Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Größe: px
Ab Seite anzeigen:

Download "Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen"

Transkript

1 Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung am Mittwoch 20. bzw. Donnerstag 21. Juni 2007 Kreuzen Sie bis spätestens Mittwoch, , 10:00 Uhr also vor dem Besuch Ihrer Übungsgruppe über TUWEL an, welche Beispiele Sie bearbeitet und gelöst haben. Gehen Sie dabei folgendermaßen vor: TUWEL ( Kurs Algorithmen und Datenstrukturen 1 (VL 4.0) Thema 4. Übungsblatt Link 4.UE - Details & Bewertung Button Meine Lösung bearbeiten Bearbeitete Beispiele anhaken und Änderungen speichern. Hinweis zu den Beispielnummern: Aufgabe 4.1 (Beispiel 31) bedeutet: erste Aufgabe des 4 Übungsblattes, 31. Beispiel insgesamt (zum Ankreuzen in TUWEL). Aufgabe 4.1 (Beispiel 31) Geben Sie den Pseudocode eines Algorithmus an, der feststellt, ob ein gegebener ungerichteter Graph G(V, E) mit 2 Farben knotenfärbbar ist. Ein Graph ist mit 2 Farben knotenfärbbar, wenn jedem Knoten eine Farbe so zugeordnet werden kann, dass Knoten, die durch eine Kante verbunden sind, jeweils verschiedene Farben haben.

2 2 Aufgabe 4.2 (Beispiel 32) Ein ungerichteter Graph G(V, E) heißt bipartit wenn man die Menge V in zwei disjunkten Untermengen U und W so aufspalten kann, dass für alle Kanten (u, w) E gilt: u U und w W. U W Untersuchen Sie, ob die untenstehenden Graphen bipartit sind und markieren Sie gegebenenfalls die Kanten, die diese Eigenschaft verletzen. Erläutern Sie Ihre Vorgehensweise! (a) (b) (c) (d) (e) (f)

3 3 Aufgabe 4.3 (Beispiel 33) Stellen Sie sich vor, Sie möchten dieses Wochenende London besichtigen. Da Ihnen nicht viel Zeit zur Verfügung steht, möchten Sie sinngemäß so schnell wie möglich ans Ziel kommen. Seien alle Flüge einer Fluglinie in Form eines durch seine Adjazenzmatrix A spezifizierten gerichteten Graphen gegeben. Die Knoten des Graphen sind die Städte und die Bedeutung eines Matrixwertes A[X, Y ] = D lautet: Die Flugdauer von der Stadt X zur Stadt Y beträgt D Stunden. Entwerfen Sie einen Greedy-Algorithmus in Pseudocode, der (mit der Motivation einen schnellen Weg von Wien nach London zu finden) wie folgt vorgeht: Ausgehend vom Startknoten Wien wählt dieser Algorithmus bei jedem Knoten jeweils immer die kürzeste noch nicht verwendete Kante, um dem Zielknoten London auf einem zusammenhängenden Pfad näher zu kommen. Liefert dieser Algorithmus immer den kürzesten Pfad? Warum (nicht)? Veranschaulichen Sie die Funktionsweise des Algorithmus anhand eines Beispiels (Graph mit mindestens 7 Knoten), bzw. geben Sie ein möglichst einfaches Gegenbeispiel an. Aufgabe 4.4 (Beispiel 34) Führen Sie anhand des nachstehend abgebildeten Graphen den Algorithmus von Kruskal für das Finden eines minimalen Spannbaums durch. Geben Sie jeden Schritt des Algorithmus an. (a) Geben Sie den Zustand aller benöigten Datenstrukturen (Knotenmenge, Kantenmenge und Gewicht des aktuellen Spannbaums) nach jeder Iteration des Algorithmus an. Schreiben Sie insbesondere in jeder Iteration deutlich den neu hinzugekommenen Knoten und die entsprechende Kante dazu. (b) Markieren Sie am Ende Ihrer Berechnungen jene Kanten des Graphen in der Abbildung, die den minimalen Spannbaum bilden, und geben Sie das Gewicht des minimalen Spannbaums an.

4 4 Aufgabe 4.5 (Beispiel 35) Lösen Sie das Beispiel 4.4 erneut, diesmal aber unter Verwendung des Algorithmus von Prim. Wählen sie den Knoten C als Startknoten. Kann sich, im Allgemeinen, das Ergebnis einer Durchführung des Algorithmus von Prim ändern, wenn man einen anderen Startknoten wählt? Begründen Sie Ihre Antwort! Aufgabe 4.6 (Beispiel 36) Gegeben sind zwei Graphen G 1 und G 2 mit jeweils einer Million Knoten. Graph G 1 hat vier Millionen Kanten, während G Milliarden Kanten hat. Die Kanten in beiden Graphen haben ganzzahlige Kosten. Sie wollen nun in beiden Graphen jeweils einen aufspannenden Baum mit minimalen Kosten berechnen. Welchen Algorithmus benutzen Sie für G 1 und welchen für G 2, um möglichst niedrige Laufzeiten zu erreichen? Begründen Sie Ihre Antwort, indem Sie die Laufzeiten der von Ihnen verwendeten Algorithmen in Θ-Notation (in Abhängigkeit von E, bzw. V ) angeben. Geben Sie weiters an, warum die Algorithmen die von Ihnen angegebenen Laufzeiten aufweisen (kurze Beschreibung der Algorithmen und der Funktionsweise und Eigenschaften der verwendeten Datenstrukturen).

