einleitung. 2 Clustering Lernende Vektorquantisierung (LVQ) und K-Means-Clustering David Bouchain Proseminar Neuronale Netze Kurs-Nr.: CS4400 ISI WS 2004/05 david@bouchain.de 1 Einleitung Im Folgenden soll zum einen ein Überblick

Mehr

Inhaltliche Planung für die Vorlesung

Inhaltliche Planung für die Vorlesung Vorlesung: Künstliche Intelligenz - Mustererkennung - P LS ES S ST ME Künstliche Intelligenz Miao Wang 1 Inhaltliche Planung für die Vorlesung 1) Definition und Geschichte der KI, PROLOG 2) Expertensysteme

Mehr

RelAtive SpecTrAl (RASTA) Processing of Speech

RelAtive SpecTrAl (RASTA) Processing of Speech RelAtive SpecTrAl (RASTA) Processing of Speech Paul Glad Mihai 23.11.06 Gliederung Einleitung Wieso RASTA? RASTA erläutert Probleme Modulationsspektrum von Sprache Methode RASTA erweitert Lin-Log Rasta

Mehr

Genetische Algorithmen. Uwe Reichel IPS, LMU München 8. Juli 2008

Genetische Algorithmen. Uwe Reichel IPS, LMU München 8. Juli 2008 Genetische Algorithmen Uwe Reichel IPS, LMU München reichelu@phonetik.uni-muenchen.de 8. Juli 2008 Inhalt Einführung Algorithmus Erweiterungen alternative Evolutions- und Lernmodelle Inhalt 1 Einführung

Mehr

Clustering. Clustering:

Clustering. Clustering: Clustering Clustering: Gruppierung und Einteilung einer Datenmenge nach ähnlichen Merkmalen Unüberwachte Klassifizierung (Neuronale Netze- Terminologie) Distanzkriterium: Ein Datenvektor ist zu anderen

Mehr

Hannah Wester Juan Jose Gonzalez

Hannah Wester Juan Jose Gonzalez Neuronale Netze Supervised Learning Proseminar Kognitive Robotik (SS12) Hannah Wester Juan Jose Gonzalez Kurze Einführung Warum braucht man Neuronale Netze und insbesondere Supervised Learning? Das Perzeptron

Mehr

1 Einleitung Definitionen, Begriffe Grundsätzliche Vorgehensweise... 3

1 Einleitung Definitionen, Begriffe Grundsätzliche Vorgehensweise... 3 Inhaltsverzeichnis 1 Einleitung 1 1.1 Definitionen, Begriffe........................... 1 1.2 Grundsätzliche Vorgehensweise.................... 3 2 Intuitive Klassifikation 6 2.1 Abstandsmessung zur Klassifikation..................

Mehr

Vorlesung Digitale Bildverarbeitung Sommersemester 2013

Vorlesung Digitale Bildverarbeitung Sommersemester 2013 Vorlesung Digitale Bildverarbeitung Sommersemester 2013 Sebastian Houben (Marc Schlipsing) Institut für Neuroinformatik Inhalt Crash-Course in Machine Learning Klassifikationsverfahren Grundsätzliches

Mehr

Neuronale Netze. Christian Böhm.

Neuronale Netze. Christian Böhm. Ludwig Maximilians Universität München Institut für Informatik Forschungsgruppe Data Mining in der Medizin Neuronale Netze Christian Böhm http://dmm.dbs.ifi.lmu.de/dbs 1 Lehrbuch zur Vorlesung Lehrbuch

Mehr

Methoden zur Cluster - Analyse

Methoden zur Cluster - Analyse Kapitel 4 Spezialvorlesung Modul 10-202-2206 (Fortgeschrittene Methoden in der Bioinformatik) Jana Hertel Professur für Bioinformatik Institut für Informatik Universität Leipzig Machine learning in bioinformatics

Mehr

Sprachsynthese und Spracherkennung

Sprachsynthese und Spracherkennung 90 Sprachsynthese und Spracherkennung von John N. Holmes Mit 51 Bildern und 69 Übungen mit Lösungshinweisen R. Oldenbourg Verlag München Wien 1991 INHALT Vorwort 11 1 Lautsprachliche Kommunikation 15 1.1

