Die Arten der ionisierenden Strahlen. Strahlenquellen

Größe: px
Ab Seite anzeigen:

Download "Die Arten der ionisierenden Strahlen. Strahlenquellen"

Transkript

1 Die Arten der ionisierenden Strahlen. Strahlenquellen Kernstr. Kernstrahlungen (4-21) Röntgenstrahlung (22-43) Anhang 1. Intensität (44) 2. Spektrum (45-47) 3. Atom (48-56) Repetitio est mater studiorum. (Wiederholung ist die Mutter der Studien.) Röntgen 1 Ionisation heisst jeder Vorgang, bei dem aus einem Atom oder Molekül ein oder mehrere Elektronen entfernt werden, so dass das Atom oder Molekül als positiv geladenes Ion zurückbleibt. Ionisierende Strahlung die Strahlung, die über ausreichend Energie verfügt, um während der Absorption im Medium auf direkte oder indirekte Weise Ionenpaare (Ion + +freies Elektron ) anzuregen. Dazu gehören die Korpuskularstrahlungen und von den elektromagnetischen Strahlungen die Röntgen- bzw. γ- Strahlung. 2 Klassifizierungsmöglichkeiten Kernstrahlungen Kernstrahlung Die Energie stammt aus dem Atomkern. α, β, γ, p, n, Teilchenstrahlung positive ruhige Masse α, β, p, n, direkte Ionisation geladene Teilchen α, β, p, Röntgenstrahlung Die Energie stammt aus der Elektronenhülle. Rtg Elektromagnetische Strahlung keine ruhige Masse Rtg, γ indirekte Ionisation ohne elektrische Ladung Rtg, γ, n 3 4

2

3

4

5

6 Röntgenstrahlung elektromagnetische Strahlung Photonenergie: Diagnostik: kev Therapie: 5-20 MeV Wellenlänge: ~ pm Photonenenergie: mev ev kev MeV GeV Energie Frequenz Wellenlänge Bezeichnung Emissionsquelle 30 Hz 10 4 km 300 Hz 10 3 km niederfrequente Wellen Generatoren der Industrie 3 khz 10 2 km 30 khz 10 km Langwellen 300 khz 1 km 3 MHz 100 m Mittelwellen 30 MHz 10 m Kurzwellen elektrische Generatoren 300 MHz 1 m Ultrakurzwellen 3 GHz 100 mm Dezimeterwellen 30 GHz 10 mm Zentimeterwellen 300 GHz 1 mm 0.01 ev 3 THz 100 um 0.1 ev 30 THz 10 um Infrarotstrahlen Strahlung heisser Körper 1 ev 300 THz 1 um 10 ev 3 PHz 100 nm sichtbares Licht Energieumsatz in der 100 ev 30 PHz 10 nm Ultraviolettstrahlung Atomhülle 1 kev 300 PHz 1 nm 10 kev 3 EHz 100 pm Abbremsung von Elektronen 100 kev 30 EHz 10 pm Röntgenstrahlen im Kernfeld 1 MeV 300 EHz 1 pm 10 MeV 3x10 21 Hz 100 fm 30x10 21 Hz 10 fm Gammastrahlen Energieumsatz im Atomkern 300x10 21 Hz 1 fm 3x10 24 Hz 100 am Elementarteilchen und deren 30x10 24 kosmische Strahlung Hz 10 am Zerfallsprodukte 23 Radiowellen µw Entstehung: in der Elektronenhülle Typen: Bremsstrahlung charakteristische Strahlung Wirkungen: Ionisation Lumineszenz (Fluoroskopie, Bildverstärker) chemische W. (z.b. Photo) biologische W. (Strahlenschädigung) 24

7 Historie 1895 Wilhelm Conrad Röntgen X-Strahlung (X-ray) 1896 erste medizinische Anwendung 1901 Nobel Preis (erste Nobel Preis in Physik) heute: 3D Röntgen-CT Entstehung der Röntgenstrahlung Röntgenstrahlung Entsteht wenn hochenergetische (beschleunigte) geladene Teilchen ihre Energie abgeben. Röntgenröhre (Diagnostik) Teilchenbeschleuniger (Therapie) Geräte zur Erzeugung der Röntgenstrahlung Die Röntgenröhre (1) Röntgenröhre Teilchenbeschleuniger Anode U Heiz Vakuum Isolator Heizkathode: Heizung (T Erhöhung) Erhöhte thermische Energie Elektronen treten aus der Kathode aus. (Glühelektrischer Effekt) 27 28

8 Die Röntgenröhre (2) Die Röntgenröhre (3) U I U I U Heiz U Heiz Anodenspannung(U) (typisch kv): beschleunigt die Elektronen U e = E kin Elementarladung e=1, C kinetische Energie des beschleunigten Elektrons 29 Röntgenstrahlung entsteht wenn die beschleunigten Elektronen auf die Anode prallen. 1. Abbremsung (Bremsstrahlung) 2. Elektronenausstoß+Elektronenübergang (Charakteristische Str.) 30 Bremsstrahlung Grenzwellenlänge, Duane-Hunt Gesetz Kinetische Energie E kin h f Ue = Ekin hf = c Ue h λ hc λ = Ue Photonenenergie (Rtg) Thermische Energie c h λ λ min 31 hc λ = Ue λ min λ min Const 1230 kv pm = U nicht SI aber praktische Einheit 32

9 Emissionsspektrum der Bremsstrahlung (1) Emissionsspektrum der Bremsstrahlung (2) dp dλ U 1 U 2 Anodenspannung λ min λ mod E photon härtere Strahlung N photon Leistung dp dλ I 2 U 2 I 1 U 1 Anodenstrom λ min - λ mod - E photon - härte d. Strahlung - N photon Leistung λ min λ mod λ λ min λ mod λ Ohm harte weiche Strahlung 33 harte weiche Strahlung 34 Regulierung der Anodenstromstärke Leistung der Röntgenstrahlung U Heiz U I dp dλ P (gesamte Röntgenleistung) P (λ 1,λ 2 ) mehr Heizung mehr Elektronen treten aus größerer Anodenstrom (I= Q/ t) 35 λ min P = c U 2 I Z λ Konst. (1, V -1 ) Anodenspannung Anodenstromstärke Ordnungszahl des Anodenmaterials 36