5 5 Aufgabe 4.7 (Beispiel 37) Gegeben seien N Gegenstände g i mit Gewicht (Größe) w i, und Wert (Kosten) c i, und ein Rucksack der Größe K. Das Rucksackproblem ist die Suche nach einer Menge von in den Rucksack gepackten Gegenständen mit maximalem Gesamtwert, wobei das Gesamtgewicht den Wert K nicht überschreiten darf. Entwerfen Sie einen Algorithmus in Pseudocode, der nach dem Greedy-Prinzip eine Lösung für das Rucksack-Problem findet. Liefert Ihr Algorithmus immer die optimale Lösung? Wenn ja, begründen Sie Ihre Antwort, wenn nein, geben Sie ein Gegenbeispiel an. Aufgabe 4.8 (Beispiel 38) Breitensuche ist ein Verfahren zum Durchsuchen bzw. Durchlaufen von Knoten eines Graphen ähnlich der in der Vorlesung behandelten Tiefensuche. Auch hier geht man von einem Startknoten u aus, allerdings unterscheiden sich nun Tiefen- und Breitensuche bei der Reihenfolge, in der weitere Knoten des Graphen abgearbeitet bzw. besucht werden. Wir gehen im Folgenden bei diesem Beispiel von einem ungerichteten Graphen aus. Ausgehend vom Startknoten u werden bei der Breitensuche zunächst alle adjazenten Knoten besucht, d.h. alle Knoten v, für die eine Kante (u, v) im Graphen existiert; zusätzlich werden alle Knoten v in einer Warteschlange gespeichert. Die Breitensuche bearbeitet also zuerst immer alle direkt benachbarten Knoten und folgt nicht wie die Tiefensuche gleich einem Pfad in die Tiefe. Nachdem nun alle adjazenten Knoten von u betrachtet wurden, wird der erste Knoten der Warteschlange entnommen und für diesen das Verfahren rekursiv wiederholt. Dies wird nun so lange fortgesetzt, bis entweder die Warteschlange leer ist, d.h. alle Knoten besucht wurden, bzw. bis wenn man nach einem bestimmten Knoten sucht dieser gefunden wurde. Wie auch bei der Tiefensuche werden durch markieren bereits bearbeiteter Knoten Mehrfachbesuche von Knoten verhindert. Gegeben sei nun die Datenstruktur Queue (Warteschlange), welche eine beliebige Menge an Objekten aufnehmen kann und diese wieder in der Reihenfolge ihres Einfügens zurück liefert. Folgende Operationen sind auf der Queue definiert: enqueue(x): Fügt ein Objekt X in die Queue ein. dequeue(): Entfernt das älteste Objekt aus der Queue und liefert es zurück. Benutzen Sie die Queue, um eine nicht rekursive Version von Breitensuche zu entwerfen. Beschreiben Sie erst in wenigen Worten den Ablauf Ihres Algorithmus und geben Sie ihn dann in Pseudocode an. Die Queue können Sie dabei als Black Box betrachten, d.h. Sie

6 6 können sie benutzen, ohne die genaue Funktionsweise explizit als Pseudocode ausarbeiten zu müssen. Aufgabe 4.9 (Beispiel 39) Wenden Sie den Algorithmus für beschränkte Enumeration auf das folgende Beispiel für das 0/1-Rucksackproblem an (Grenzgewicht K = 35). Veranschaulichen Sie alle Schritte, die zur Konstruktion einer Lösung führen. Gegenstände A B C D E F G H Gewichte Werte Aufgabe 4.10 (Beispiel 40) Der Lowest Common Ancestor LCA (tiefster gemeinsamer Vorfahr) zweier Knoten u und v eines Baumes mit gegebenem Wurzelknoten r ist der letzte gemeinsame Knoten der Pfade von r zu v und von r zu u. Beim LCA-Problem ist ein Baum T mit Wurzel r und ein Knotenpaar (u, v) aus T gegeben; man will den LCA der zwei gegebenen Knoten bestimmen. Geben Sie einen Algorithmus LCA(r, u, v) in kommentiertem Pseudocode an, der dieses Problem durch eine von der Wurzel r ausgehende Suche möglichst effizient löst. Gehen Sie davon aus, dass die unmittelbaren Nachfolger eines Knotens k im Baum im Feld k.succs gespeichert sind (k.succs ist LEER, wenn es sich bei k um ein Blatt handelt). Veranschaulichen Sie die Funktionsweise Ihres Algorithmus anhand des Beispielgraphen. a Lowest Common Ancestor (LCA) der Knoten v und u b c d e u f g h v

