2 Mengen und Abbildungen

Größe: px
Ab Seite anzeigen:

Download "2 Mengen und Abbildungen"

Transkript

1 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch: x gehöre zu M oder x liegt in M. Ist x kein Element von M so schreiben wir x / M. Eine Menge kann durch Aufzählung ihrer Elemente, z.b. durch M = {a, b, c, d} oder durch Angabe einer Eigenschaft ( Aussageform) beschrieben werden M = {x x hat Eigenschaft E}. Beispiel 2.1 Zunächst benutzen wir Zahlenmengen als Beispiele. Im folgenden spendieren wir diesen die üblichen Bezeichnungen. (1) Die Menge der natürlichen Zahlen N := {1, 2, 3, 4, 5, 6,...}. N enthält mit jeder Zahl n auch die Zahl n + 1. (2) Die Menge der natürlichen Zahlen einschlieÿlich 0: (3) Die Menge der ganzen Zahlen N 0 := {0, 1, 2, 3, 4, 5, 6,...}. Z := {..., 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5,...}. Z enthält 0 und mit jeder natürlichen Zahl n auch n. (4) Die Menge der Primzahlen P := {p N p = p 1 p 2 für p 1, p 2 N mit p 1 p 2 impliziert p 1 = 1 < p 2 }, 11

2 Mengen haben aber nicht unbedingt etwas mit Zahlen zu tun. In kürze werden wir auch mit Mengen aus Mengen, Mengen aus Abbildungen usw. arbeiten. Zwei Mengen M und N sind gleich, d.h. M = N, wenn sie dieselben Elemente haben. D.h. M = N bedeutet (x M x N). Eine Menge M heiÿt Teilmenge von N, d.h. M N, falls jedes Element von M zu N gehört. Hier sei betont, dass die Bezeichnung M N auch erlaubt, dass M = N ist 1. Will man ausdrücken, dass M eine echte Teilmenge von N ist, d.h. M N und M N gilt schreibt man M N. Um zu zeigen, dass eine Menge M Teilmenge einer anderen Menge M ist, muÿ man zeigen, dass für jedes Element x M auch x N gilt. Um zu zeigen, dass zwei Mengen M und N gleich sind, beweist man zunächst M N und dann N M. Die Menge := {x M x x} heiÿt leere Menge. Sie ist eindeutig bestimmt und hängt nicht von M ab. Die leere Menge M ist Teilmenge jeder Menge; enthält selbst kein Element. Die Potenzmenge 2 M von M ist die Menge aller Teilmengen von M : 2 M = {N N M}. Beispiel {0,1} = {, {0}, {1}, {0, 1}}, 2 = { }, 2 2 = {, { }}. Operationen mit Mengen Im folgenden stellen wir einige wichtige Operationen mit Mengen vor: Die Vereinigung Die Vereinigung M N := {x x M x N} zweier Mengen M, N besteht sowohl aus den Elementen von M als auch aus denen von N. Beispiel 2.3 Z = N 0 { n n N}. 1 das ist leider nicht einheiltlich in der Literatur. In manchen Büchern und Vorlesungen werden die Symbole (statt ) bzw. (statt und ) benutzt. 12

3 Sei allgemeiner S eine Menge, deren Elemente selbst Mengen sind. Die Vereinigung der Mengen aus S ist die Menge M S M := {x M S mit x M}. M S M ist also die Menge der Elemente, die mindestens einem M S angehören. Oft wird das Mengensystem indiziert, d.h., jedem Element von S wird ein eindeutiger Index i aus einer Indexmenge I zugeordnet, d.h., S = {s i i I}. Wir schreiben M i := {x i I mit x M i }. i I Beispiel 2.4 Sei I = N und M i := {i, i + 1,...,2i} für i N. Dann ist M i = N i I Beweis: Da jede der Mengen M i Teilmenge von N ist, gilt i I M i N. Wir müssen also noch zeigen, dass auch N i I M i gilt. Sei also n ein beliebiges Element aus N, dann ist n M n. Folglich ist n i I M i. Da n beliebig war, gilt N i I M i. Der Durchschnitt Der Durchschnitt zweier Mengen M und N M N := {x x M x N} ist die Menge aller Elemente, die sowohl zu M als auch zu N gehören. Allgemeiner ist M := {x M S giltx M} M S der Durchschnitt einer nichtleeren Menge S von Mengen. Er besteht aus den Elementen, die zu allen M S gehören. Oder mit Indexschreibweise M i := {x i I ist x M i }. i I Beispiel 2.5 Sei I die Indexmenge I = N und M i := {n N i < n < 4i}. Dann ist M i =. Beweisen Sie diese Gleichheit, ähnlich wie in Beispiel 2.4. i I 13

4 Das Komplement Das Komplement einer Menge N in M (oder die Dierenz von M und N) ist die Menge M\N := {x x M x / N}. M\N besteht aus allen Elementen von M, die nicht zu N gehören. Zum Beispiel ist Z\N = {0, 1, 2,...}. Wir halten nun folgende wichtige Zusammenhänge fest. (a) M\M =, M\ = M. (b) M M = M, M M = M. (c) Kommutativität: (d) Assoziativität: M N = N M, M N = N M. (M N) L = M (N L), (M N) L = M (N L). (e) Distributivität: (M N) L = (M L) (M L), (M N) L = (M L) (M L). (f) Für die Teilmengen M, N einer Menge X gilt: (1) (2) X\(X\M) = M. X\(M N) = (X\M) (X\N) X\(M N) = (X\M) (X\N) } de Morgansche Regel. (3) Allgemeiner gilt sogar X\ M S M = M S (X\M) X\ M S M = M S (X\M) } de Morgansche Regel. Wie beweist man solche Regeln? Wir führen dies am Beispiel der zweiten De Morganschen Regel einmal vor: Beweis von X\(M N) = (X\M) (X\N) (i) Zunächst zeigen wir X\(M N) (X\M) (X\N). Sei also x X\(M N). Dann ist x X aber x / M N. Demnach ist x weder Element von N noch 14