10 Wirkungsgrad der Röntgenröhre Wirkungsgr ad = nützliche Leistung zugeführte Leistung 2 cu IZ η = UI = cuz Anodenmaterial mit hoher Ordnungszahl! praktisch: Wolfram (Z=74) typischer Wert von η : <1% >99% Wärme! Z blei =82! Aber: T Schm,W 3400 C T Schm,Pb 330 C 37 Entstehung der charakteristischen Röntgenstrahlung (1) E kin beschleunigtes Elektron aus der Kathode Atom des Anodenmaterials 38 Entstehung der charakteristischen Röntgenstrahlung (2) Entstehung der charakteristischen Röntgenstrahlung (3) leere Stelle Atom des Anodenmaterials 39 Atom des Anodenmaterials 40

11 Entstehung der charakteristischen Röntgenstrahlung (4) leere Stelle gefüllt Entstehung der charakteristischen Röntgenstrahlung (5) E charakteristisches Röntgenphoton hf = E ev kev M L L K K Linien Atom des Anodenmaterials Atom des Anodenmaterials dp dλ Spektrum der charakteristischen Röntgenstrahlung E Anhang 1. Intensität Strahlung: Energie wird transportiert (Energiestrahlung) Energie, E [E] = J (Joule) Energiestrom = Leistung P = E [P] = W (Watt) t E: die transportierte Energie während der Zeitspanne t U 1 U 2 L K Linien Energiestromdichte =Leistungsdichte = Intensität [J] = W/m 2 J = P A 1 E = A t λ K λ L λ A: die Fläche (senkrecht zur Richtung der Strahlung) 43 44

12 Anhang 2. Spektrum h: Körpergrösse H: akrobatische Höhe, kollektive Höhe, Gesamthöhe 45 Spektrum als eine spezielle Häufigkeitsverteilung (absolute) Häufigkeitsverteilung der Körpergrösse h: Klassenbreite Fläche: n, Anzahl der Personen Spektrum (spektrale Verteilung): wie bekommen wir etwas aus der Teilen (Quanten) H: akrobatische Grösse, kollektive Grösse n h (1/10 cm) H h cm *1/10cm = 1 n: Anzahl der Daten Körpergrösse, h (cm) 10cm *16.5 = 165 cm Körpergrösse, h (cm) H cm 46 Emissionsspektrum: wie verteilt sich die gesamte emittierte Energie über die Photonenenergien charakteristische Grösse der Energietransport: Intensität (manchmal die Leistung) Benützung der Wellenlänge ist bequemer als die der Photonenenergie E ε E / ε J λ Photonenenergie, ε E 47 λ Anhang 3. Das Atom Wichtigere Stationen: Demokritos 4. Jh. v. Chr. (atomos: unzerlegbar ) Daltonsches Gesetz 19. Jh. (multiple Proportionen der Massenverhältnisse) moderne Strukturuntersuchungsmethoden Mikroskopie, Spektrometrie, Diffraktionsmethoden,... atomarer Aufbau der Materie Mikrowelt STM Aufnahme von der Oberfläche eines Silizium Kristalls 48

13 Das Atom Rutherford (1911): dichter, positiv geladener Stoff Radius 0,1 nm = m Masse kg relative Atommassen Bezugsatom: 12 C m u = 1/12 m12 C = u = Da α ++ α ++ dünner, negativ geladener Stoff Rutherford 1911 Bohr 1913 Atomaufbau Erwartung Beobachtung Erklärung Bohrsches Atommodell positiver Atomkern Radius m Masse kg die ganze Masse des Atoms negatives Elektron Radius m Masse kg Coulombsche elektrische Wechselwirkung: E Ww + F F - E Ww r q q F = k r q q k 1 = r E Ww 2 Was für Kräfte halten das Atom zusammen? 51 52

14 Bewegungen gegen den anziehenden Wechselwirkungen! Mikrowelt: diskrete Zustände! Gesamtenergie: E Ww E = E Ww + E kin E r Ekin = 1 mv 2 E Ww 2 E + E kin r E r Energieniveaus 0 freie Elektronen gebundene Elektronen + E kin E E Ww + E < 0 E E Ww + E > 0 = kin = kin gebundenes Elektron freies Elektron 53 Pauli-Prinzip (1925): Auf einem Niveau sitzen höchstens zwei Elektronen. 54 Aufbau des Atomkerns Ereignisse in dem Atom: Ionisation Anregung 0 angeregte Zustände Grundzustand einfache metastabile rel. Atommassen liegen in der Nähe von ganzen Zahlen Atomkern positives Proton neutrales Neutron (etwa gleiche Massen) Strahlungen Licht Röntgenstrahlung.. 55 Z. B. 12 C enthält 6 Protonen und 6 Neutronen Isotope Radioaktivität, Kernstrahlungen 56

Licht als Teilchenstrahlung

Licht als Teilchenstrahlung Der Photoeffekt: die auf die Materie einfallende Strahlung löst ein Elektron aus. Es gibt eine Grenzfrequenz, welche die Strahlung haben muss, um das Atom gerade zu ionisieren. Licht als Teilchenstrahlung

Mehr

Historie. Charakterisierung der Röntgenstrahlung. elektromagnetische Strahlung Photonenergie: Wellenlänge: ~ pm

Historie. Charakterisierung der Röntgenstrahlung. elektromagnetische Strahlung Photonenergie: Wellenlänge: ~ pm Charakterisierung der Medizinische Biophysik II. 1 elektromagnetische Strahlung Photonenergie: Diagnostik: -2 kev Therapie: 5-2 MeV Wellenlänge: ~ pm Photonenenergie: mev ev kev MeV GeV László Smeller

Mehr

Historie. Charakterisierung der Röntgenstrahlung. elektromagnetische Strahlung Photonenergie: Wellenlänge: ~ pm