Datenstrukturen und Algorithmen (SS 2013)

Datenstrukturen und Algorithmen (SS 2013) Datenstrukturen und Algorithmen (SS 2013) Übungsblatt 10 Abgabe: Montag, 08.07.2013, 14:00 Uhr Die Übungen sollen in Gruppen von zwei bis drei Personen bearbeitet werden. Schreiben Sie die Namen jedes

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 1 für die Übung

Mehr

Algorithmen und Datenstrukturen 2-1. Seminar -

Algorithmen und Datenstrukturen 2-1. Seminar - Algorithmen und Datenstrukturen 2-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Sommersemster 2010 Outline 1. Übungsserie: 3 Aufgaben, insgesamt 30 28 Punkte A1 Spannbäume (10 8

Mehr

Algorithmen und Datenstrukturen 1 VL Übungstest SS Juni 2009

Algorithmen und Datenstrukturen 1 VL Übungstest SS Juni 2009 Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 2. Übungstest SS 2009 09. Juni

Mehr

Wie wird ein Graph dargestellt?

Wie wird ein Graph dargestellt? Wie wird ein Graph dargestellt? Für einen Graphen G = (V, E), ob gerichtet oder ungerichtet, verwende eine Adjazenzliste A G : A G [i] zeigt auf eine Liste aller Nachbarn von Knoten i, wenn G ungerichtet

Mehr

Algorithmen & Datenstrukturen 2 Praktikum 3

Algorithmen & Datenstrukturen 2 Praktikum 3 Algorithmen & Datenstrukturen 2 Praktikum 3 Thema: Graphalgorithmen Sommersemester 2016 Prof. Dr. Christoph Karg Hochschule Aalen Dieses Praktikum widmet sich dem Thema Graphalgorithmen. Ziel ist die Implementierung

Mehr

Aufgaben zur Klausurvorbereitung

Aufgaben zur Klausurvorbereitung Vorlesung Graphen und Optimierung Sommersemester 2013/14 Prof. S. Lange Aufgaben zur Klausurvorbereitung Hier finden Sie eine Reihe von Übungsaufgaben, die wir an den beiden Vorlesungsterminen am 29.01.2014

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

Karlsruher Institut für Technologie. Klausur Algorithmen I

Karlsruher Institut für Technologie. Klausur Algorithmen I Klausur-ID: Vorname: Matrikelnummer: Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Jörn Müller-Quade 11. April 2018 Klausur Algorithmen I Aufgabe 1. Kleinaufgaben 15 Punkte

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Minimale Spannbäume Maike Buchin 18.7., 20.7.2017 Einführung Motivation: Verbinde Inseln mit Fähren oder Städte mit Schienen und verbrauche dabei möglichst wenig Länge. Problem:

Mehr

1.Aufgabe: Minimal aufspannender Baum

1.Aufgabe: Minimal aufspannender Baum 1.Aufgabe: Minimal aufspannender Baum 11+4+8 Punkte v 1 v 2 1 3 4 9 v 3 v 4 v 5 v 7 7 4 3 5 8 1 4 v 7 v 8 v 9 3 2 7 v 10 Abbildung 1: Der Graph G mit Kantengewichten (a) Bestimme mit Hilfe des Algorithmus

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Graphen 9/1 Begriffsdefinitionen Ein Graph besteht aus Knoten und Kanten. Ein Knoten(Ecke) ist ein benanntes Objekt. Eine Kante verbindet zwei Knoten. Kanten haben ein Gewicht

Mehr

Algorithmen und Datenstrukturen Tafelübung 14. Jens Wetzl 8. Februar 2012

Algorithmen und Datenstrukturen Tafelübung 14. Jens Wetzl 8. Februar 2012 Algorithmen und Datenstrukturen Tafelübung 14 Jens Wetzl 8. Februar 2012 Folien Keine Garantie für Vollständigkeit und/oder Richtigkeit Keine offizielle Informationsquelle LS2-Webseite Abrufbar unter:

Mehr

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie Dipl-Math. Wolfgang Kinzner 2.4.2012 Kapitel 1: Grundlagen der algorithmischen Graphgentheorie

Mehr

9 Minimum Spanning Trees

9 Minimum Spanning Trees Im Folgenden wollen wir uns genauer mit dem Minimum Spanning Tree -Problem auseinandersetzen. 9.1 MST-Problem Gegeben ein ungerichteter Graph G = (V,E) und eine Gewichtsfunktion w w : E R Man berechne

Mehr

Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1

Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Aufgabe 1. / 16 P Instruktionen: 1) In dieser Aufgabe sollen Sie nur die Ergebnisse angeben. Diese können Sie direkt bei den Aufgaben notieren. 2) Sofern

Mehr

12. AuD Tafelübung T-C3

12. AuD Tafelübung T-C3 12. AuD Tafelübung T-C3 Simon Ruderich 2. Februar 2011 Kollisionen (Primär)Kollision Stelle mit normal eingefügtem Element schon belegt (gleicher Hashwert) tritt bei verketteten Listen und Sondierung auf