Mehr

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Evolutionäre Algorithmen: Überlebenskampf und Evolutionäre Strategien Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Überblick Einleitung Adaptive Filter Künstliche

Mehr

Low Level Descriptoren. Anne Scheidler

Low Level Descriptoren. Anne Scheidler Low Level Descriptoren Anne Scheidler Aufbau des Vortrags LLD Kategorien Signaldarstellung Zeitbasierte Signaldarstellung und Merkmalsextraktion Transformation zwischen Signaldarstellungen Frequenzbasierte

Mehr

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20 Gliederung / Künstliche Neuronale Netze Perzeptron Einschränkungen Netze von Perzeptonen Perzeptron-Lernen Perzeptron Künstliche Neuronale Netze Perzeptron 3 / Der Psychologe und Informatiker Frank Rosenblatt

Mehr

Künstliche neuronale Netze

Künstliche neuronale Netze Künstliche neuronale Netze Eigenschaften neuronaler Netze: hohe Arbeitsgeschwindigkeit durch Parallelität, Funktionsfähigkeit auch nach Ausfall von Teilen des Netzes, Lernfähigkeit, Möglichkeit zur Generalisierung

Mehr

Evolution und Algorithmen

Evolution und Algorithmen Kapitel 6 Spezialvorlesung Modul 10-202-2206 (Fortgeschrittene Methoden in der Bioinformatik) Jana Hertel Professur für Bioinformatik Institut für Informatik Universität Leipzig Machine learning in bioinformatics

Mehr

5. Lernregeln für neuronale Netze

5. Lernregeln für neuronale Netze 5. Lernregeln für neuronale Netze 1. Allgemeine Lokale Lernregeln 2. Lernregeln aus Zielfunktionen: Optimierung durch Gradientenverfahren 3. Beispiel: Überwachtes Lernen im Einschicht-Netz Schwenker NI1

Mehr

Diskrete und Schnelle Fourier Transformation. Patrick Arenz

Diskrete und Schnelle Fourier Transformation. Patrick Arenz Diskrete und Schnelle Fourier Transformation Patrick Arenz 7. Januar 005 1 Diskrete Fourier Transformation Dieses Kapitel erläutert einige Merkmale der Diskreten Fourier Transformation DFT), der Schnellen

Mehr

SYS_A - ANALYSIEREN. Statistik. NTB Druckdatum: SYS A. Histogramm (Praxis) Gaußsche Normalverteilung (Theorie) Gebrauch: bei n > 100

SYS_A - ANALYSIEREN. Statistik. NTB Druckdatum: SYS A. Histogramm (Praxis) Gaußsche Normalverteilung (Theorie) Gebrauch: bei n > 100 SYS_A - ANALYSIEREN Statistik Gaußsche Normalverteilung (Theorie) Gebrauch: bei n > 100 Histogramm (Praxis) Realisierung Lage Streuung Zufallsvariable Dichte der Normalverteilung Verteilungsfunktion Fläche

Mehr

Statistical Learning

Statistical Learning Statistical Learning M. Gruber KW 42 Rev.1 1 Neuronale Netze Wir folgen [1], Lec 10. Beginnen wir mit einem Beispiel. Beispiel 1 Wir konstruieren einen Klassifikator auf der Menge, dessen Wirkung man in

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse Tobias Scheffer Thomas Vanck Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer

Mehr

Frequenzbewertung von Luftschallsignalen

Frequenzbewertung von Luftschallsignalen 04/17 von Luftschallsignalen Das menschliche Ohr empfindet Töne mit gleichem Schalldruck aber unterschiedlichen Tonhöhen unterschiedlich laut. Dieser frequenzabhängige Empfindlichkeitsverlauf des menschlichen

Mehr

Decision-Tree-Klassifikator

Decision-Tree-Klassifikator D3kjd3Di38lk323nnm Decision-Tree-Klassifikator Decision Trees haben einige Vorteile gegenüber den beiden schon beschriebenen Klassifikationsmethoden. Man benötigt in der Regel keine so aufwendige Vorverarbeitung

Mehr

Spektrale Analysen in EMU-R: eine Einführung. Jonathan Harrington

Spektrale Analysen in EMU-R: eine Einführung. Jonathan Harrington Spektrale Analysen in EMU-R: eine Einführung Jonathan Harrington 1. Ein digitales Sinusoid 2. Fourier-Analyse 3. Ein Spektrum 4. Frequenz- und Zeitauflösung 5. Berechnung von Spektra mit Emu 1. Ein digitales