Historie. Charakterisierung der Röntgenstrahlung. elektromagnetische Strahlung Photonenergie: Wellenlänge: ~ pm Charakterisierung der Medizinische Biophysik II. 1 elektroagnetische Strahlung Photonenergie: Diagnostik: 0-200 kev Therapie: 5-20 MeV Wellenlänge: ~ p Photonenenergie: ev ev kev MeV GeV László Seller

Mehr

BIOPHYSIK 7. Vorlesung

BIOPHYSIK 7. Vorlesung BIOPHYSIK 7. Vorlesung Der Photoeffekt: die auf die Materie einfallende Strahlung löst ein Elektron aus. Es gibt eine Grenzfrequenz, welche die Strahlung haben muss, um das Atom gerade zu ionisieren. Licht

Mehr

Radiologie Modul I. Teil 1 Grundlagen Röntgen

Radiologie Modul I. Teil 1 Grundlagen Röntgen Radiologie Modul I Teil 1 Grundlagen Röntgen Teil 1 Inhalt Physikalische Grundlagen Röntgen Strahlenbiologie Technische Grundlagen Röntgen ROENTGENTECHNIK STRAHLENPHYSIK GRUNDLAGEN RADIOLOGIE STRAHLENBIOLOGIE

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #26 04/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Spektrum des H-Atoms Energieniveaus der erlaubten Quantenbahnen E n = " m # e4 8 # h 2 # $ 0 2

Mehr

Physikalische. Grundlagen. L. Kölling, Fw Minden

Physikalische. Grundlagen. L. Kölling, Fw Minden Physikalische Grundlagen L. Kölling, Fw Minden Radioaktivität kann man weder sehen, hören, fühlen, riechen oder schmecken. Daher muss sie der FA (SB) zumindest verstehen, um im Einsatzfall die erforderlichen

Mehr

31. Lektion. Röntgenstrahlen. 40. Röntgenstrahlen und Laser

31. Lektion. Röntgenstrahlen. 40. Röntgenstrahlen und Laser 31. Lektion Röntgenstrahlen 40. Röntgenstrahlen und Laser Lerhnziel: Röntgenstrahlen entstehen durch Beschleunigung von Elektronen oder durch die Ionisation von inneren Elektronenschalen Begriffe Begriffe:

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

Die Lage der Emissionsbanden der charakteristischen Röntgenstrahlung (anderer Name: Eigenstrahlung) wird bestimmt durch durch das Material der Kathode durch das Material der Anode die Größe der Anodenspannung

Mehr

Klausur -Informationen

Klausur -Informationen Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25

Mehr

Lösungen der Abituraufgaben Physik. Harald Hoiß 26. Januar 2019

Lösungen der Abituraufgaben Physik. Harald Hoiß 26. Januar 2019 Lösungen der Abituraufgaben Physik Harald Hoiß 26. Januar 2019 Inhaltsverzeichnis 1. Wasserstoffatom 1 1.1. Spektren.............................................. 1 2. Anwendungen zum quantenmechanischen

Mehr

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten R. Brinkmann http://brinkmann-du.de Seite 1 25.11.2013 Radioaktivität und Strahlenschutz FOS: Energie von Strahlungsteilchen und Gammaquanten Energieeinheit Elektronenvolt (ev) Bekannte Energieeinheiten:

Mehr

Physik für Mediziner und Zahnmediziner

Physik für Mediziner und Zahnmediziner Physik für Mediziner und Zahnmediziner Vorlesung 19 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 PET: Positronen-Emissions-Tomographie Kernphysik PET Atomphysik Röntgen

Mehr

Jetzt noch die Strahlung aus der Elektronenhülle. Hüllenstrahlung. Kein Radioaktiver Zerfall. Kapitel 4 1

Jetzt noch die Strahlung aus der Elektronenhülle. Hüllenstrahlung. Kein Radioaktiver Zerfall. Kapitel 4 1 Hüllenstrahlung Inhalt des 4.Kapitels Charakteristische Photonen- und Röntgenstrahlung - Röntgenfluoreszenz Augerelektronen Fluoreszenz- und Augerelektronenausbeute Bremsstrahlung Erzeugung von Röntgenstrahlung

Mehr

43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung

43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung 43. Strahlenschutz und Dosimetrie 36. Lektion Wechselwirkung und Reichweite von Strahlung Lernziel: Die Wechselwirkung von radioaktiver Strahlung (α,β,γ( α,β,γ) ) ist unterschiedlich. Nur im Fall von α-

Mehr

VL Physik für Mediziner 2009/10. Röntgenstrahlung

VL Physik für Mediziner 2009/10. Röntgenstrahlung VL Physik für Mediziner 2009/10 Röntgenstrahlung Peter-Alexander Kovermann Institut für Neurophysiologie Medizinische Hochschule Hannover Kovermann.Peter@MH-Hannover.DE Was ist Röntgenstrahlung und. wer

Mehr

Vorlesung Allgemeine Chemie (CH01)

Vorlesung Allgemeine Chemie (CH01) Vorlesung Allgemeine Chemie (CH01) Für Studierende im B.Sc.-Studiengang Chemie Prof. Dr. Martin Köckerling Arbeitsgruppe Anorganische Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät, Institut

Mehr

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München.

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München. Röntgenstrahlen 1 Wilhelm Konrad Röntgen Foto: Deutsches Museum München. Röntgenröhre von 1896 2 1 ev = 1 Elektronenvolt = Energie die ein Elektron nach Durchlaufen der Potentialdifferenz 1V hat (1.6 10-19

Mehr

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell Wiederholung der letzten Vorlesungsstunde: Erste Atommodelle, Dalton Thomson, Rutherford, Atombau, Coulomb-Gesetz, Proton, Elektron, Neutron, weitere Elementarteilchen, atomare Masseneinheit u, 118 bekannte

Mehr

Bildgebung mit Röntgenstrahlen. Erzeugung von Röntgenstrahlung

Bildgebung mit Röntgenstrahlen. Erzeugung von Röntgenstrahlung Erzeugung von Röntgenstrahlung Scanogramm Röntgen- Quelle Detektor Entwicklung Verarbeitung Tomogramm Erzeugung von Röntgenstrahlung: Grundprinzip: Photoelektrischer Effekt - Erzeugung freier Elektronen

Mehr

Atommodell führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen.