Mehr

Tutoraufgabe 1 (Starke Zusammenhangskomponenten):

Tutoraufgabe 1 (Starke Zusammenhangskomponenten): für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Allgemeine Hinweise: Datenstrukturen und Algorithmen SS1 Übungsblatt (Abgabe 4.0.01) Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder

Mehr

Algorithmen und Datenstrukturen 1 VL Übungstest SS Juni 2011

Algorithmen und Datenstrukturen 1 VL Übungstest SS Juni 2011 Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 86.72 Algorithmen und Datenstrukturen VL 4.0 2. Übungstest SS 20 0. Juni 20 Machen

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Graphen (1) Darstellung Traversierung Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 441 Generalisierung von Bäumen Verallgemeinerung (von Listen zu Graphen)

Mehr

Algorithmen und Datenstrukturen 1 VL Übungstest WS Jänner 2009

Algorithmen und Datenstrukturen 1 VL Übungstest WS Jänner 2009 Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 2. Übungstest WS 2008 16. Jänner

Mehr

Name:... Vorname:... Matr.-Nr.:... Studiengang:...

Name:... Vorname:... Matr.-Nr.:... Studiengang:... Technische Universität Braunschweig Sommersemester 2013 IBR - Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christiane Schmidt Stephan Friedrichs Klausur Netzwerkalgorithmen 16.07.2013 Name:.....................................

Mehr

Graphdurchmusterung, Breiten- und Tiefensuche

Graphdurchmusterung, Breiten- und Tiefensuche Prof. Thomas Richter 18. Mai 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 18.05.2017 Graphdurchmusterung,

Mehr

Rückblick: Starke Zusammenhangskomponenten

Rückblick: Starke Zusammenhangskomponenten Rückblick: Starke Zusammenhangskomponenten Der Algorithmus von Kosaraju bestimmt die starken Zusammenhangskomponenten eines gerichteten Graphen wie folgt: Schritt 1: Bestimme den transponierten Graphen

Mehr

Algorithmen und Datenstrukturen VO UE 2.0 Nebentermin Vorlesungsprüfung / 4. Übungstest SS

Algorithmen und Datenstrukturen VO UE 2.0 Nebentermin Vorlesungsprüfung / 4. Übungstest SS Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen 8.089 VO.0 + 8. UE.0 Nebentermin Vorlesungsprüfung

Mehr

Lernmodul 7 Algorithmus von Dijkstra

Lernmodul 7 Algorithmus von Dijkstra Folie 1 von 30 Lernmodul 7 Algorithmus von Dijkstra Quelle: http://www.map24.de Folie 2 von 30 Algorithmus von Dijkstra Übersicht Kürzester Weg von A nach B in einem Graphen Problemstellung: Suche einer

Mehr

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Übersicht: Graphen. Definition: Ungerichteter Graph. Definition: Ungerichteter Graph

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Übersicht: Graphen. Definition: Ungerichteter Graph. Definition: Ungerichteter Graph Programm heute Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 07 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München 7 Fortgeschrittene Datenstrukturen Graphen

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Kürzeste Wege Maike Buchin 4. und 6.7.2017 Einführung Motivation: Bestimmung von kürzesten Wegen ist in vielen Anwendungen, z.b. Routenplanung, ein wichtiges Problem. Allgemeine

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008 Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 8

Mehr

Klausur Algorithmentheorie

Klausur Algorithmentheorie Prof. Dr. G. Schnitger Frankfurt, den 24.02.2011 M. Poloczek Klausur Algorithmentheorie WS 2010/2011 Name: Vorname: Geburtsdatum: Studiengang: BITTE GENAU LESEN Die Klausur besteht aus 4 Aufgaben, in denen

Mehr

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7 1 Kürzeste Pfade Woche 6 7 Hier arbeiten wir mit gewichteten Graphen, d.h. Graphen, deren Kanten mit einer Zahl gewichtet werden. Wir bezeichnen die Gewichtsfunktion mit l : E R. Wir wollen einen kürzesten

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008 Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 9

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Graphen (2) Spannbäume Kürzeste Wege Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 455 Wiederholung Traversierung eines Graphen via Tiefendurchlaufs

Mehr

Traversierung 1 / 16. P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V3 23. April / 16

Traversierung 1 / 16. P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V3 23. April / 16 P.F. Stadler & S. Will (Bioinf, Uni LE) ADS, V. April 0 / P.F. Stadler & S. Will (Bioinf, Uni LE) ADS, V. April 0 / Traversierung ADS: Algorithmen und Datenstrukturen Teil Prof. Peter F. Stadler & Sebastian

Mehr

Algorithmen und Datenstrukturen 1 VL Übungstest WS November 2007

Algorithmen und Datenstrukturen 1 VL Übungstest WS November 2007 Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 1. Übungstest WS 2007 16. November