Mehr

InformatiCup 2009 EvolutionConsole

InformatiCup 2009 EvolutionConsole InformatiCup 2009 EvolutionConsole Wilhelm Büchner Hochschule 19. März 2010 1 1. Das Team Teammitglieder Ralf Defrancesco KION Information Services GmbH Systemadministrator Daniel Herken Scooter Attack

Mehr

Support Vector Machines, Kernels

Support Vector Machines, Kernels Support Vector Machines, Kernels Katja Kunze 13.01.04 19.03.2004 1 Inhalt: Grundlagen/Allgemeines Lineare Trennung/Separation - Maximum Margin Hyperplane - Soft Margin SVM Kernels Praktische Anwendungen

Mehr

Konzepte der AI Neuronale Netze

Konzepte der AI Neuronale Netze Konzepte der AI Neuronale Netze Franz Wotawa Institut für Informationssysteme, Database and Artificial Intelligence Group, Technische Universität Wien Email: wotawa@dbai.tuwien.ac.at Was sind Neuronale

Mehr

Probe-Klausur zur Vorlesung Multilinguale Mensch-Maschine Kommunikation 2013

Probe-Klausur zur Vorlesung Multilinguale Mensch-Maschine Kommunikation 2013 Probe-Klausur zur Vorlesung Multilinguale Mensch-Maschine Kommunikation 2013 Klausurnummer Name: Vorname: Matr.Nummer: Bachelor: Master: Aufgabe 1 2 3 4 5 6 7 8 max. Punkte 10 5 6 7 5 10 9 8 tats. Punkte

Mehr

3. Analyse der Kamerabewegung Video - Inhaltsanalyse

3. Analyse der Kamerabewegung Video - Inhaltsanalyse 3. Analyse der Kamerabewegung Video - Inhaltsanalyse Stephan Kopf Bewegungen in Videos Objektbewegungen (object motion) Kameraoperationen bzw. Kamerabewegungen (camera motion) Semantische Informationen

Mehr

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Evolutionäre Algorithmen Teil II Evolutionsfenster durch Mutation und sexuelle Rekombination Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Evolutionäre Algorithmen

Mehr

Training von RBF-Netzen. Rudolf Kruse Neuronale Netze 134

Training von RBF-Netzen. Rudolf Kruse Neuronale Netze 134 Training von RBF-Netzen Rudolf Kruse Neuronale Netze 34 Radiale-Basisfunktionen-Netze: Initialisierung SeiL fixed ={l,...,l m } eine feste Lernaufgabe, bestehend ausmtrainingsbeispielenl=ı l,o l. Einfaches

Mehr

Seminar über Neuronale Netze und Maschinelles Lernen WS 06/07

Seminar über Neuronale Netze und Maschinelles Lernen WS 06/07 Universität Regensburg Naturwissenschaftliche Informatik Seminar über Neuronale Netze und Maschinelles Lernen WS 06/07 Cluster-Algorithmen II: Neural Gas Vortragender: Matthias Klein Gliederung Motivation:

Mehr

Clusteranalyse: Gauß sche Mischmodelle

Clusteranalyse: Gauß sche Mischmodelle Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse: Gauß sche Mischmodelle iels Landwehr Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer

Mehr

9 Fourier-Transformation

9 Fourier-Transformation 9 Fourier-Transformation Zoltán Zomotor Versionsstand: 5. September 2015, 18:26 Die nummerierten Felder bitte mithilfe der Videos ausfüllen: http://www.z5z6.de This work is based on the works of Jörn Loviscach

Mehr

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Motivation: Klassifikation mit der PCA Berechnung der Hauptkomponenten Theoretische Hintergründe Anwendungsbeispiel: Klassifikation von Gesichtern Weiterführende Bemerkungen

Mehr

Übungen zur Vorlesung Grundlagen der Bilderzeugung und Bildanalyse (Mustererkennung) WS 05/06. Musterlösung 11