Atommodell führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen. Atommodell nach Rutherford 1911 führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen. Beobachtung: Fast alle Teilchen fliegen ungestört durch.

Mehr

beschleunigtes e- -, beschleunigtes e-:

beschleunigtes e- -, beschleunigtes e-: Strahlentherapie: Anwendung der schädigende Wirkung der ionisierenden Strahlungen für Zerstörung der (hauptsächtlich Tumor-) Geweben. Strahlentherapie Fragen zu besprechen: 1. Welcher Strahlungstyp soll

Mehr

Verfahren Grundlagen 1.2 Röntgen. 1.2 Grundlagen. Reichow-Heymann-Menke Handbuch Röntgen mit Strahlenschutz Grundwerk 11/801

Verfahren Grundlagen 1.2 Röntgen. 1.2 Grundlagen. Reichow-Heymann-Menke Handbuch Röntgen mit Strahlenschutz Grundwerk 11/801 Verfahren 1.2 Röntgen 1.2 Reichow-Heymann-Menke Handbuch Röntgen mit Strahlenschutz Grundwerk 11/801 Verfahren 1.2 Röntgen Inhaltsvrzeichnis 1.2 Prof. Dr. Christian Blendl 1.2.1 Erzeugung ionisierender

Mehr

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom phys4.08 Page 1 7. Das Bohrsche Modell des Wasserstoff-Atoms 7.1 Stabile Elektronbahnen im Atom Atommodell: positiv geladene Protonen (p + ) und Neutronen (n) im Kern negative geladene Elektronen (e -

Mehr

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl.

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl. Klausurinformation Zeit: Mittwoch, 3.Februar, 12:00, Dauer :90 Minuten Ort: Veterinärmediziner: Großer Phys. Hörsaal ( = Hörsaal der Vorlesung) Geowissenschaftler u.a.: Raum A140, Hauptgebäude 1. Stock,

Mehr

2) Kernstabilität und radioaktive Strahlung (2)

2) Kernstabilität und radioaktive Strahlung (2) 2) Kernstabilität und radioaktive Strahlung (2) Periodensystem der Elemente vs. Nuklidkarte ca. 115 unterschiedliche chemische Elemente Periodensystem der Elemente 7 2) Kernstabilität und radioaktive Strahlung

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #46 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #46 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #46 am 19.07.2007 Vladimir Dyakonov Atome und Strahlung 1 Atomvorstellungen J.J. Thomson 1856-1940

Mehr

Gymnasium / Realschule. Atomphysik 2. Klasse / G8. Aufnahme und Abgabe von Energie (Licht)

Gymnasium / Realschule. Atomphysik 2. Klasse / G8. Aufnahme und Abgabe von Energie (Licht) Aufnahme und Abgabe von Energie (Licht) 1. Was versteht man unter einem Elektronenvolt (ev)? 2. Welche physikalische Größe wird in Elektronenvolt gemessen? Definiere diese Größe und gib weitere Einheiten

Mehr

FK Experimentalphysik 3, Lösung 4

FK Experimentalphysik 3, Lösung 4 1 Sterne als schwarze Strahler FK Experimentalphysik 3, 4 1 Sterne als schwarze Strahler Betrachten sie folgende Sterne: 1. Einen roten Stern mit einer Oberflächentemperatur von 3000 K 2. einen gelben

Mehr

Welle, Frequenz und Energie 2018

Welle, Frequenz und Energie 2018 Welle, Frequenz und Energie 2018 LÄNGSTWELLEN MITTELWELLEN KURZWELLEN MIKROWELLEN MILLIMETERWELLEN FERNES INFRAROT MITTLERES INFRAROT SICHTBARES LICHT EXTREMES ULTRAVIOLET RÖNTGENSTRAHLEN GAMMASTRAHLUNG

Mehr

Atomphysik NWA Klasse 9

Atomphysik NWA Klasse 9 Atomphysik NWA Klasse 9 Atome wurden lange Zeit als die kleinsten Teilchen angesehen, aus denen die Körper bestehen. Sie geben den Körpern ihre chemischen und physikalischen Eigenschaften. Heute wissen

Mehr

22. Wärmestrahlung. rmestrahlung, Quantenmechanik

22. Wärmestrahlung. rmestrahlung, Quantenmechanik 22. Wärmestrahlung rmestrahlung, Quantenmechanik Plancksches Strahlungsgesetz: Planck (1904): der Austausch von Energie zwischen dem strahlenden System und dem Strahlungsfeld kann nur in Einheiten von

Mehr

Atomphysik für Studierende des Lehramtes

Atomphysik für Studierende des Lehramtes Atomphysik für Studierende des Lehramtes Teil 5 Elektronenladung und Elektronenmasse elektrische Ladungen in magnetischen Feldern aus der Lorentz-Kraft (v x B) folgt eine Kreisbewegung der elektrischen

Mehr

4) Wechselwirkungen zwischen Strahlung und Materie (1) Ionisationswirkung unterschiedlicher Teilchen Energie der Teilchen in MeV

4) Wechselwirkungen zwischen Strahlung und Materie (1) Ionisationswirkung unterschiedlicher Teilchen Energie der Teilchen in MeV 4) Wechselwirkungen zwischen Strahlung und Materie (1) Wechselwirkungen zwischen Strahlung und Materie sind Grundvoraussetzung für jede Anwendung oder schädigende Wirkung radioaktiver Strahlung unerwünschte

Mehr

10.6. Röntgenstrahlung

10.6. Röntgenstrahlung 10.6. Röntgenstrahlung Am 8. November 1895 entdeckte Wilhelm Conrad Röntgen in Würzburg die Röntgenstrahlung. Seine Entdeckung zählt zu den wohl bedeutendsten Entdeckungen in der Menschheitsgeschichte.