5 Element von M. Also ist x sowohl in X\M wie auch in X\N und damit auch im Schnitt dieser beiden. (ii) Nun zeigen wir X\(M N) (X\M) (X\N). Ist x (X\M) (X\N), dann ist x sowohl in X\M wie auch in X\N. damit ist x weder in M noch in N und damit in X\(M N). Kartesisches Produkt Das geordnete Paar (Tupel) zweier Objekte x, y ist das Objekt (x, y) mit der Eigenschaft (x, y) = (x, y ) x = x und y = y. Insbesondere ist (x, y) (y,x) falls x y. Formal kann man (x, y) als Menge denieren vermöge (x, y) := {{x}, {x, y}}. Man zeigt dann leicht (Übungsaufgabe), daÿ die obige Eigenschaft erfüllt ist. Das kartesische Produkt zweier Mengen M, N ist die Menge M N := {(x, y) x M und y N}. Beispiel 2.6 Die Menge N N besteht aus den Paaren (a, b) mit a N und b N. Also N N = {(1, 1), (1, 2), (2, 1),...}. Analog bildet man das n-fache Produkt M 1 M n := {(x 1,...,x n ) x 1 M 1 x n M n }. Dabei werden die n-tupel (x 1,...,x n ) rekursiv durch deniert mit der Eigenschaft (x 1,...,x n ) := ((x 1,...,x n 1 ), x n ) (x 1,...,x n ) = (y 1,...,y n ) x 1 = y 1,...,x n = y n. Eigenschaften des Produkts (a) (M 1 M 2 ) N = (M 1 N) (M 2 N). (b) (M 1 M 2 ) N = (M 1 N) (M 2 N). Versuchen Sie mal einer dieser beiden Eigenschaften zu beweisen. Zeigen Sie dazu, dass jedes Element aus (M 1 M 2 ) N auch in (M 1 N) (M 2 N) liegt, und das jedes Element aus (M 1 N) (M 2 N) auch in (M 1 M 2 ) N liegt. 15

6 Quotienten Sei M eine Menge. Eine Relation auf M ist eine Teilmenge R M M. Wir schreiben: x R y : (x, y) R. Eine Relation auf M heiÿt Äquivalenzrelation, wenn stets gilt: (a) x R x (Reexivität) (b) x R y y R x (Symmetrie) (c) x R y und y R z x R z (Transitivität) Wir lesen x R y als x ist äquivalent zu y bezüglich R. Beispiel 2.7 Betrachte M = N und R = {(a, b) N N a+b gerade}. Dann sind also a und b äquivalent genau dann wenn a und b gerade sind oder wenn a und b ungerade sind. Beispiel 2.8 Betrachte M = N N und die Relation R := {((a, b), (c, d)) a + d = c + b}. Dann sind zum Beispiel die Paare (1, 2) und (3, 4) äquivalent. Jede Äquivalenzrelation auf einer Menge M deniert eine zugehörige Zerlegung von M in disjunkte Teilmengen. Dazu ist für jedes x M die Äquivalenzklasse von x bezüglich R deniert als Teilmenge Kl(x) := {y M x R y}. Satz 2.9 Für jede Äquivalenzrelation R M M gilt: (a) x Kl(x) (b) x R y Kl(x) = Kl(y) (c) Kl(x) Kl(y) Kl(x) Kl(y) =. Beweis: (a) ist klar, wegen x R x. Ist Kl(x) = Kl(y), so gilt y Kl(y) = Kl(x), also y R x. Sei umgekehrt y R x und z Kl(y), so also z R y und y R x z R x. Daher z Kl(x). Da z beliebig war folgt Kl(y) Kl(x). 16

7 Die Symmetrie besagt y R x x R y. Also gilt ebenfalls Kl(x) Kl(y). Das beweist (b). Für z Kl(x) Kl(y) ist z R x und z R y also x R y Kl(x) = Kl(y). Ist Kl(x) = Kl(y), so gilt Kl(x) Kl(y) = Kl(x), da x Kl(x). Mit Hilfe einer Äquivalenzrelation kann man nun neue Mengen konstruieren. Denition 2.10 Sei R eine Äquivalenzrelation auf der Menge M. Der Quotient M/R von M bezüglich R ist deniert als die Menge der Äquivalenzklassen von R: M/R := {Kl(x) x M}. Beispiel 2.11 Sei wieder M = N und R = {(a, b) N N a + b gerade}. Dann besteht die Menge M/R aus zwei Elementen, nämlich zum einem aus der Menge der ungeraden Zahlen Kl(1) und der Menge der geraden Zahlen Kl(2). Beispiel 2.12 Gegeben sei M = N N und die Relation R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen...,Kl(1, 3), Kl(1, 2), Kl(1, 1), Kl(2, 1), Kl(3, 1),... Wir werden die Konstruktion aus Beispiel 2.12 in Kapitel 4 wiedersehen, wenn wir die ganzen Zahlen aus den natürlichen Zahlen konstruieren. 2.2 Abbildungen Eine Abbildung f einer Menge M in eine Menge N ist eine Vorschrift, die jedem Element x M jeweils ein eindeutig bestimmtes Element y = f(x) N zuordnet. y = f(x) heiÿt Wert von f an der Stelle x. M heiÿt Denitionsbereich, N der Wertebereich von f. Schreibweise: f : M N, x f(x) Beispiel 2.13 Oft werden Abbildungen durch Terme deniert, z.b.: f : Z Z, z z 2. 17