Mehr

Datenstrukturen und Algorithmen D-INFK

Datenstrukturen und Algorithmen D-INFK Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik Peter Widmayer

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen 13. Übung minimale Spannbäume, topologische Sortierung, AVL-Bäume Clemens Lang Übungen zu AuD 4. Februar 2010 Clemens Lang (Übungen zu AuD) Algorithmen und Datenstrukturen

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 2018 (Algorithmen & Datenstrukturen) Vorlesung 13 (6.6.2018) Graphenalgorithmen II Yannic Maus Algorithmen und Komplexität Repräsentation von Graphen Zwei klassische Arten, einen Graphen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 10 Suche in Graphen Version vom 13. Dezember 2016 1 / 2 Vorlesung 2016 / 2017 2 /

Mehr

10. Übungsblatt zu Algorithmen I im SS 2010

10. Übungsblatt zu Algorithmen I im SS 2010 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders G.V. Batz, C. Schulz, J. Speck 0. Übungsblatt zu Algorithmen I im SS 00 http//algo.iti.kit.edu/algorithmeni.php

Mehr

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V. Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.

Mehr

Algorithmen und Datenstrukturen (Informatik II) SS Klausur

Algorithmen und Datenstrukturen (Informatik II) SS Klausur Lehrstuhl für Algorith. und Datenstrukturen Prof. Dr. Hannah Bast Axel Lehmann Algorithmen und Datenstrukturen (Informatik II) SS 2013 http://ad-wiki.informatik.uni-freiburg.de/teaching Klausur Mittwoch

Mehr

Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1

Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Aufgabe 1. / 15 P Hinweise: 1) In dieser Aufgabe sollen Sie nur die Ergebnisse angeben. Diese können Sie direkt bei den Aufgaben notieren. 2) Sofern

Mehr

Effiziente Algorithmen I

Effiziente Algorithmen I 9. Präsenzaufgabenblatt, WiSe 2013/14 Übungstunden am 13.01. & 15.01.2014 Aufgabe Q Gegeben sei ein Fluss-Netzwerk mit Digraph D = (V, A), Knotenkapazitäten c(u, v) 0, Quelle s und Senke t. Kann sich der

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 16 (2.7.2014) Graphtraversierung II, Minimale Spannbäume I Algorithmen und Komplexität Tiefensuche: Pseusocode DFS Traversal: for all u in

Mehr

Algorithmen und Datenstrukturen 1 VU 6.0 Nachtragstest SS Oktober 2014

Algorithmen und Datenstrukturen 1 VU 6.0 Nachtragstest SS Oktober 2014 Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.813 Algorithmen und Datenstrukturen 1 VU 6.0 Nachtragstest SS 2014 22. Oktober

Mehr

12. Graphen Programmieren / Algorithmen und Datenstrukturen 2 Prof. Dr. Bernhard Humm FB Informatik, Hochschule Darmstadt Wintersemester 2012 / 2013

12. Graphen Programmieren / Algorithmen und Datenstrukturen 2 Prof. Dr. Bernhard Humm FB Informatik, Hochschule Darmstadt Wintersemester 2012 / 2013 12. Graphen Programmieren / Algorithmen und Datenstrukturen 2 Prof. Dr. Bernhard Humm FB Informatik, Hochschule Darmstadt Wintersemester 2012 / 2013 1 Agenda Kontrollfragen Graphen Graphenalgorithmen 2

Mehr

1 Kürzeste Pfade in Graphen

1 Kürzeste Pfade in Graphen Praktikum Algorithmen-Entwurf (Teil 3) 03.11.2011 1 1 Kürzeste Pfade in Graphen Es sei ein gerichteter Graph G = (V, E) mit V = n Knoten, E = m Kanten und Kantengewichten c : E R gegeben. Ein Pfad in G

Mehr

1 DFS-Bäume in ungerichteten Graphen

1 DFS-Bäume in ungerichteten Graphen Praktikum Algorithmen-Entwurf (Teil 3) 06.11.2006 1 1 DFS-Bäume in ungerichteten Graphen Sei ein ungerichteter, zusammenhängender Graph G = (V, E) gegeben. Sei ferner ein Startknoten s V ausgewählt. Startet

Mehr

1 DFS-Bäume in ungerichteten Graphen

1 DFS-Bäume in ungerichteten Graphen Praktikum Algorithmen-Entwurf (Teil 3) 31.10.2005 1 1 DFS-Bäume in ungerichteten Graphen Sei ein ungerichteter, zusammenhängender Graph G = (V, E) gegeben. Sei ferner ein Startknoten s V ausgewählt. Startet

Mehr

Datenstrukturen und Algorithmen D-INFK

Datenstrukturen und Algorithmen D-INFK Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik Peter Widmayer

Mehr

Klausur Algorithmentheorie

Klausur Algorithmentheorie Prof. Dr. G. Schnitger Frankfurt, den 06.04.2009 Klausur Algorithmentheorie WS 2008/2009 Name: Vorname: Geburtsdatum: Studiengang: BITTE GENAU LESEN Die Klausur besteht aus 4 Aufgaben, in denen maximal