Mehr

Röntgenstrahlung (RÖN)

Röntgenstrahlung (RÖN) Röntgenstrahlung (RÖN) Manuel Staebel 2236632 / Michael Wack 2234088 1 Einleitung In diesem Versuch wird das Röntgenspektrum einer Molybdänanode auf einem x y Schreiber aufgezeichnet. Dies gelingt durch

Mehr

Versuch A05: Bestimmung des Planck'schen Wirkungsquantums

Versuch A05: Bestimmung des Planck'schen Wirkungsquantums Versuch A05: Bestimmung des Planck'schen Wirkungsquantums 25. April 2016 I Lernziele Entstehung des Röntgen-Bremskontinuums und der charakteristischen Röntgenstrahlung Zusammenhang zwischen Energie, Frequenz

Mehr

Strahlenphysik Grundlagen

Strahlenphysik Grundlagen Dr. Martin Werner, 17.02.2010 Strahlentherapie und spezielle Onkologie Elektromagnetisches Spektrum aus Strahlentherapie und Radioonkologie aus interdisziplinärer Sicht, 5. Auflage, Lehmanns Media Ionisierende

Mehr

Lösungen zu den Aufg. S. 363/4

Lösungen zu den Aufg. S. 363/4 Lösungen zu den Aufg. S. 363/4 9/1 Die gemessene Gegenspannung (s. Tab.) entspricht der max. kin. Energie der Photoelektronen; die Energie der Photonen = E kin der Elektronen + Austrittsarbeit ==> h f

Mehr

Radioökologie und Strahlenschutz

Radioökologie und Strahlenschutz Radioökologie und Strahlenschutz Vorlesung FHH: SS 2017 Ulrich J. Schrewe Themen: Anwendung kernphysikalischer Messverfahren in der industriellen Messtechnik Eigenschaften ionisierender Strahlung Strahlungswirkung

Mehr

Quantenphysik in der Sekundarstufe I

Quantenphysik in der Sekundarstufe I Quantenphysik in der Sekundarstufe I Atome und Atomhülle Quantenphysik in der Sek I, Folie 1 Inhalt Voraussetzungen 1. Der Aufbau der Atome 2. Größe und Dichte der Atomhülle 3. Die verschiedenen Zustände

Mehr

Die Abbildung zeigt eine handelsübliche Röntgenröhre

Die Abbildung zeigt eine handelsübliche Röntgenröhre Die Röntgenstrahlung Historische Fakten: 1895 entdeckte Röntgen beim Experimentieren mit einer Gasentladungsröhre, dass fluoreszierende Kristalle außerhalb der Röhre zum Leuchten angeregt wurden, obwohl

Mehr

Radioökologie und Strahlenschutz

Radioökologie und Strahlenschutz Radioökologie und Strahlenschutz Vorlesung FHH: SS 2017 Ulrich J. Schrewe Themen: Anwendung kernphysikalischer Messverfahren in der industriellen Messtechnik Eigenschaften ionisierender Strahlung Strahlungswirkung

Mehr

Radioaktivität. den 7 Oktober Dr. Emőke Bódis

Radioaktivität. den 7 Oktober Dr. Emőke Bódis Radioaktivität den 7 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Eigenschaften und Entstehung der radioaktiver Strahlungen: Alpha- Beta- und Gamma- Strahlungen. Aktivität. Zerfallgesetz. Halbwertzeit.

Mehr

Entstehung der Röntgenstrahlung. im Unterschied zur. Entstehung der Gammastrahlung

Entstehung der Röntgenstrahlung. im Unterschied zur. Entstehung der Gammastrahlung Entstehung der Röntgenstrahlung im Unterschied zur Entstehung der Gammastrahlung 1. Entdeckungsgeschichte 1.1. Der Entdecker Wilhelm Conrad Röntgen 1.2. Wie entdeckte Röntgen die X-Strahlung 2. Erste Reaktionen

Mehr

Atomphysik Klasse 9. Aufgabe: Fülle die freien Felder aus!

Atomphysik Klasse 9. Aufgabe: Fülle die freien Felder aus! 1. Was gibt die Massenzahl A eines Atoms an? Die Zahl der Neutronen im Kern. Die Zahl der Protonen im Kern. Die Summe aus Kernneutronen und Kernprotonen. Die Zahl der Elektronen. Die Summe von Elektronen

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 421 - Physik B3 9.2 Radioaktivität 9.2.1 Historisches, Grundlagen Die Radioaktivität wurde im Jahre 1896 entdeckt, als Becquerel feststellte, dass Uransalze Strahlen aussenden, welche den

Mehr

Lehrbuchaufgaben Strahlung aus der Atomhülle

Lehrbuchaufgaben Strahlung aus der Atomhülle LB S. 89, Aufgabe 1 Die Masse lässt sich mithilfe eines Massenspektrografen bestimmen. Der Radius von Atomen kann z.b. aus einmolekularen Schichten (Ölfleckversuch) oder aus Strukturmodellen (dichtgepackte

Mehr

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen Physik für Maschinenbau Prof. Dr. Stefan Schael RWTH Aachen Vorlesung 11 Brechung b α a 1 d 1 x α b x β d 2 a 2 β Totalreflexion Glasfaserkabel sin 1 n 2 sin 2 n 1 c arcsin n 2 n 1 1.0 arcsin

Mehr

Aufgabe 1: Kristallstrukturuntersuchungen

Aufgabe 1: Kristallstrukturuntersuchungen Aufgabe 1: Kristallstrukturuntersuchungen Röntgenstrahlung entsteht in unserem Gerät durch das Auftreffen hochenergetischer Elektronen auf eine Molybdän-Anode (Abbildung 1). Im Spektrum der Strahlung (Abbildung

Mehr

Einführung in die Quantentheorie der Atome und Photonen

Einführung in die Quantentheorie der Atome und Photonen Einführung in die Quantentheorie der Atome und Photonen 23.04.2005 Jörg Evers Max-Planck-Institut für Kernphysik, Heidelberg Quantenmechanik Was ist das eigentlich? Physikalische Theorie Hauptsächlich

Mehr

Das Interstellare Medium Der Stoff zwischen den Sternen

Das Interstellare Medium Der Stoff zwischen den Sternen Das Interstellare Medium Der Stoff zwischen den Sternen Lord of the Rings Sonne Roter Überriese Nördliche Hemisphäre Nördliche Hemisphäre Südliche Hemisphäre Die 150 nächsten Sterne 60 Lichtjahre