8 Ein anderes Beispiel ist g : N N n g(n) und g(n) sei die kleinste Primzahl gröÿer als n. Im zweiten Beispiel ist nicht unbedingt klar, ob die Abbildung g wohldeniert ist,d.h. ob jedem Wert aus dem Denitionsbereich auch ein eindeutiger Wert aus dem Bildbereich zugeordnet wird. Gibt es zu jedem n N immer eine eindeutige kleinste Primzahl die gröÿer ist alsn? Die Frage kann man bejahen, wenn man weiÿ, dass es unendlich viele Primzahlen gibt. Zwei Abbildungen f 1 : M 1 N 1, f 2 : M 2 N 2 heiÿen gleich wenn gilt (i)m 1 = M 2, N 1 = N 2 und (ii) f 1 (x) = f 2 (x) für alle x M 1 = M 2. Ist beides erfüllt schreiben wir f 1 = f 2. Beispiel 2.14 Betrachten Sie die Abbildungen f : Z Z, z z 2, g : N Z, z z 2 und h : N Z, h(z) :=gröÿte natürliche Zahle kleiner als z Obwohl f(z) = g(z) für alle z Z gilt, ist f g. Andererseits sind die Abbildungen g und h gleich. Wir führen nun eine Reihe wichtiger Bezeichnungen ein: a) Der Graph einer Abbildung f : M N ist die Teilmen- Denition 2.15 ge Γ f := {(x, f(x)) x M} M N. b) Das Bild einer Teilmenge A M unter f : M N ist die Teilmenge f(a) := {f(x) x A}. f(m) heiÿt Bildmenge von M. c) Das Urbild einer Teilmenge B N ist die Teilmenge f 1 (B) := {x M f(x) B}. d) Die Faser eines Elementes y N unter f ist das Urbild f 1 ({y}) := {x M f(x) = y}. Oft schreibt man auch f 1 (y) statt f 1 ({y}). e) Sei A eine Teilmenge von M. Dann nennt man f A : A N, x f(x) die Einschränkung von f auf A. 18

9 Beispiel 2.16 Es sei f : N N, n { 1 falls n 4, n 2 falls n < 4. Weiter sei P N die Menge der Primzahlen. Das Bild von P unter f ist f(p) = {1, 4, 9}, denn f(1) = 1, f(2) = 4, f(3) = 9 und f(n) = 1 für alle n 4. Das Urbild von P N unter f ist f 1 (P) =, denn f(n) ist für kein n N eine Primzahl. Die Faser des Elementes 4 ist f 1 ({4}) = {2}. Denition 2.17 Eine Abbildung f : M N heiÿt (a) injektiv, wenn für alle x 1, x 2 M gilt f(x 1 ) = f(x 2 ) x 1 = x 2. Eine äquivalente Denition ist, dass die Faser f 1 ({y}) für jedes y N höchstens ein Element hat. (b) surjektiv, wenn f(m) = N. Eine äquivalente Denition ist, dass die Faser f 1 ({y}) für jedes y N mindestens ein Element hat. (c) bijektiv, wenn f injektiv und surjektiv ist. Eine äquivalente Denition ist, daÿ die Faser f 1 ({y}) für jedes y N genau ein Element hat. Beispiel 2.18 Betrachten Sie die Abbildungen f : Z Z, z z 2 und g : N N, g(z) = z 2. f ist weder injektiv (denn f( 1) = f(1)) noch surjektiv (denn für alle z Z ist f(z) 1). Die Abbildung g ist injektiv, denn f(z 1 ) = f(z 2 ) impliziert z 1 = z 2. g ist aber nicht surjektiv, denn das Bild von f(n) ist echt kleiner als der Wertebereich N. Für alle z N gilt z.b. f(z) 3. Es gelten die folgenden Regeln für Bild- und Urbildmengen. Satz 2.19 Für jede Abbildung f : M N und Teilmengen A, A 1, A 2 M, B 1, B 2 N gilt: (a) (b) (c) (d) f 1 (B 1 B 2 ) = f 1 (B 1 ) f 1 (B 2 ) f 1 (B 1 B 2 ) = f 1 (B 1 ) f 1 (B 2 ) f(a 1 A 2 ) = f(a 1 ) f(a 2 ) f(a 1 A 2 ) f(a 1 ) f(a 2 ) 19

10 (e) A f 1 (f(a)) Beweis: Wir zeigen hier nur eine der Aussagen. Dafür sehr ausführlich. Der Rest ist Übung für Sie. Sei zunächst x f 1 (B 1 B 2 ), d.h. f(x) B 1 B 2. Ist f(x) B 1 so ist x f 1 (B 1 ). Ist f(x) B 2 so ist x f 1 (B 2 ). In beiden Fällen gilt x f 1 (B 1 ) f 1 (B 2 ) und damit f 1 (B 1 B 2 ) f 1 (B 1 ) f 1 (B 2 ). Wir müssen also noch f 1 (B 1 B 2 ) f 1 (B 1 ) f 1 (B 2 ) zeigen. Ist x f 1 (B 1 ) f 1 (B 2 ) dann ist f(x) entweder in B 1 oder in B 2. Es gilt also f(x) B 1 B 2 und damit x f 1 (B 1 B 2 ). Bemerkung: liest man die Aussagen (d) und (e), dann fragt man sich sofort, ob denn nicht auch Gleichheit anstelle der Inklusion gilt. Überlegen Sie sich Beispiele welche belegen, dass die Gleichheiten nicht gelten. Denition 2.20 Die Zusammensetzung oder Komposition der Abbildungen f : M N und g : N P ist die Abbildung g f : M P, x g(f(x)). (Lies: g nach f.) Falls Denitionsbereich und Wetrebereich gleich sind (also f : M M) schreiben wir auch f 2 statt f f. Die Abbildung id M : M M, x x ist die identische Abbildung (auf der Menge M). Regel 2.21 Kompositionen gehorchen den evidenten Gesetzen: (a) Für je drei Abbildungen f : M N, g : N P, h : P Q gilt h (g f) = (h g) f (b) Für jede Abbildung f : M N gilt: Assoziativität. id N f = f = f id M Einheitsgesetz Satz 2.22 Eine Abbildung f : M N ist genau dann bijektiv, wenn es eine Abbildung g : N M gibt mit g f = id M und f g = id N. Ein solches g ist eindeutig bestimmt durch f. g heiÿt auch Umkehrabbildung von f und man setzt g = f 1. Beweis: Ist f bijektiv, so gibt es für jedes y N genau ein x M mit f(x) = y. Man setzt dann g(y) := x und erhält eine Abbildung g : N M; mit den bekannten Eigenschaften. Zur Umkehrung sei g : N M Abbildung mit g f = id N, f g = id N. Aus f g = id N folgt f(g(n)) = id N (N) = N. Also N = f(g(n)) f(m) N und daher f(m) = N. Also ist f surjektiv. Aus g f = id N folgt analog die Injektivität von f. Denn sei f(x) = f(y) für x, y M. Dann ist x = g(f(x)) = g(f(y)) = y, was zu zeigen war. 20