Übungen zur Vorlesung Grundlagen der Bilderzeugung und Bildanalyse (Mustererkennung) WS 05/06. Musterlösung 11 ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG INSTITUT FÜR INFORMATIK Lehrstuhl für Mustererkennung und Bildverarbeitung Prof. Dr.-Ing. Hans Burkhardt Georges-Köhler-Allee Geb. 05, Zi 0-09 D-790 Freiburg Tel. 076-03

Mehr

Mathematische Grundlagen III

Mathematische Grundlagen III Mathematische Grundlagen III Maschinelles Lernen III: Clustering Vera Demberg Universität des Saarlandes 7. Juli 202 Vera Demberg (UdS) Mathe III 7. Juli 202 / 35 Clustering vs. Klassifikation In den letzten

Mehr

... Text Clustern. Clustern. Einführung Clustern. Einführung Clustern

... Text Clustern. Clustern. Einführung Clustern. Einführung Clustern Clustern Tet Clustern Teile nicht kategorisierte Beispiele in disjunkte Untermengen, so genannte Cluster, ein, so daß: Beispiele innerhalb eines Clusters sich sehr ähnlich Beispiele in verschiedenen Clustern

Mehr

Mustererkennung. Termine: Montag 9:45-11:15, F138 Mittwoch 11:30-13:00, D108 Freitag 11:30-13:00, A210. Skript, Literatur, Anmeldung im Netz

Mustererkennung. Termine: Montag 9:45-11:15, F138 Mittwoch 11:30-13:00, D108 Freitag 11:30-13:00, A210. Skript, Literatur, Anmeldung im Netz Mustererkennung Termine: Montag 9:45-11:15, F138 Mittwoch 11:30-13:00, D108 Freitag 11:30-13:00, A210 Skript, Literatur, Anmeldung im Netz Mustererkennung Anwendungsbeispiele für Mustererkennung? Mustererkennung

Mehr

Genetische und Evolutionäre Algorithmen (Vol. 1)

Genetische und Evolutionäre Algorithmen (Vol. 1) Vortrag über Genetische und Evolutionäre Algorithmen (Vol. ) von Adam El Sayed Auf und Kai Lienemann Gliederung: ) Einführung 2) Grundkonzept 3) Genaue Beschreibung des Genetischen Algorithmus Lösungsrepräsentation

Mehr

Projektgruppe. Clustering und Fingerprinting zur Erkennung von Ähnlichkeiten

Projektgruppe. Clustering und Fingerprinting zur Erkennung von Ähnlichkeiten Projektgruppe Jennifer Post Clustering und Fingerprinting zur Erkennung von Ähnlichkeiten 2. Juni 2010 Motivation Immer mehr Internet-Seiten Immer mehr digitale Texte Viele Inhalte ähnlich oder gleich

Mehr

Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern

Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern Chahine Abid Bachelor Arbeit Betreuer: Prof. Johannes Fürnkranz Frederik Janssen 28. November 2013 Fachbereich Informatik Fachgebiet Knowledge

Mehr

Kapitel 2: Spracherkennung Automatisches Verstehen gesprochener Sprache

Kapitel 2: Spracherkennung Automatisches Verstehen gesprochener Sprache Automatisches Verstehen gesprochener Sprache. Spracherkennung Martin Hacker Bernd Ludwig Günther Görz Professur für Künstliche Intelligenz Department Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse Niels Landwehr Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer Ansatz:

Mehr

Robert Stahlbock. Evolutionäre Entwicklung künstlicher neuronaler Netze zur Lösung betriebswirtschaftlicher Klassiflkationsprobleme

Robert Stahlbock. Evolutionäre Entwicklung künstlicher neuronaler Netze zur Lösung betriebswirtschaftlicher Klassiflkationsprobleme Robert Stahlbock Evolutionäre Entwicklung künstlicher neuronaler Netze zur Lösung betriebswirtschaftlicher Klassiflkationsprobleme Abbildungsverzeichnis Tabellenverzeichnis Abkürzungen, Akronyme Symbole

Mehr

Wissensbasierte Systeme

Wissensbasierte Systeme Analytisch lösbare Optimierungsaufgaben Das Chaos-Spiel gründet auf der folgenden Vorschrift: Man startet von einem beliebigen Punkt aus geht auf einer Verbindung mit einem von drei zufällig gewählten

Mehr

Mustererkennung: Neuronale Netze. D. Schlesinger ()Mustererkennung: Neuronale Netze 1 / 12