Mehr

Entstehung der Röntgenstrahlung im Unterschied zur Entstehung der Gammastrahlung

Entstehung der Röntgenstrahlung im Unterschied zur Entstehung der Gammastrahlung Entstehung der Röntgenstrahlung im Unterschied zur Entstehung der Gammastrahlung 1. Entdeckungsgeschichte 1.1. Der Entdecker Wilhelm Conrad Röntgen 1.2. Wie entdeckte Röntgen die X-Strahlung 2. Erste Reaktionen

Mehr

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung Markus Drapalik 14.03.2013 26.03.2013 Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung 1 1 Inhalt Aufbau des Atoms Atomarer Zerfall

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmanndu.de Seite 1 26.11.2013 Der Aufbau der Atome Atommodelle. Annahme: Kleinste Teilchen als Grundbausteine aller Stoffe. Mit Hilfe der Vorstellung, dass alle Stoffe aus kleinsten

Mehr

Vorlesung 38/39. Physik. 1. Jahr Block 1 Woche 7. Prof. Fortunat Joos FJ 1. Block 1 KV Elektromagnetische Wellen. Elektromagnetische Wellen

Vorlesung 38/39. Physik. 1. Jahr Block 1 Woche 7. Prof. Fortunat Joos FJ 1. Block 1 KV Elektromagnetische Wellen. Elektromagnetische Wellen FJ 1 Vorlesung 38/39 1. Jahr Block 1 Woche 7 Elektromagnetische Wellen Physik Prof. Fortunat Joos FJ 2 Elektromagnetische Wellen Motivation Elektromagnetische Wellen beschreiben die Ausbreitung von Photonen

Mehr

Optische Aktivität α =δ k d 0

Optische Aktivität α =δ k d 0 Optische Aktivität α =δ0 k d Flüssigkristalle Flüssigkristall Displays Flüssigkristalle in verschiedenen Phasen - sie zeigen Eigenschaften, die sich zwischen denen einer perfekten Kristallanordnung und

Mehr

Physik ea Klausur Nr Oktober 2013

Physik ea Klausur Nr Oktober 2013 Name: BE: / 77 = % Note: P. 1. Aufgabe: Röntgenstrahlung a. Skizziere den Aufbau einer Vorrichtung zur Herstellung eines gebündelten Röntgenstrahls, beschrifte ihre Bauteile und erläutere die Prozesse,

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #25 03/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Atomphysik Teil 1 Atommodelle, Atomspektren, Röntgenstrahlung Atomphysik Die Atomphysik ist ein

Mehr

Versuch O

Versuch O 1 Grundlagen Plancksches Wirkungsquantum Das Plancksche Wirkungsquantum gibt den Zusammenhang zwischen Energie und Frequenz wieder und verknüpft damit die Welleneigenschaft mit der Teilcheneigenschaft.

Mehr

Atombau. Chemie. Zusammenfassungen. Prüfung Mittwoch, 14. Dezember Elektrische Ladung. Elementarteilchen. Kern und Hülle

Atombau. Chemie. Zusammenfassungen. Prüfung Mittwoch, 14. Dezember Elektrische Ladung. Elementarteilchen. Kern und Hülle Chemie Atombau Zusammenfassungen Prüfung Mittwoch, 14. Dezember 2016 Elektrische Ladung Elementarteilchen Kern und Hülle Atomsorten, Nuklide, Isotope Energieniveaus und Schalenmodell Steffi Alle saliorel

Mehr

Elektromagnetische Welle (em-welle): Ausbreitung von periodischen elektrischen und magnetischen Feldern

Elektromagnetische Welle (em-welle): Ausbreitung von periodischen elektrischen und magnetischen Feldern Elektromagnetische Welle (em-welle): Ausbreitung von periodischen elektrischen und magnetischen Feldern Beispiele: Radiowellen, sichtbares Licht, WLAN, Röntgenstrahlen Ausbreitungsgeschwindigkeit jeder

Mehr

Photonen in Astronomie und Astrophysik Sommersemester 2015

Photonen in Astronomie und Astrophysik Sommersemester 2015 Photonen in Astronomie und Astrophysik Sommersemester 2015 Dr. Kerstin Sonnabend I. EIGENSCHAFTEN VON PHOTONEN I.1 Photonen als elektro-magnetische Wellen I.3 Wechselwirkung mit Materie I.3.1 Streuprozesse

Mehr

Arbeitsfragen zur Vorbereitung auf den Quali

Arbeitsfragen zur Vorbereitung auf den Quali Arbeitsfragen zur Vorbereitung auf den Quali Atombau 1 Was bedeutet das Wort Atom? 2 Welche Aussage mache Dalton über die Atome? 3 Was ist der größte Teil eines Atoms? 4 Was sind Moleküle? 5 Durch welchen

Mehr

Grundlagen der Quantentheorie

Grundlagen der Quantentheorie Grundlagen der Quantentheorie Ein Schwarzer Körper (Schwarzer Strahler, planckscher Strahler, idealer schwarzer Körper) ist eine idealisierte thermische Strahlungsquelle: Alle auftreffende elektromagnetische

Mehr

Wechselwirkungen der γ-strahlung

Wechselwirkungen der γ-strahlung Wechselwirkungen der γ-strahlung Die den Strahlungsquanten innewohnende Energie wird bei der Wechselwirkung teilweise oder vollständig an die umgebende Materie abgegeben/übertragen! Erzielbare Wirkungen

Mehr

Lösungen zur Experimentalphysik III

Lösungen zur Experimentalphysik III Lösungen zur Experimentalphysik III Wintersemester 2008/2009 Prof. Dr. L. Oberauer Blatt 11 19.01.09 Aufgabe 1: a) Die Bedingung für ein Maximum erster Ordnung am Gitter ist: sinα = λ b mit b = 10 3 570