11 Sind f : M N, g : N P bijektive Abbildungen, so ist auch das Kompositum g f : M P bijektiv und für die entsprechenden Umkehrabbildungen gilt: (g f) 1 = f 1 g 1. Man überzeuge sich davon, dass die vertauschte Reihenfolge richtig ist. 21

3 Werkzeuge der Mathematik

3 Werkzeuge der Mathematik 3.1 Mengen (18.11.2011) Definition 3.1 Die Menge heißt leere Menge. :=»x M x x Definition 3.2 Es seien N und M Mengen. Wir definieren: und analog M N : (x M x N). N M : (x N x M). Wir sagen M ist Teilmenge

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

(1.18) Def.: Eine Abbildung f : M N heißt

(1.18) Def.: Eine Abbildung f : M N heißt Zurück zur Mengenlehre: Abbildungen zwischen Mengen (1.17) Def.: Es seien M, N Mengen. Eine Abbildung f : M N von M nach N ist eine Vorschrift, die jedem x M genau ein Element f(x) N zuordnet. a) M = N

Mehr

Kapitel 1. Mengen und Abbildungen. 1.1 Mengen

Kapitel 1. Mengen und Abbildungen. 1.1 Mengen Kapitel 1 Mengen und Abbildungen 1.1 Mengen Die Objekte der modernen Mathematik sind die Mengen. Obwohl die Logik einen axiomatischen Zugang zur Mengenlehre bietet, wollen wir uns in dieser Vorlesung auf

Mehr

Einführung in die Mathematik (Vorkurs 1 )

Einführung in die Mathematik (Vorkurs 1 ) Einführung in die Mathematik (Vorkurs 1 ) Wintersemester 2008/09 Dr. J. Jordan Institut für Mathematik Universität Würzburg Germany 1 Modulbezeichnung 10-M-VKM 1 Inhaltsverzeichnis 1 Aussagen und Beweise

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

2 Mengen, Abbildungen und Relationen

2 Mengen, Abbildungen und Relationen Vorlesung WS 08 09 Analysis 1 Dr. Siegfried Echterhoff 2 Mengen, Abbildungen und Relationen Definition 2.1 (Mengen von Cantor, 1845 1918) Eine Menge M ist eine Zusammenfassung von wohlbestimmten und wohl

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe Kapitel 5 Abbildungen 5.1 Definition: (Abbildung) Eine Abbildung zwischen zwei Mengen M und N ist eine Vorschrift f : M N, die jedem Element x M ein Element f(x) N zuordnet. Schreibweise: x f(x) 5. Beispiel:

Mehr

3. Für beliebiges A bezeichnet man die Menge A A manchmal auch mit A 2 (in Worten:

3. Für beliebiges A bezeichnet man die Menge A A manchmal auch mit A 2 (in Worten: 35 4 Paarungen 4. Produktmengen Die Mengen {x, y} und {y, x} sind gleich, weil sie die gleichen Elemente enthalten. Manchmal legt man aber zusätzlich Wert auf die Reihenfolge der Elemente. Die Objekte

Mehr

LA 1 WS 08/09 Zettel 1

LA 1 WS 08/09 Zettel 1 LA 1 WS 08/09 Zettel 1 Nils Mahrt 31. Oktober 2008 1. Aufgabe Sei f : X Y eine Abbildung. (a) Für A X ist zu zeigen, dass A f 1 (f(a)) ist. Sei also x A, dann ist zu zeigen, dass x f 1 (f(a)). Es gilt,

Mehr

Anmerkungen zu Mengen und Abbildungen

Anmerkungen zu Mengen und Abbildungen Anmerkungen zu Mengen und Abbildungen Kartesisches Produkt von n Mengen und n-stellige Relationen Sind M 1, M,, M n nichtleere Mengen, so ist ihr kartesisches Produkt erklärt als Menge aller geordneter

Mehr

17 Lineare Abbildungen

17 Lineare Abbildungen Chr.Nelius: Lineare Algebra II (SS2005) 1 17 Lineare Abbildungen Wir beginnen mit der Klärung des Abbildungsbegriffes. (17.1) DEF: M und N seien nichtleere Mengen. Eine Abbildung f von M nach N (in Zeichen:

Mehr

Einführung in die Mathematik (Vorkurs 1 )

Einführung in die Mathematik (Vorkurs 1 ) Einführung in die Mathematik (Vorkurs 1 ) Wintersemester 2011 Dr. J. Jordan und Dr. F. Möller Institut für Mathematik Universität Würzburg Germany 1 Modulbezeichnung 10-M-VKM 1 Inhaltsverzeichnis 1 Aussagenlogik

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011.

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011. Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen 21. März 2011 Tanja Geib Inhaltsverzeichnis 1 Aussagen 1 2 Mengenlehre 3 2.1 Grundlegende Definitionen

Mehr

Einführung in die Mathematik (Vorkurs 1 )

Einführung in die Mathematik (Vorkurs 1 ) Einführung in die Mathematik (Vorkurs 1 ) Wintersemester 2015/16 Dr. J. Jordan Institut für Mathematik Universität Würzburg Germany 1 Modulbezeichnung 10-M-VKM 1 Inhaltsverzeichnis 1 Aussagenlogik 4 2

Mehr

Einführung in die Mathematik (Vorkurs 1 )

Einführung in die Mathematik (Vorkurs 1 ) Einführung in die Mathematik (Vorkurs 1 ) Sommersemester 2015 Dr. J. Jordan Institut für Mathematik Universität Würzburg Germany 1 Modulbezeichnung 10-M-VKM 1 Inhaltsverzeichnis 1 Aussagenlogik 4 2 Beweistechniken