Mustererkennung: Neuronale Netze. D. Schlesinger ()Mustererkennung: Neuronale Netze 1 / 12 Mustererkennung: Neuronale Netze D. Schlesinger ()Mustererkennung: Neuronale Netze 1 / 12 Feed-Forward Netze y 1 y 2 y m...... x 1 x 2 x n Output Schicht i max... Zwischenschicht i... Zwischenschicht 1

Mehr

Hidden Markov Modelle

Hidden Markov Modelle Hidden Markov Modelle in der Sprachverarbeitung Paul Gabriel paul@pogo.franken.de Seminar Sprachdialogsysteme: Hidden Markov Modelle p.1/3 Überblick Merkmalsvektoren Stochastischer Prozess Markov-Ketten

Mehr

Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell

Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell Dept. Informatik 8 (Künstliche Intelligenz) Friedrich-Alexander-Universität Erlangen-Nürnberg (Informatik 8) Klassifikation von Texten Teil

Mehr

Spracherkennung TAREQ HASCHEMI HAW-SEMINAR WS16

Spracherkennung TAREQ HASCHEMI HAW-SEMINAR WS16 Spracherkennung TAREQ HASCHEMI HAW-SEMINAR WS16 AGENDA Grundlegendes Sprache Anwendungsbeispiele Schwierigkeit Architektur Spracherkennungssystem Hidden Markov Modell Verbesserung durch Kombination mit

Mehr

10. Vorlesung Stochastische Optimierung

10. Vorlesung Stochastische Optimierung Soft Control (AT 3, RMA) 10. Vorlesung Stochastische Optimierung Genetische Algorithmen 10. Vorlesung im Aufbau der Vorlesung 1. Einführung Soft Control: Definition und Abgrenzung, Grundlagen "intelligenter"

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Systemtheorie Teil A - Zeitkontinuierliche Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 6 Musterlösungen Spektrum von Signalen 6. Approximation eines periodischen Signals

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 10: Naive Bayes (V. 1.0)

Mehr

Finanzmarktprognose mit neuronalen Netzen

Finanzmarktprognose mit neuronalen Netzen Reihe: Quantitative Ökonomie Band 131 Herausgegeben von Prof. Dr. Eckart Bomsdorf, Köln, Prof. Dr. Wim Kösters, Bochum, und Prof. Dr. Winfried Matthes, Wuppertal Dr. Christoph A. Hövel Finanzmarktprognose

Mehr

:. (engl.: first harmonic frequency)

:. (engl.: first harmonic frequency) 5 Fourier-Reihen 5.1 Schwingungsüberlagerung 5.2 "Oberschwingungen" f 0 :. (engl.: fundamental frequency) :. (engl.: first harmonic frequency) Jede ganzzahlige (n) vielfache Frequenz von f 0 nennt man

Mehr

Kapitel 10. Maschinelles Lernen Lineare Regression. Welche Gerade? Problemstellung. Th. Jahn. Sommersemester 2017

Kapitel 10. Maschinelles Lernen Lineare Regression. Welche Gerade? Problemstellung. Th. Jahn. Sommersemester 2017 10.1 Sommersemester 2017 Problemstellung Welche Gerade? Gegeben sind folgende Messungen: Masse (kg) 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Kraft (N) 1.6 2.2 3.2 3.0 4.9 5.7 7.1 7.3 8.1 Annahme: Es gibt eine Funktion

Mehr

Von schwachen zu starken Lernern

Von schwachen zu starken Lernern Von schwachen zu starken Lernern Wir nehmen an, dass ein schwacher Lernalgorithmus L mit vielen Beispielen, aber großem Fehler ε = 1 2 θ gegeben ist. - Wie lässt sich der Verallgemeinerungsfehler ε von

Mehr

Spektrumanalyse. Inhalt. I. Einleitung 2. II. Hauptteil 2-8

Spektrumanalyse. Inhalt. I. Einleitung 2. II. Hauptteil 2-8 Fachhochschule Aachen Campus Aachen Hochfrequenztechnik Hauptstudium Wintersemester 2007/2008 Dozent: Prof. Dr. Heuermann Spektrumanalyse Erstellt von: Name: Mario Schnetger Inhalt I. Einleitung 2 II.