Mehr

VI. Quantenphysik. VI.1 Ursprünge der Quantenphysik, Atomphysik. Physik für Mediziner 1

VI. Quantenphysik. VI.1 Ursprünge der Quantenphysik, Atomphysik. Physik für Mediziner 1 VI. Quantenphysik VI.1 Ursprünge der Quantenphysik, Atomphysik Physik für Mediziner 1 Mikroskopische Welt Physik für Mediziner 2 Strahlung des Schwarzen Körpers Schwarzer Körper: eintretendes Licht im

Mehr

A. Mechanik (18 Punkte)

A. Mechanik (18 Punkte) Prof. Dr. A. Hese Prof. Dr. G. v. Oppen Dipl.-Phys. G. Hoheisel Dipl.-Phys. R. Jung Technische Universität Berlin Name: Vorname: Matr. Nr.: Fachbereich: Platz Nr.: Tutor: A. Mechanik (18 Punkte) 1. Wie

Mehr

Bereich Schwierigkeit Thema Atomphysik X Atommodelle. Dalton, Thomson und Rutherford. Mögliche Lösung

Bereich Schwierigkeit Thema Atomphysik X Atommodelle. Dalton, Thomson und Rutherford. Mögliche Lösung Atomphysik X Atommodelle Dalton, Thomson und Rutherford a) Formulieren Sie die Daltonsche Atomhypothese. b) Nennen Sie die wesentlichen Merkmale des Atommodells von Thomson. c) Beschreiben Sie die Rutherfordschen

Mehr

Anfängerpraktikum D11 - Röntgenstrahlung

Anfängerpraktikum D11 - Röntgenstrahlung Anfängerpraktikum D11 - Röntgenstrahlung Vitali Müller, Kais Abdelkhalek Sommersemester 2009 1 Messung des ersten Spektrums 1.1 Versuchsaufbau und Hintergrund Es sollte das Spektrum eines Röntgenapparates

Mehr

Optische Aktivität α =δ k d 0

Optische Aktivität α =δ k d 0 Optische Aktivität α = δ 0 k d Flüssigkristalle Flüssigkristall Displays Flüssigkristalle in verschiedenen Phasen - sie zeigen Eigenschaften, die sich zwischen denen einer perfekten Kristallanordnung und

Mehr

= 6,63 10 J s 8. (die Plancksche Konstante):

= 6,63 10 J s 8. (die Plancksche Konstante): 35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese

Mehr

Basiswissen Chemie. Vorkurs des MINTroduce-Projekts

Basiswissen Chemie. Vorkurs des MINTroduce-Projekts Basiswissen Chemie Vorkurs des MINTroduce-Projekts Christoph Wölper christoph.woelper@uni-due.de Sprechzeiten (Raum: S07 S00 C24 oder S07 S00 D27) Organisatorisches Kurs-Skript http://www.uni-due.de/ adb297b

Mehr

Quantenphysik in der Sekundarstufe I

Quantenphysik in der Sekundarstufe I Quantenphysik in der Sekundarstufe I Atomphysik Dr. Holger Hauptmann Europa-Gymnasium Wörth holger.hauptmann@gmx.de Quantenphysik in der Sek I, Folie 1 Inhalt 1. Der Aufbau der Atome 2. Größe und Dichte

Mehr

Inhaltsverzeichnis. 1.1 Ionisierende Strahlung Filter und Blenden Erzeugung von Röntgen Der Tubus 40

Inhaltsverzeichnis. 1.1 Ionisierende Strahlung Filter und Blenden Erzeugung von Röntgen Der Tubus 40 h Inhaltsverzeichnis Zum Geleit 2 4. Funktionsweise von zahn- Vorwort 3 ärztlichen Röntgengeräten Herausgeber, Autorenverzeichnis 4 (K. Dula) 37 Inhaltsverzeichnis 5 4.1 Das Zahnfilmaufnahmegerät 38 4.1.1

Mehr

Die Anzahl der Protonen und Neutronen entspricht der Atommassenzahl.

Die Anzahl der Protonen und Neutronen entspricht der Atommassenzahl. Atom Der Begriff Atom leitet sich von atomos her, was unteilbar heisst. Diese Definition ist alt, da man heutzutage fähig ist, Atome zu teilen. Atommassenzahl Die Anzahl der Protonen und Neutronen entspricht

Mehr

Radioaktiver Zerfall Strahlung Nukliderzeugung. Nukliderzeugung

Radioaktiver Zerfall Strahlung Nukliderzeugung. Nukliderzeugung Radioaktiver Zerfall Strahlung Nukliderzeugung Wiederholung: Struktur der Materie Radioaktivität Nuklidkarte, Nuklide Zerfallsarten Strahlung Aktivität Nukliderzeugung Was ist Radioaktivität? Eigenschaft

Mehr

Mikrowellen (Mikrowelle, Satelliten) Infrarot (Fernsteuerung beim TV)

Mikrowellen (Mikrowelle, Satelliten) Infrarot (Fernsteuerung beim TV) TV 3km 300m 30m 3m 30cm Radiowellen (TV, Radio) 300cm 30cm 300µm 3µm 0.7µm 0.5µm 0.3µm 30nm 3mm 0.4µm Mikrowellen (Mikrowelle, Satelliten) Infrarot (Fernsteuerung beim TV) Sichtbares Licht UV-Strahlung

Mehr

Kolleg 1998/ Klausur aus der Physik Leistungskurs P 20 Blatt 1 (von 2) Kurshalbjahr 13/1

Kolleg 1998/ Klausur aus der Physik Leistungskurs P 20 Blatt 1 (von 2) Kurshalbjahr 13/1 Leistungskurs P 20 Blatt 1 (von 2) Kurshalbjahr 13/1 1. Rutherfordsches Atommodell Im Jahr 1904 entwickelte Thomson ein Atommodell, bei dem das Atom aus einer positiv geladenen Kugel mit homogener Massenverteilung

Mehr

Vorlesung Allgemeine Chemie (CH01)

Vorlesung Allgemeine Chemie (CH01) Vorlesung Allgemeine Chemie (CH01) Für Studierende im B.Sc.-Studiengang Chemie Prof. Dr. Martin Köckerling Arbeitsgruppe Anorganische Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät, Institut