Mehr

2 Lösungen zu Kapitel 2

2 Lösungen zu Kapitel 2 2 Lösungen zu Kapitel 2 2. Lösung. Die Funktion f ist nicht injektiv. So gibt es (unendlich) viele Paare (x, y) mit f(x, y) = 0, etwa (0, 0) und (/2, ). Die Funktion f ist surjektiv. Zum Beispiel gilt

Mehr

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } }

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } } Mengen Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung aller Elemente: { 1,

Mehr

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 5. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 5. Vorlesung 1 / 30 Themen

Mehr

Grundlagen. Kapitel Mengen

Grundlagen. Kapitel Mengen Kapitel 1 Grundlagen 1.1 Mengen Grundobjekte mathematischer Theorien sind Mengen. Zwar stellt man sich darunter Gesamtheiten von gewissen Dingen (den Elementen der Menge) vor, doch führt die uneingeschränkte

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016 HM I Tutorium 1 Lucas Kunz 27. Oktober 2016 Inhaltsverzeichnis 1 Theorie 2 1.1 Logische Verknüpfungen............................ 2 1.2 Quantoren.................................... 3 1.3 Mengen und ihre

Mehr

Kapitel 2 MENGENLEHRE

Kapitel 2 MENGENLEHRE Kapitel 2 MENGENLEHRE In diesem Kapitel geben wir eine kurze Einführung in die Mengenlehre, mit der man die ganze Mathematik begründen kann. Wir werden sehen, daßjedes mathematische Objekt eine Menge ist.

Mehr

0 Mengen und Abbildungen, Gruppen und Körper

0 Mengen und Abbildungen, Gruppen und Körper 0 Mengen und Abbildungen, Gruppen und Körper In diesem Paragrafen behandeln wir einige für die Lineare Algebra und für die Analysis wichtige Grundbegriffe. Wir beginnen mit dem Begriff der Menge. Auf Cantor

Mehr

Analysis I - Notizen 1. Daniel Lenz Jena - Wintersemester 2016

Analysis I - Notizen 1. Daniel Lenz Jena - Wintersemester 2016 Analysis I - Notizen 1 Daniel Lenz Jena - Wintersemester 2016 1 Es handelt sich nicht um ein Skriptum zur Vorlesung. Besten Dank an alle, die zu Verbesserungen früherer Notizen zur Analysis I beigetragen

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 6. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 6. Vorlesung 1 / 36 Themen

Mehr

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Dozentin: Wiebke Petersen 2. Foliensatz Wiebke Petersen math. Grundlagen 25 n-tupel und Cartesisches Produkt Mengen sind ungeordnet,

Mehr

1.1 Mengen und Abbildungen

1.1 Mengen und Abbildungen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 3 1.1 Mengen und Abbildungen In diesem Abschnitt stellen wir die grundlegende mathematische Sprache und Notation zusammen, die für jede Art von heutiger Mathematik

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen Aufgaben mit Musterlösung 21. März 2011 Tanja Geib 1 Aufgabe 1 Geben Sie zu B = {0, 2, 4} und

Mehr

Abbildungen, injektiv, surjektiv, bijektiv

Abbildungen, injektiv, surjektiv, bijektiv Dr. Sebastian Bab WiSe 12/13 Theoretische Grundlagen der Informatik für TI Termin: VL 4 vom 25.10.2012 Abbildungen, injektiv, surjektiv, bijektiv Abbildungen sind eindeutige Zuordnungen Denition 23 (Abbildung(Funktion))

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 2018/2019 18.10.2018 Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

Diskrete Strukturen und Logik WiSe 2006/07 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2006/07 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2006/07 in Trier Henning Fernau Universität Trier fernau@informatik.uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik &

Mehr

Analysis I Marburg, Wintersemester 1999/2000

Analysis I Marburg, Wintersemester 1999/2000 Skript zur Vorlesung Analysis I Marburg, Wintersemester 1999/2000 Friedrich W. Knöller Literaturverzeichnis [1] Barner, Martin und Flohr, Friedrich: Analysis I. de Gruyter. 19XX [2] Forster, Otto: Analysis

Mehr

Elementare Mengenlehre

Elementare Mengenlehre Vorkurs Mathematik, PD Dr. K. Halupczok WWU Münster Fachbereich Mathematik und Informatik 5.9.2013 Ÿ2 Elementare Mengenlehre Der grundlegendste Begri, mit dem Objekte und Strukturen der Mathematik (Zahlen,

Mehr

Mathematik für Ökonomen 1

Mathematik für Ökonomen 1 Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen

Mehr

Mengen und Abbildungen

Mengen und Abbildungen 1 Mengen und bbildungen sind Hilfsmittel ( Sprache ) zur Formulierung von Sachverhalten; naive Vorstellung gemäß Georg Cantor (1845-1918) (Begründer der Mengenlehre). Definition 1.1 Eine Menge M ist eine

Mehr

Brückenkurs Mathematik 2015

Brückenkurs Mathematik 2015 Technische Universität Dresden Fachrichtung Mathematik, Institut für Analysis Dr.rer.nat.habil. Norbert Koksch Brückenkurs Mathematik 2015 1. Vorlesung Logik, Mengen und Funktionen Ich behaupte aber, dass

Mehr

Lineare Algebra I. - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Monday 12 September 16

Lineare Algebra I. - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Monday 12 September 16 Lineare Algebra I - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß 1. Mengen und Abbildungen: Mengen gehören zu den Grundlegendsten Objekten in der Mathematik Kurze Einführung in die (naive) Mengelehre

Mehr

2 Mengen, Relationen, Funktionen

2 Mengen, Relationen, Funktionen Grundlagen der Mathematik für Informatiker 1 2 Mengen, Relationen, Funktionen 2.1 Mengen Definition 2.1 [Georg Cantor 1895] Eine Menge ist eine Zusammenfassung bestimmter, wohlunterschiedener Dinge unserer