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 4 Prof. Dr. Gerhard Heyer Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 02. Mai 2017 [Letzte Aktualisierung: 10/07/2018,

Mehr

Algorithmentechnik - U bung 3 4. Sitzung Tanja Hartmann 03. Dezember 2009

Algorithmentechnik - U bung 3 4. Sitzung Tanja Hartmann 03. Dezember 2009 Algorithmentechnik - U bung 3 4. Sitzung Tanja Hartmann 03. Dezember 2009 I NSTITUT F U R T HEORETISCHE I NFORMATIK, P ROF. D R. D OROTHEA WAGNER KIT Universita t des Landes Baden-Wu rttemberg und nationales

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg

Mehr

Datenstrukturen und Algorithmen 2. Klausur SS 2001

Datenstrukturen und Algorithmen 2. Klausur SS 2001 UNIVERSITÄT PADERBORN FACHBEREICH 7 (MATHEMATIK INFORMATIK) Datenstrukturen und Algorithmen 2. Klausur SS 200 Lösungsansätze Dienstag, 8. September 200 Name, Vorname:...................................................

Mehr

Algorithmen und Datenstrukturen 1 VL Übungstest WS Januar 2011

Algorithmen und Datenstrukturen 1 VL Übungstest WS Januar 2011 Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 2. Übungstest WS 2010 14. Januar

Mehr

Breitensuche BFS (Breadth First Search)

Breitensuche BFS (Breadth First Search) Breitensuche BFS (Breadth First Search) Algorithmus BREITENSUCHE EINGABE: G = (V, E) als Adjazenzliste, Startknoten s V 1 Für alle v V 1 If (v = s) then d[v] 0 else d[v] ; 2 pred[v] nil; 2 Q new Queue;

Mehr

Klausur Algorithmentheorie

Klausur Algorithmentheorie Prof. Dr. G. Schnitger Frankfurt, den 13.02.2009 Klausur Algorithmentheorie WS 2008/2009 Name: Vorname: Studiengang: BITTE GENAU LESEN Die Klausur besteht aus 4 Aufgaben, in denen maximal 100 Punkte erreicht

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die nformatik 2 raphenexploration Sven Kosub A Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v. Sommersemester

Mehr

Name:... Vorname:... Matr.-Nr.:... Studiengang:...

Name:... Vorname:... Matr.-Nr.:... Studiengang:... Technische Universität Braunschweig Sommersemester 2011 IBR - Abteilung Algorithmik Prof. Dr. Sándor Fekete Christiane Schmidt Klausur Algorithmen und Datenstrukturen 01.09.2011 Name:.....................................

Mehr

Informatik II: Algorithmen & Datenstrukturen. Blättern Sie nicht um bevor Sie dazu aufgefordert werden!

Informatik II: Algorithmen & Datenstrukturen. Blättern Sie nicht um bevor Sie dazu aufgefordert werden! Albert-Ludwigs-Universität Institut für Informatik Prof. Dr. F. Kuhn Informatik II: Algorithmen & Datenstrukturen Montag, 29. August, 2014, 14:00 17:00 Name:...........................................................

Mehr

3. Musterlösung. Problem 1: Boruvka MST

3. Musterlösung. Problem 1: Boruvka MST Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) WS 2011/12 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2011ws/ds/uebung/ 25. Januar 2012 ZÜ DS ZÜ XIII

Mehr

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen Bäume sind verallgemeinerte Listen Datenstrukturen Teil 2 Bäume Jeder Knoten kann mehrere Nachfolger haben Sie sind weiter spezielle Graphen Graphen bestehen aus Knoten und Kanten Kanten können gerichtet

Mehr

VL-14: Graphalgorithmen I. (Datenstrukturen und Algorithmen, SS 2017) Gerhard Woeginger

VL-14: Graphalgorithmen I. (Datenstrukturen und Algorithmen, SS 2017) Gerhard Woeginger VL-14: Graphalgorithmen I (Datenstrukturen und Algorithmen, SS 2017) Gerhard Woeginger SS 2017, RWTH DSAL/SS 2017 VL-14: Graphalgorithmen I 1/48 Organisatorisches Vorlesung: Gerhard Woeginger (Zimmer 4024

Mehr

Übungen zur Vorlesung Datenstrukturen und Algorithmen SS 2006 Blatt 13

Übungen zur Vorlesung Datenstrukturen und Algorithmen SS 2006 Blatt 13 Übungen zur Vorlesung Datenstrukturen und Algorithmen SS 2006 Blatt 13 Sven Grothklags University of Paderborn 10. Juli 2006 Sven Grothklags (University of Paderborn) DuA Übungsblatt 13 10. Juli 2006 1

Mehr

Bipartite Graphen. Beispiele

Bipartite Graphen. Beispiele Bipartite Graphen Ein Graph G = (V, E) heiÿt bipartit (oder paar), wenn die Knotenmenge in zwei disjunkte Teilmengen zerfällt (V = S T mit S T = ), sodass jede Kante einen Knoten aus S mit einem Knoten