Mehr

Thema heute: Das Bohr sche Atommodell

Thema heute: Das Bohr sche Atommodell Wiederholung der letzten Vorlesungsstunde: Radioaktive Zerfallsgeschwindigkeit, Altersbestimmungen, Ionisationszähler (Geiger-Müller-Zähler), Szintillationszähler, natürliche radioaktive Zerfallsreihen,

Mehr

Strahlenschutzkurs für Mediziner

Strahlenschutzkurs für Mediziner Strahlenschutzkurs für Mediziner von Uwe G. Schröder, Beate S. Schröder 2. akt. Aufl. Thieme 2007 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 13 139112 4 Zu Inhaltsverzeichnis schnell und portofrei

Mehr

1.2. Photonen / Photo Effekt

1.2. Photonen / Photo Effekt 1.. Photonen / Photo Effekt Newton, Descartes: Korpuskeltheorie des Lichtes nicht erfolgreich Huygens, Fresnel, Hertz, Maxwell: Wellentheorie erfolgreich Moderne Beobachtung: Das V-Licht eines Lichbogens

Mehr

Röntgenstrahlung ist eine elektromagnetische Strahlung, wie z.b. Licht sie ist für Menschen nicht sichtbar Röntgenstrahlung besitzt

Röntgenstrahlung ist eine elektromagnetische Strahlung, wie z.b. Licht sie ist für Menschen nicht sichtbar Röntgenstrahlung besitzt Röntgenstrahlung ist eine elektromagnetische Strahlung, wie z.b. Licht sie ist für Menschen nicht sichtbar Röntgenstrahlung besitzt Welleneigenschaften, ionisiert Gase, regt manche Stoffe zum Leuchten

Mehr

Medizinische Biophysik 6

Medizinische Biophysik 6 Eigenschaften des Lichtes Medizinische Biophysik 6 Geradlinige Ausbreitung Energietransport Licht in der Medizin. 1 Geometrische Optik Wellennatur Teilchennatur III. Teilchencharakter des Lichtes a) Lichtelektrischer

Mehr

Nanoplasma. Nano(cluster)plasmen

Nanoplasma. Nano(cluster)plasmen Nano(cluster)plasmen Nanoplasma Neben der Rumpfniveauspektroskopie an Clustern bietet FLASH die Möglichkeit Cluster unter extremen Bedingungen im Feld eines intensiven Röntgenpulses zu studieren (Nano)Plasmaphysik

Mehr

Wellenoptik. Beugung an Linsenöffnungen. Das Huygensche Prinzip. Kohärenz. Wellenoptik

Wellenoptik. Beugung an Linsenöffnungen. Das Huygensche Prinzip. Kohärenz. Wellenoptik Wellenoptik Beugung an Linsenöffnungen Wellenoptik Typische bmessungen D der abbildenden System (Blenden, Linsen) sind klein gegen die Wellenlänge des Lichts Wellencharakter des Lichts führt zu Erscheinungen

Mehr

41. Kerne. 34. Lektion. Kernzerfälle

41. Kerne. 34. Lektion. Kernzerfälle 41. Kerne 34. Lektion Kernzerfälle Lernziel: Stabilität von Kernen ist an das Verhältnis von Protonen zu Neutronen geknüpft. Zu viele oder zu wenige Neutronen führen zum spontanen Zerfall. Begriffe Stabilität

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #26 08/12/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Atomphysik Teil 1 Atommodelle, Atomspektren, Röntgenstrahlung Atomphysik Die Atomphysik ist ein

Mehr

Physik für Mediziner Radioaktivität

Physik für Mediziner  Radioaktivität Physik für Mediziner http://www.mh-hannover.de/physik.html Radioaktivität Peter-Alexander Kovermann Institut für Neurophysiologie Kovermann.peter@mh-hannover.de Der Aufbau von Atomen 0-5 - 0-4 m 0-0 -4

Mehr

Vorlesung 8: Atome, Kerne, Strahlung

Vorlesung 8: Atome, Kerne, Strahlung Vorlesung 8: Atome, Kerne, Strahlung Georg Steinbrück, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed WS 2016/17 Steinbrück: Physik I/II 1 Größenordnungen

Mehr

Vorlesung 8: Atome, Kerne, Strahlung

Vorlesung 8: Atome, Kerne, Strahlung Vorlesung 8: Atome, Kerne, Strahlung Georg Steinbrück, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed WS 2017/18 Steinbrück: Physik I/II 1 Größenordnungen

Mehr

Grundbausteine des Mikrokosmos (6) Vom Planetenmodell der Atome zum Bohrschen Atommodell

Grundbausteine des Mikrokosmos (6) Vom Planetenmodell der Atome zum Bohrschen Atommodell Grundbausteine des Mikrokosmos (6) Vom Planetenmodell der Atome zum Bohrschen Atommodell 1900: Entdeckung einer neuen Naturkonstanten: Plancksches Wirkungsquantum Was sind Naturkonstanten und welche Bedeutung

Mehr

27. Wärmestrahlung. rmestrahlung, Quantenmechanik

27. Wärmestrahlung. rmestrahlung, Quantenmechanik 25. Vorlesung EP 27. Wärmestrahlung V. STRAHLUNG, ATOME, KERNE 27. Wä (Fortsetzung) Photometrie Plancksches Strahlungsgesetz Welle/Teilchen Dualismus für Strahlung und Materie Versuche: Quadratisches Abstandsgesetz

Mehr

Röntgenstrahlung für Nichtmediziner

Röntgenstrahlung für Nichtmediziner 1 Röntgenstrahlung für Nichtmediziner Vorbereitung: Erzeugung von Röntgenstrahlen, Funktionsweise einer Röntgenröhre, spektrale Zusammensetzung von Röntgenstrahlung, Eigenschaften von Röntgenstrahlung,

Mehr

Medizinische Biophysik

Medizinische Biophysik P H Y S I K Physik in der Medizin Medizinische Biophysik Dr. Ferenc Tölgyesi ferenc.tolgyesi@eok.sote.hu Institut für Biophysik und Strahlenbiologie 0 Diagnostik Röntgendiagnostik Sonographie Optische

Mehr