Mehr

2 Mengen, Relationen, Funktionen

2 Mengen, Relationen, Funktionen Grundlagen der Mathematik für Informatiker Grundlagen der Mathematik für Informatiker Mengen, Relationen, Funktionen. Mengen Definition. [Georg Cantor 895] Eine Menge ist eine Zusammenfassung bestimmter,

Mehr

Mengen, Funktionen und Logik

Mengen, Funktionen und Logik Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

10 Formale Grundlagen

10 Formale Grundlagen 95 10 Formale Grundlagen 10.1 Mengentheorie Die Aussagen hierzu sind aus [?, S.13-21] und [?, S.75-136]. In [?] sind die nötigsten Aussagen zusammengefaßt. In [?] sind insbesondere Links und Rechtsinverse

Mehr

Analyis I - Grundlagen

Analyis I - Grundlagen Elementare Aussagenlogik October 23, 2008 Elementare Aussagenlogik Definition Eine Aussage im Sinne der Aussagenlogik ist eine sprachliche Aussage, bei der klar entschieden werden kann, ob sie wahr oder

Mehr

Vorkurs Mathematik 2016

Vorkurs Mathematik 2016 Vorkurs Mathematik 2016 WWU Münster, Fachbereich Mathematik und Informatik PD Dr. K. Halupczok Skript VK3 vom 15.9.2016 VK3: Elementare Mengenlehre Der grundlegendste Begri, mit dem Objekte und Strukturen

Mehr

Injektiv, Surjektiv, Bijektiv

Injektiv, Surjektiv, Bijektiv Injektiv, Surjektiv, Bijektiv Aufgabe 1. Geben Sie einen ausführlichen Beweis für folgende Aussage: Wenn f A B surjektiv ist und R A A A eine reflexive Relation auf A ist, dann ist R B = {( f(x), f(y)

Mehr

Ÿ2.5 Die Menge R der reellen Zahlen als Erweiterung von Q. Denition 21: Für a R und n N deniert man die n-te Potenz von a als a n := } a {{ a}

Ÿ2.5 Die Menge R der reellen Zahlen als Erweiterung von Q. Denition 21: Für a R und n N deniert man die n-te Potenz von a als a n := } a {{ a} Vorkurs Mathematik, PD Dr. K. Halupczok, WWU Münster Fachbereich Mathematik und Informatik 20.9.2011 Ÿ2.5 Die Menge R der reellen Zahlen als Erweiterung von Q (Fortsetzung) Wir wollen nun weiter mit R

Mehr

Die Mengenlehre ist ein Grundelement der Sprache der Mathematik und geht als

Die Mengenlehre ist ein Grundelement der Sprache der Mathematik und geht als Kapitel 1 Naive Mengenlehre 1.1 Mengen (Mengenalgebra; kartesisches Produkt) Die Mengenlehre ist ein Grundelement der Sprache der Mathematik und geht als naive Mengenlehre (im Gegensatz zur strengen Axiomatik)

Mehr

Skript und Übungen Teil II

Skript und Übungen Teil II Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen

Mehr

Vorkurs Mathematik Abbildungen

Vorkurs Mathematik Abbildungen Vorkurs Mathematik Abbildungen Philip Bell 19. September 2016 Diese Arbeit beruht im Wesentlichen auf dem Vortrag Relationen, Partitionen und Abbildungen von Fabian Grünig aus den vorangehenden Jahren.

Mehr

B Grundbegriffe zu Mengen und Abbildungen

B Grundbegriffe zu Mengen und Abbildungen B Grundbegriffe zu Mengen und Abbildungen Die Sprache der Mengen und Abbildungen hat sich als Basissprache in der modernen Mathematik durchgesetzt. Da sie sehr praktisch ist, wird sie auch in diesem Buch

Mehr

Mathematische Strukturen

Mathematische Strukturen Mathematische Strukturen Lineare Algebra I Kapitel 3 16. April 2013 Kartesisches Produkt Das kartesische Produkt (benannt nach René Descartes) von n Mengen M 1,..., M n ist M 1 M n := {(x 1,..., x n )

Mehr

1.3 Relationen und Funktionen

1.3 Relationen und Funktionen 1.3. RELATIONEN UND FUNKTIONEN 1 1.3 Relationen und Funktionen Es gibt eine Konstruktion (Übungsaufgabe!) einer Klasse (a, b) mit der Eigenschaft (a, b) = (c, d) a = c b = d. Diese Klasse (a, b) heißt

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 3.2 Induktion und Rekursion 3.3 Boolsche Algebra Peer Kröger (LMU München) Einführung in die Programmierung WS 14/15 48 / 155 Überblick

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 3 Grundlagen der Mathematik Präsenzaufgaben (P4) Wir betrachten die Menge M := P({1, 2, 3, 4}). Dann gilt 1 / M,

Mehr

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016 MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/17 MARK HAMILTON LMU MÜNCHEN 1.1. Grundbegriffe zu Mengen. 1. 17. OKTOBER 2016 Definition 1.1 (Mengen und Elemente). Eine Menge ist die Zusammenfassung

Mehr

1.1 Mengen und Abbildungen

1.1 Mengen und Abbildungen Lineare Algebra 2005-2013 c Rudolf Scharlau 3 1.1 Mengen und Abbildungen In diesem Abschnitt stellen wir die grundlegende mathematische Sprache und Notation zusammen, die für jede Art von heutiger Mathematik

Mehr

1 Loesungen zu Analysis 1/ 1.Uebung

1 Loesungen zu Analysis 1/ 1.Uebung Loesungen ausgewaehlter Beispiele zu Analysis I, G. Bergauer, Seite 1 1 Loesungen zu Analysis 1/ 1.Uebung 1.1 Einleitung Gegeben Mengen X, A mit A X. Sei die Menge durch A = {a X : a erfuellt B} gegeben,

Mehr

Mengen (siehe Teschl/Teschl 1.2)

Mengen (siehe Teschl/Teschl 1.2) Mengen (siehe Teschl/Teschl 1.2) Denition nach Georg Cantor (1895): Eine Menge ist eine Zusammenfassung von bestimmten und wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens zu einem

Mehr

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 2 Prof. Dr. Markus Schweighofer 11.11.2009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 2.1: Behauptung:

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Susanna Pohl Vorkurs Mathematik TU Dortmund 10.03.2015 Mengen und Relationen Mengen Motivation Beschreibung von Mengen Mengenoperationen

Mehr

1 Grundlagen. Grundlagen 1. Überblick

1 Grundlagen. Grundlagen 1. Überblick Grundlagen 1 1 Grundlagen Der Abschnitt orientiert über Notation und Sprechweisen und präsentiert ergänzende Sachverhalte. Die Ausführungen über Konvergenz von Reihen sind insbesondere im Zusammenhang

Mehr

1.3 Aussagen. Beispiel: Das Bruttosozialprodukt der Bundesrepublik Deutschland ist höher als das der USA ist eine offenbar falsche Aussage.