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2018 (Algorithmen & Datenstrukturen) Vorlesung 12 (4.6.2018) Graphenalgorithmen I Yannic Maus Algorithmen und Komplexität Graphen Knotenmenge V, typischerweise n V Kantenmenge E, typischerweise

Mehr

Der Branching-Operator B

Der Branching-Operator B Branching 1 / 17 Der Branching-Operator B Unser Ziel: Löse das allgemeine Minimierungsproblem minimiere f (x), so dass Lösung(x). B zerlegt eine Menge von Lösungen in disjunkte Teilmengen. Die wiederholte

Mehr

Datenstrukturen (SoSe 12) Klausur (Modulabschlussprüfung)

Datenstrukturen (SoSe 12) Klausur (Modulabschlussprüfung) Goethe-Universität Frankfurt am Main 27. Juli 2012 Institut für Informatik Theorie komplexer Systeme Dr. Mariano Zelke Datenstrukturen (SoSe 12) Klausur (Modulabschlussprüfung) Name: Vorname: Studiengang:

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 4 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

Kürzeste Wege in einem gewichteten Graphen. Anwendungen

Kürzeste Wege in einem gewichteten Graphen. Anwendungen Kürzeste Wege in einem gewichteten Graphen Dazu werden die Gewichte als Weglängen interpretiert. Der kürzeste Weg zwischen zwei Knoten in einem zusammenhängenden Graphen ist derjenige, bei dem die Summe

Mehr

Graphentheorie. Yichuan Shen. 10. Oktober 2013

Graphentheorie. Yichuan Shen. 10. Oktober 2013 Graphentheorie Yichuan Shen 0. Oktober 203 Was ist ein Graph? Ein Graph ist eine kombinatorische Struktur, die bei der Modellierung zahlreicher Probleme Verwendung findet. Er besteht ganz allgemein aus

Mehr

Klausurvorbereitung. 1 Zentrale Begriffe. 2 Bipartite Graphen. 2.1 Begriffe. Vorlesung Graphen und Optimierung Sommersemester 2011 Prof. S.

Klausurvorbereitung. 1 Zentrale Begriffe. 2 Bipartite Graphen. 2.1 Begriffe. Vorlesung Graphen und Optimierung Sommersemester 2011 Prof. S. Vorlesung Graphen und Optimierung Sommersemester 2011 Prof. S. Lange Klausurvorbereitung Hier finden Sie alle Begriffe, Zusammenhänge und Algorithmen, die mit Blick auf die Klausur relevant sind. Um es

Mehr

Graphalgorithmen. 9. November / 54

Graphalgorithmen. 9. November / 54 Graphalgorithmen 9. November 2017 1 / 54 Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen

Mehr

1 topologisches Sortieren

1 topologisches Sortieren Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) WS 2013/14 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2013ws/ds/uebung/ 22. Januar 2014 ZÜ DS ZÜ XIII

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 7 und 8: Euler- und Hamilton-Graphen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 17. April 2018 1/96 WIEDERHOLUNG Eulersche

Mehr

Breiten- und Tiefensuche in Graphen

Breiten- und Tiefensuche in Graphen Breiten- und Tiefensuche in Graphen Inhalt Theorie. Graphen. Die Breitensuche in der Theorie am Beispiel eines ungerichteten Graphen. Die Tiefensuche in der Theorie am Beispiel eines gerichteten Graphen

Mehr

Abgabe: (vor der Vorlesung)

Abgabe: (vor der Vorlesung) TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 0 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

Informatik B Sommersemester Musterlösung zur Klausur am

Informatik B Sommersemester Musterlösung zur Klausur am Informatik B Sommersemester 01 Musterlösung zur Klausur am 1.0.01 Leider wurde der Hinweis, dass alle Lösungen kurz (stichpunktartig), aber inhaltlich ausreichend zu kommentieren sind, nicht immer beachtet.

Mehr

Algorithmen und Datenstrukturen VO 3.0 Vorlesungsprüfung 19. Oktober 2007

Algorithmen und Datenstrukturen VO 3.0 Vorlesungsprüfung 19. Oktober 2007 Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen 1 186.089 VO 3.0 Vorlesungsprüfung 19. Oktober

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen

Zentralübung zur Vorlesung Diskrete Strukturen WS 2010/11 Zentralübung zur Vorlesung Diskrete Strukturen Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2010ws/ds/uebung/ 2. Februar 2011 ZÜ DS ZÜ XIII 1. Übungsbetrieb:

Mehr

7. Dynamische Datenstrukturen Bäume. Informatik II für Verkehrsingenieure

7. Dynamische Datenstrukturen Bäume. Informatik II für Verkehrsingenieure 7. Dynamische Datenstrukturen Bäume Informatik II für Verkehrsingenieure Übersicht dynamische Datenstrukturen Wozu? Oft weiß man nicht von Beginn an, wieviele Elemente in einer Datenstruktur untergebracht