Mehr

Spracherkennung. 8. Sitzung 3. November 2008

Spracherkennung. 8. Sitzung 3. November 2008 Spracherkennung 8. Sitzung 3. November 2008 Überblick 5. Diskretisierung 6. Merkmalsberechnung 7. DTW 8. HMMs 9. Sprachmodellierung w X Textproduktion Artikulation Merkmalsextraktion Dekodierung 2. Sprachproduktion

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Zeitdiskrete Signale Wintersemester 6/7 Kontinuierliche und diskrete Signale wertkontinuierlich wertdiskret Signal Signal Signal Signal zeitdiskret zeitkontinuierlich

Mehr

How To Create A Panorama Image From A Photoelectric Image From An Image From The Camera (I)

How To Create A Panorama Image From A Photoelectric Image From An Image From The Camera (I) Chapter 3 Image Registration Distributed Algorithms for Einführung (I) Definition: Image Registration Gegeben: 2 Bilder der gleichen Szene aber aufgenommen aus unterschiedlichen Perspektiven Gesucht: Transformation,

Mehr

Nichtlineare Klassifikatoren

Nichtlineare Klassifikatoren Nichtlineare Klassifikatoren Mustererkennung und Klassifikation, Vorlesung No. 11 1 M. O. Franz 12.01.2008 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Duda et al., 2001. Übersicht

Mehr

Automatische Spracherkennung

Automatische Spracherkennung Automatische Spracherkennung 3 Vertiefung: Drei wichtige Algorithmen Teil 3 Soweit vorhanden ist der jeweils englische Fachbegriff, so wie er in der Fachliteratur verwendet wird, in Klammern angegeben.

Mehr

Kapitel 4: Data Mining

Kapitel 4: Data Mining LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2017 Kapitel 4: Data Mining Vorlesung:

Mehr

einige Zusatzfolien für s Seminar

einige Zusatzfolien für s Seminar Signale und Systeme einige Zusatzfolien für s Seminar Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme Fourierreihe reelle Fourierreihe betrachtet wird ein periodisches Zeitsignal u p mit

Mehr

Z-Transformation, Cepstrum, LPC, Autokorrelation Sebastian Stüker

Z-Transformation, Cepstrum, LPC, Autokorrelation Sebastian Stüker Institut für Anthropomatik Z-Transformation, Cepstrum, LPC, Autokorrelation Sebastian Stüker 04.11.2009 Interactive Systems Labs Verallgemeinerung der Fourier- Transformation: F(s) = L{ f }(s) = 0 e st

Mehr

Mustererkennung. Support Vector Machines. R. Neubecker, WS 2018 / Support Vector Machines

Mustererkennung. Support Vector Machines. R. Neubecker, WS 2018 / Support Vector Machines Mustererkennung R. Neubecker, WS 018 / 019 (SVM) kommen aus der statistischen Lerntheorie gehören zu den optimalen Klassifikatoren = SVMs minimieren nicht nur den Trainingsfehler, sondern auch den (voraussichtlichen)

Mehr

Neuronale Netze in der Phonetik: Feed-Forward Netze. Pfitzinger, Reichel IPSK, LMU München {hpt 14.

Neuronale Netze in der Phonetik: Feed-Forward Netze. Pfitzinger, Reichel IPSK, LMU München {hpt 14. Neuronale Netze in der Phonetik: Feed-Forward Netze Pfitzinger, Reichel IPSK, LMU München {hpt reichelu}@phonetik.uni-muenchen.de 14. Juli 2006 Inhalt Typisierung nach Aktivierungsfunktion Lernen in einschichtigen

Mehr

Statistische Verfahren zur Datenreduktion (Clusteranalyse, Hauptkomponentenanalyse)

Statistische Verfahren zur Datenreduktion (Clusteranalyse, Hauptkomponentenanalyse) Statistische Verfahren zur Datenreduktion (, ) Datenreduktion Neben den Verfahren zur Datenbereinigung (Transformation, Ausreißertests) spielt die objektivierbare Reduktion der Datenmenge eine wesentliche

Mehr

Fouriertransformation, z-transformation, Differenzenglei- chung

Fouriertransformation, z-transformation, Differenzenglei- chung Kommunikationstechnik II 1.Übungstermin 31.10.2007 Fouriertransformation, z-transformation, Differenzenglei- Wiederholung: chung Als Ergänzung dieser sehr knapp gehaltenen Wiederholung wird empfohlen:

Mehr

Beschleunigung von Bild-Segmentierungs- Algorithmen mit FPGAs

Beschleunigung von Bild-Segmentierungs- Algorithmen mit FPGAs Fakultät Informatik, Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Algorithmen mit FPGAs Vortrag von Jan Frenzel Dresden, Gliederung Was ist Bildsegmentierung?