1.3 Aussagen. Beispiel: Das Bruttosozialprodukt der Bundesrepublik Deutschland ist höher als das der USA ist eine offenbar falsche Aussage. 1.3 Aussagen In der Mathematik geht es um Aussagen. Eine Aussage ist ein statement, das entweder wahr oder falsch sein kann. Beides geht nicht! Äußerungen, die nicht die Eigenschaft haben, wahr oder falsch

Mehr

Elementare Geometrie Vorlesung 1

Elementare Geometrie Vorlesung 1 Elementare Geometrie Vorlesung 1 Thomas Zink 19.4.2017 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung von wohlbestimmten Objekten unseres Denkens. (Objekte = Elemente) P Menge bedeutet: Das

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 Mengen und Abbildungen 3.2 Induktion und Rekursion 3.3 Ausdrücke 3 Mathematische Grundlagen Einf. Progr. (WS 08/09) 102 Überblick 3.

Mehr

Gliederung. Mengen und operationen. Relationen. Funktionen. Kardinalität von Mengen. Formale Grundlagen der Informatik Knorr/Fuchs SS 2000

Gliederung. Mengen und operationen. Relationen. Funktionen. Kardinalität von Mengen. Formale Grundlagen der Informatik Knorr/Fuchs SS 2000 Gliederung Mengen und operationen Relationen Funktionen Kardinalität von Mengen Mengen, Relationen, Funktionen 1 Mengen Definition (Naive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer

Mehr

Blatt 0: Mathematik I für Ingenieure (B) Abbildungen und Kompositionen. apl. Prof. Dr. Matthias Kunik/ Dr. Uwe Risch

Blatt 0: Mathematik I für Ingenieure (B) Abbildungen und Kompositionen. apl. Prof. Dr. Matthias Kunik/ Dr. Uwe Risch Blatt 0: Mathematik I für Ingenieure (B) apl. Prof. Dr. Matthias Kunik/ Dr. Uwe Risch 10.10.016 Abbildungen und Kompositionen Allgemeine Erklärungen: Siehe Seite 1 zu Anmerkungen zu Mengen und Abbildungen!

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 015/016 30.10.015 Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 1. Übungsblatt

Mehr

Blatt 4. Übungen zur Topologie, G. Favi 20. März Abgabe: 27. März 2008, 12:00 Uhr

Blatt 4. Übungen zur Topologie, G. Favi 20. März Abgabe: 27. März 2008, 12:00 Uhr Übungen zur Topologie, G. Favi 20. März 2009 Blatt 4 Abgabe: 27. März 2008, 12:00 Uhr Aufgabe 1. (a) Auf der 2-Sphäre S 2 := {(x, y, z) R 3 x 2 + y 2 + z 2 = 1} R 3 betrachten wir folgende Äquivalenzrelation:

Mehr

Unter einer Abbildung f von einer Menge A in eine Menge B versteht man eine Vorschrift, die jedem a A eindeutig ein bestimmtes b = f (a) B zuordnet:

Unter einer Abbildung f von einer Menge A in eine Menge B versteht man eine Vorschrift, die jedem a A eindeutig ein bestimmtes b = f (a) B zuordnet: Abbildung Unter einer Abbildung f von einer Menge A in eine Menge B versteht man eine Vorschrift, die jedem a A eindeutig ein bestimmtes b = f (a) B zuordnet: f : A B. Für die Elementzuordnung verwendet

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Lösungen zur Übungsserie 1

Lösungen zur Übungsserie 1 Analysis 1 Herbstsemester 2018 Prof. Peter Jossen Montag, 24. September Lösungen zur Übungsserie 1 Aufgaben 1, 3, 4, 5, 6, 8 Aufgabe 1. Sei X eine endliche Menge mit n Elementen, und sei Y eine endliche

Mehr

Vorkurs Mathematik. Vorlesung 4. Abbildungen

Vorkurs Mathematik. Vorlesung 4. Abbildungen Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Vorkurs Mathematik Vorlesung 4 Abbildungen Definition 4.1. Seien L und M zwei Mengen. Eine Abbildung F von L nach M ist dadurch gegeben, dass jedem Element der

Mehr

2. Übungsblatt zur Analysis I. Gruppenübungen

2. Übungsblatt zur Analysis I. Gruppenübungen Prof. Dr. Helge Glöckner Wintersemester 2013/2014 24.10.2013 2. Übungsblatt zur Analysis I Wichtig: Bitte geben Sie die Hausübungen in ihrer jeweiligen Übungsgruppe ab. Gruppenübungen Aufgabe G1 (Rechnen

Mehr

Denition 1 (Die Peanoschen Axiome). Es gibt eine Menge N und eine sogenannte Nachfolgefunktion S mit folgenden Eigenschaften.