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 4: Suchstrategien Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 14. April 2017 HALBORDNUNG TOPOLOGISCHE ORDNUNG TOPOLOGISCHES

Mehr

3. Übung zur Vorlesung Planare Graphen

3. Übung zur Vorlesung Planare Graphen 3. Übung zur Vorlesung Planare Graphen Übung 20. Mai 14 Andreas Gemsa INSTITUTE OF THEORETICAL INFORMATICS PROF. DR. DOROTHEA WAGNER KIT University of the State of Baden-Wuerttemberg and National Laboratory

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 13 (8.6.2016) Graphenalgorithmen I Algorithmen und Komplexität Graphen Knotenmenge V, typischerweise n V Kantenmenge E, typischerweise

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Graphdurchläufe Maike Buchin 22. und 27.6.2017 Graphexploration Motivation: Für viele Zwecke will man den gesamten Graphen durchlaufen, zb. um festzustellen ob er (stark) zusammenhängt.

Mehr

2. Klausur Datenstrukturen und Algorithmen SS 2014

2. Klausur Datenstrukturen und Algorithmen SS 2014 Prof. aa Dr. E. Ábrahám F. Corzilius, S. Schupp, T. Ströder 2. Klausur Datenstrukturen und Algorithmen SS 2014 Vorname: Nachname: Studiengang (bitte genau einen markieren): Informatik Bachelor Informatik

Mehr

Algorithmen I - Tutorium 28 Nr. 9

Algorithmen I - Tutorium 28 Nr. 9 Algorithmen I - Tutorium 28 Nr. 9 29.06.2017: Spaß mit Graphen und Graphtraversierung Marc Leinweber marc.leinweber@student.kit.edu INSTITUT FÜR THEORETISCHE INFORMATIK (ITI), PROF. DR. JÖRN MÜLLER-QUADE

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Relationen und Graphentheorie

Relationen und Graphentheorie Seite Graphentheorie- Relationen und Graphentheorie Grundbegriffe. Relationen- und Graphentheorie gehören zu den wichtigsten Hilfsmitteln der Informatik, die aus der diskretenmathematik stammen. Ein Graph

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 9 Graphen Version vom 13. Dezember 2016 1 / 1 Vorlesung Fortsetzung 13. Dezember

Mehr

Karlsruher Institut für Technologie Institut für Theoretische Informatik. Klausur Algorithmen I

Karlsruher Institut für Technologie Institut für Theoretische Informatik. Klausur Algorithmen I Vorname: Matrikelnummer: Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Jörn Müller-Quade 4. September 2017 Klausur Algorithmen I Aufgabe 1. Kleinaufgaben 15 Punkte Aufgabe

Mehr

11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME

11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME Algorithmen und Datenstrukturen 11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME Algorithmen und Datenstrukturen - Ma5hias Thimm (thimm@uni-koblenz.de) 1 Algorithmen und Datenstrukturen 11.1. BERECHNUNG MAXIMALER FLÜSSE

Mehr

12. Graphen. Notation, Repräsentation, Traversieren (DFS, BFS), Topologisches Sortieren, Ottman/Widmayer, Kap ,Cormen et al, Kap.

12. Graphen. Notation, Repräsentation, Traversieren (DFS, BFS), Topologisches Sortieren, Ottman/Widmayer, Kap ,Cormen et al, Kap. 254 12. Graphen Notation, Repräsentation, Traversieren (DFS, BFS), Topologisches Sortieren, Ottman/Widmayer, Kap. 9.1-9.4,Cormen et al, Kap. 22 Königsberg 1736 255 Königsberg 1736 255 Königsberg 1736 255

Mehr

Institut für Programmierung und Reaktive Systeme 31. Mai Programmieren II. 12. Übungsblatt

Institut für Programmierung und Reaktive Systeme 31. Mai Programmieren II. 12. Übungsblatt Technische Universität Braunschweig Dr. Werner Struckmann Institut für Programmierung und Reaktive Systeme 1. Mai 01 Programmieren II 1. Übungsblatt Hinweis: Dieses Übungsblatt enthält die dritte Pflichtaufgabe.

Mehr

Matchings in Graphen. Praktikum Diskrete Optimierung (Teil 5)

Matchings in Graphen. Praktikum Diskrete Optimierung (Teil 5) Praktikum Diskrete Optimierung (Teil 5) 6.05.009 Matchings in Graphen Es sei ein ungerichteter Graph G = (V, E) gegeben. Ein Matching in G ist eine Teilmenge M E, so dass keine zwei Kanten aus M einen

Mehr

MafI I: Logik & Diskrete Mathematik (F. Hoffmann)

MafI I: Logik & Diskrete Mathematik (F. Hoffmann) Lösungen zum 14. und letzten Aufgabenblatt zur Vorlesung MafI I: Logik & Diskrete Mathematik (F. Hoffmann) 1. Ungerichtete Graphen (a) Beschreiben Sie einen Algorithmus, der algorithmisch feststellt, ob

Mehr