Mehr

EFME Aufsätze ( Wörter) Der Aufbau von Entscheidungsbäumen...1

EFME Aufsätze ( Wörter) Der Aufbau von Entscheidungsbäumen...1 EFME Aufsätze (150 200 Wörter) Der Aufbau von Entscheidungsbäumen...1 PCA in der Gesichtserkennung... 2 Bias, Varianz und Generalisierungsfähigkeit... 3 Parametrische und nicht-parametrische Lernverfahren:

Mehr

Kapitel V. V. Ensemble Methods. Einführung Bagging Boosting Cascading

Kapitel V. V. Ensemble Methods. Einführung Bagging Boosting Cascading Kapitel V V. Ensemble Methods Einführung Bagging Boosting Cascading V-1 Ensemble Methods c Lettmann 2005 Einführung Bewertung der Generalisierungsfähigkeit von Klassifikatoren R (c) wahre Missklassifikationsrate

Mehr

Docken von Proteinen. Timo von Oertzen St. Johann, September 2002

Docken von Proteinen. Timo von Oertzen St. Johann, September 2002 Docken von Proteinen Timo von Oertzen St. Johann, September 2002 Das Dock - Problem Schlecht...... ganz schlecht... Gut! Das Dock - Problem Das Dock Problem ist die Suche nach der energetischen günstigsten

Mehr

Verfahren zur Lokalisierung von Schallquellen im Raum

Verfahren zur Lokalisierung von Schallquellen im Raum Hauptseminar Technische Informationssysteme Verfahren zur Lokalisierung von Schallquellen im Raum Ali Jaber Dresden, 05.11.2012 Überblick 1. Motivation 2. Ortungsverfahren Time Delay of Arrival (TDOA)

Mehr

Neuronale Netze. Anna Wallner. 15. Mai 2007

Neuronale Netze. Anna Wallner. 15. Mai 2007 5. Mai 2007 Inhalt : Motivation Grundlagen Beispiel: XOR Netze mit einer verdeckten Schicht Anpassung des Netzes mit Backpropagation Probleme Beispiel: Klassifikation handgeschriebener Ziffern Rekurrente

Mehr

Fourierreihen und Fouriertransformation

Fourierreihen und Fouriertransformation Fourierreihen und Fouriertransformation Fourierreihen Autor: Harald Höller letzte Änderung: 11.11.09 Lizenz: Creative Commons Lizenz by-nc-sa 3.0 at Bei Fourierreihen wird nach trigonometrischen (Erzeugenden)Funktionen

Mehr

MPEG Audio Layer 1. Fachbereich Medieninformatik. Hochschule Harz. Referat. Kolja Schoon. Thema: MPEG Audio Layer 1

MPEG Audio Layer 1. Fachbereich Medieninformatik. Hochschule Harz. Referat. Kolja Schoon. Thema: MPEG Audio Layer 1 Fachbereich Medieninformatik Hochschule Harz MPEG Audio Layer 1 Referat Kolja Schoon 10952 Abgabe: 15.01.2007 Stand: (Januar 2007) Autor: Kolja Schoon Seite 1 Inhaltsverzeichnis 1. Einleitung / Vorwort...3

Mehr

RL und Funktionsapproximation

RL und Funktionsapproximation RL und Funktionsapproximation Bisher sind haben wir die Funktionen V oder Q als Tabellen gespeichert. Im Allgemeinen sind die Zustandsräume und die Zahl der möglichen Aktionen sehr groß. Deshalb besteht

Mehr

Signalverarbeitung 2. Volker Stahl - 1 -

Signalverarbeitung 2. Volker Stahl - 1 - - 1 - Spracherkennung gestern und morgen - 2 - Ziel Klassifikation von Signalen, Mustererkennung z.b. Sprache, Gestik, Handschrift, EKG, Verkehrssituationen, Sensor Signal Klasse 1 Klasse 2 Klasse n Vorverarbeitung:

Mehr

Clustering 2010/06/11 Sebastian Koch 1

Clustering 2010/06/11 Sebastian Koch 1 Clustering 2010/06/11 1 Motivation Quelle: http://www.ha-w.de/media/schulung01.jpg 2010/06/11 2 Was ist Clustering Idee: Gruppierung von Objekten so, dass: Innerhalb einer Gruppe sollen die Objekte möglichst

Mehr

Kontinuierliche Fourier-Transformation. Laplace-Transformation

Kontinuierliche Fourier-Transformation. Laplace-Transformation Kontinuierliche Fourier-Transformation. Laplace-Transformation Jörn Loviscach Versionsstand: 16. Juni 2010, 17:56 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 5: Naive Bayes + IBL (V.

Mehr

Grundlagen zu neuronalen Netzen. Kristina Tesch

Grundlagen zu neuronalen Netzen. Kristina Tesch Grundlagen zu neuronalen Netzen Kristina Tesch 03.05.2018 Gliederung 1. Funktionsprinzip von neuronalen Netzen 2. Das XOR-Beispiel 3. Training des neuronalen Netzes 4. Weitere Aspekte Kristina Tesch Grundlagen

Mehr

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor)

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) 29 Neuronale Netze Gehirn: ca. 10 11 Neuronen stark vernetzt Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) Mustererkennung in 0.1s 100 Schritte Regel 30 Was ist ein künstl. neuronales Netz? Ein

Mehr

1. Filterung im Ortsbereich 1.1 Grundbegriffe 1.2 Lineare Filter 1.3 Nicht-Lineare Filter 1.4 Separabele Filter 1.

1. Filterung im Ortsbereich 1.1 Grundbegriffe 1.2 Lineare Filter 1.3 Nicht-Lineare Filter 1.4 Separabele Filter 1. . Filterung im Ortsbereich. Grundbegriffe. Lineare Filter.3 Nicht-Lineare Filter.4 Separabele Filter.5 Implementierung. Filterung im Frequenzbereich. Fouriertransformation. Hoch-, Tief- und Bandpassfilter.3

Mehr

3. Fourieranalyse und Amplitudenspektren

3. Fourieranalyse und Amplitudenspektren 3.1 Fourieranalyse 3.1.1 Einleitung Laut dem französischen Mathematiker Fourier (1768-1830) kann jedes periodische Signal in eine Summe von sinusförmigen Signalen mit unterschiedlichen Amplituden, Frequenzen

Mehr

Digitale Signalverarbeitung, Vorlesung 11 - Kurzzeitfouriertransformation

Digitale Signalverarbeitung, Vorlesung 11 - Kurzzeitfouriertransformation Digitale Signalverarbeitung, Vorlesung 11 - Kurzzeitfouriertransformation 30. Januar 2017 Siehe Skript Digitale Signalverarbeitung, Abschnitte 11 und 12, Kammeyer & Kroschel (Absatz 8.4.1) Anwendungen

Mehr

Grundlagen und Aufbau von neuronalen Netzen

Grundlagen und Aufbau von neuronalen Netzen Grundlagen und Aufbau von neuronalen Netzen Künstliche neuronale Netze (KNN) modellieren auf stark vereinfachte Weise Organisationsprinzipien und Abläufe biologischer neuronaler Netze Jedes KNN besteht

Mehr

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann!

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Spektralanalyse Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Mit der Spektralanalyse können wir Antworten auf folgende Fragen bekommen:

Mehr

4. Beschreibung von LTI-Systemen mit der Fourier-Transformation

4. Beschreibung von LTI-Systemen mit der Fourier-Transformation Die Fourier-Transformation 1. Anwendungsbeispiele der Fourier-Transformation 2. Die kontinuierliche Fourier-Transformation 3. Die Fourier-Reihe 4. Beschreibung von LTI-Systemen mit der Fourier-Transformation

Mehr

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität Datenstrukturen und Algorithmen Christian Sohler FG Algorithmen & Komplexität 1 Clustering: Partitioniere Objektmenge in Gruppen(Cluster), so dass sich Objekte in einer Gruppe ähnlich sind und Objekte

Mehr