Denition 1 (Die Peanoschen Axiome). Es gibt eine Menge N und eine sogenannte Nachfolgefunktion S mit folgenden Eigenschaften. In dieser Ausarbeitung handelt es sich es um die Menge der natürlichen Zahlen und deren Eigenschaften. In der Analysis werden häug zunächst die reellen Zahlen als vollständig geordneter Körper betrachtet

Mehr

Mathematik 1 für Informatik Inhalt Grundbegrie

Mathematik 1 für Informatik Inhalt Grundbegrie Mathematik 1 für Informatik Inhalt Grundbegrie Mengen, speziell Zahlenmengen Aussagenlogik, Beweistechniken Funktionen, Relationen Kombinatorik Abzählverfahren Binomialkoezienten Komplexität von Algorithmen

Mehr

Lineare Algebra. Jung Kyu Canci. Mit der Hilfe von: Stefano Iula, Olivia Ebneter, Katharina Laubscher, Viviane Wehrle

Lineare Algebra. Jung Kyu Canci. Mit der Hilfe von: Stefano Iula, Olivia Ebneter, Katharina Laubscher, Viviane Wehrle Lineare Algebra Jung Kyu Canci Mit der Hilfe von: Stefano Iula, Olivia Ebneter, Katharina Laubscher, Viviane Wehrle Herbstsemester 2015 2 Inhaltsverzeichnis 1 Einführung in die Lineare Algebra 5 1.1 Elementare

Mehr

4. Funktionen und Relationen

4. Funktionen und Relationen 4. Funktionen und Relationen Nikolaus von Oresmes Richard Dedekind (1831-1916) René Descartes 1596-1650 Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 4: Funktionen und Relationen 4.1 Funktionen:

Mehr

Vorlesung Diskrete Strukturen Relationen

Vorlesung Diskrete Strukturen Relationen Vorlesung Diskrete Strukturen Relationen Bernhard Ganter WS 2009/10 Relationen Es seien A und B Mengen. Eine (binäre) Relation zwischen A und B ist eine Teilmenge von A B. Ein wichtiger Spezialfall ist

Mehr

Einführung in die Semantik, 2./3. Sitzung Mengen / Relatione

Einführung in die Semantik, 2./3. Sitzung Mengen / Relatione Eigenschaften von Einführung in die Semantik, 2./3. Sitzung Mengen / / Göttingen 2. November 2006 Eigenschaften von Mengenlehre Eigenschaften von Eigenschaften von Das Konzept Menge Eine Menge ist eine

Mehr

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4)

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4) FU Berlin: WiSe 13-14 (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5 Aufgabe 18 (siehe Musterlösung Zettel 4) Aufgabe 20 In der Menge R der reellen Zahlen sei die Relation 2 R 2 definiert durch: x 2 y :

Mehr

Mengenlehre. Begriff der Mengenzugehörigkeit x M, x Ê M >x : x { a 1. e e x = a n. } 2 x = a 1. >x : x { y P(y) } 2 P(x) Begriff der leeren Menge

Mengenlehre. Begriff der Mengenzugehörigkeit x M, x Ê M >x : x { a 1. e e x = a n. } 2 x = a 1. >x : x { y P(y) } 2 P(x) Begriff der leeren Menge Mengenlehre Grundbegriff ist die Menge Definition (Naive Mengenlehre). Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung

Mehr

3. Die Definition einer Abbildung von A in B beinhaltet eigentlich zwei Bedingungen, nämlich

3. Die Definition einer Abbildung von A in B beinhaltet eigentlich zwei Bedingungen, nämlich Kapitel 3: Abbildungen Seite 33 Kap 3: Abbildungen Kap. 3.1: Abbildungen (Funktion), Bild und Urbild Der Begriff der Abbildung ist wie auch der Begriff der Menge von fundamentaler Bedeutung für die Mathematik.

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Einführung in die Mengenlehre

Einführung in die Mengenlehre Einführung in die Mengenlehre D (Menge von Georg Cantor 845-98) Eine Menge ist eine Zusammenfassung bestimmter wohlunterschiedener Objekte unseres Denkens oder unserer Anschauung zu einem Ganzen wobei

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 2

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 2 D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler Lösung 2 Hinweise 1. Eine Möglichkeit ist, auf diese Forderungen massgeschneiderte Relationen explizit anzugeben. Dies ist aber nicht

Mehr

3. Die Definition einer Abbildung von A in B beinhaltet eigentlich zwei Bedingungen, nämlich

3. Die Definition einer Abbildung von A in B beinhaltet eigentlich zwei Bedingungen, nämlich Kapitel 3: Abbildungen Seite 32 Kap 3: Abbildungen Kap. 3.1: Abbildungen (Funktion), Bild und Urbild Der Begriff der Abbildung ist wie auch der Begriff der Menge von fundamentaler Bedeutung für die Mathematik.

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 36 Andreas Gathmann 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will so kann es sinnvoll sein zunächst kleinere einfachere Mengen (bzw. Gruppen) zu betrachten

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 15. Oktober 2015 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage veröffentlicht

Mehr

Kap 3: Abbildungen und Relationen

Kap 3: Abbildungen und Relationen Kapitel 3: Abbildungen Seite 33 Kap 3: Abbildungen und Relationen Kap. 3.1: Relationen zwischen Mengen bzw. in einer Menge Definition 1: Seien A und B zwei nichtleere Mengen. Jede beliebige Teilmenge R

Mehr

4. Mathematische und notationelle Grundlagen. Beispiel Mengen. Bezeichnungen:

4. Mathematische und notationelle Grundlagen. Beispiel Mengen. Bezeichnungen: 4. Mathematische und notationelle Grundlagen 4.1 Mengen Beispiel 3 A 1 = {2, 4, 6, 8}; A 2 = {0, 2, 4, 6,...} = {n N 0 ; n gerade} Bezeichnungen: x A A x x A B A B A { } x Element A x nicht Element A B

Mehr

Gruppen. Kapitel Operationen Definiton Gruppe, symmetrische Gruppen. Gruppen und Untergruppen, Lernziele 1. Erzeugendensysteme,

Gruppen. Kapitel Operationen Definiton Gruppe, symmetrische Gruppen. Gruppen und Untergruppen, Lernziele 1. Erzeugendensysteme, Kapitel 1 Gruppen 1.1 Operationen Lernziele 1. Gruppen und Untergruppen, Erzeugendensysteme, Operationen und Bahnen 1.1.1 Definiton Gruppe, symmetrische Gruppen Definition 1.1. Sei G eine nicht leere Menge

Mehr