3.3 Klassifikation quadratischer Formen auf R n

Größe: px
Ab Seite anzeigen:

Download "3.3 Klassifikation quadratischer Formen auf R n"

Transkript

1 3.3. Klassifikation quadratischer Formen auf R n Klassifikation quadratischer Formen auf R n Wir können den Hauptsatz über symmetrische Matrizen verwenden, um uns einen Überblick über die Lösungsmengen quadratischer Gleichungen in n Variablen zu verschaffen. Eine homogene quadratische Gleichung in zwei Variablen x, y sieht so aus: c 1 x 2 +c 2 xy +c 3 y 2 = c 4, (c 1,c 2,c 3,c 4 R vorgegeben). Zum Beispiel ist die Lösungsmenge der Gleichung x 2 a 2 + y2 b 2 = 1 eine Ellipse, die die x-achse bei x = ±a und die y-achse bei y = ±b schneidet. Die Lösungsmenge der Gleichung x 2 a y2 2 b = 1 2 ist eine Hyperbel mit Asymptoten, gegeben durch y = ± b x. Die Hyperbeläste a schneiden die x-achse bei +a bzw. a. Denn wir könnten die Gleichung umschreiben in die Form b 2 x 2 a 2 y 2 = (bx+ay)(bx ay) = (ab) 2. In den neuen Variablen x = bx+ay und ỹ = bx ay gilt also die üblicherweise als Hyperbelgleichung bezeichnete Beziehung ỹ = c x, wobei c = (ab)2. Weiter erhalten wir aus der definierenden Gleichung, wenn wir x gegen unendlich gehen lassen: y 2 lim x x = lim 2 x (b2 a b2 b2 2 x2) = a. 2 Daraus ergibt sich sofort die Behauptung über die Asymptoten. Wir wollen nun folgende Fragen beantworten: Kann man durch Wahl eines neuen Koordinatensystems jede quadratische Gleichung in eine möglichst einfache Form bringen? Wie lassen sich die möglichen Typen klassifizieren? Die linke Seite der quadratischen Gleichung fasst man zusammen zu einer sogenannten quadratischen Form Definition Unter einer quadratischen Form auf R n versteht man eine Abbildung nach R, die durch einen quadratischen Ausdruck in den Koordinaten gegeben ist, also: q:r n R, q(x 1,...,x n ) = α ij x i x j. i j Aus den Koeffizienten α ij können wir eine symmetrische Matrix A = (a ij ) i,j bilden, indem wir setzen: a ii = α ii für alle i und a ij = a ji = 1 2 α ij für alle i < j. Dann lässt sich die quadratische Form q so schreiben: q(v) = v T Av = v,av für v R n. Umgekehrt liefert jede symmetrische n n-matrix A (das heisst also eine Matrix mit a ij = a ji für alle i j) auf diese Art eine quadratische Form q A auf R n.

2 62 Kapitel 3. Quadratische Formen und symmetrische Matrizen Für n = 2 heisst das konkreter: Die quadratische Form auf R 2, definiert durch q(x,y) = ax 2 +bxy +cy 2, (a,b,c R), gehört zu der symmetrischen Matrix ( a 1 A := b ) 2 1 b c, 2 denn q A (x,y) = (xy)a ( ) x = ax 2 +bxy +cy 2. y Sei jetzt A eine reelle, symmetrische n n-matrix. Die zugehörige quadratische Form auf R n lautet dann q A :R n R, q A (v) := v T Av. Weil A symmetrisch ist, können wir zu einer Orthonormalbasis aus Eigenvektoren (v 1,...,v n ) übergehen. Bezeichnet T die entsprechende Transformationsmatrix, so ist λ T 1 AT = , 0... λ n wobei λ 1,...,λ n die Eigenwerte von A sind. Da T orthogonal ist, erhalten wir q A (Tv) = (Tv) T ATv = v T (T T AT)v = v T (T 1 AT)v. x 1 Setzen wir für v =. ein, erhalten wir, weil die Matrix T aus den Spalten x n v 1,...,v n besteht, folgendes Resultat: 3.17 Satz Sei q = q A :R n R die quadratische Form zur symmetrischen Matrix A. Sei weiter (v 1,...,v n ) eine Orthonormalbasis von R n aus Eigenvektoren von A zu den Eigenwerten λ 1... λ n. Dann gilt q(x 1 v 1 + +x n v n ) = λ 1 x λ nx 2 n. WirkönnenalsojedequadratischeFormaufR n beigeeigneterwahldeskoordinatensystems als Summe von gewichteten Quadraten schreiben. Kommen wir nun zu den Lösungsmengen quadratischer Gleichungen zurück. Schauen wir uns zunächst den Fall n = 2 genauer an Satz Sei A eine invertierbare symmetrische 2 2-Matrix mit Eigenwerten λ 1 λ 2. Dann gibt es für die Lösungsmenge der quadratischen Gleichung q A (v) = 1 in R 2 drei Möglichkeiten. Ist λ 1,λ 2 < 0, so ist die Lösungsmenge leer. Sind beide Eigenwerte positiv, handelt es sich um eine Ellipse. Ist λ 1 > 0 und λ 2 < 0, so ist die Lösungsmenge eine Hyperbel.

3 3.3. Klassifikation quadratischer Formen auf R n 63 Beweis. Wie eben gezeigt, lässt sich die Gleichung vereinfachen, indem man zu einer Orthonormalbasis v 1,v 2 von R 2 aus Eigenvektoren von A zu den Eigenwerten λ 1 λ 2 übergeht.dabeihabenwirdasstandardkoordinatensystemlediglichgedreht oder gespiegelt. Bezogen auf die neuen Koordinaten x 1,x 2 nimmt die quadratische Gleichung folgende Gestalt an: ( ) q(x 1 v 1 +x 2 v 2 ) = λ 1 x 2 1 +λ 2x 2 2 = 1. Wenn λ 1,λ 2 < 0, ist λ 1 x λ 2 x für alle x 1,x 2. Also hat die Gleichung ( ) in diesem Fall keine reellen Lösungen. Sind beide Eigenwerte λ 1 und λ 2 positiv, handelt es sich bei ( ) um eine Ellipsengleichung. Die Lösungsmenge in R 2 ist eine Ellipse mit Hauptachsen in Richtung von v 1 bzw. v 2, die die v 1 -Achse bei x 1 = ± 1 λ1 und die v 2 -Achse bei x 2 = ± 1 λ2 schneidet. Ist λ 1 > 0 und λ 2 < 0, so handelt es sich um eine Hyperbelgleichung. Die Lösungsmenge dieser Gleichung ist eine Hyperbel mit Asymptoten, gegeben λ durch die Gleichungen x 2 = ± 1 x λ 2 1. Die Hyperbel schneidet die v 1 -Achse bei x 1 = ± 1 λ1. q.e.d Beispiele Die Gleichung 2x 2 + 4xy + 5y 2 = ( 1 ) beschreibt eine( Ellipse ) mit Hauptachsen inrichtung der Vektoren v 1 = und v 2 2 = Die Ellipse schneidet die v 1 -Achse bei ± 1 6 und die v 2 -Achse bei ±1. Die Gleichung 4x 2 y 2 = (2x y)(2x + y) = 1 beschreibt eine Hyperbel mit Asymptoten y = ±2x. Das Verhältnis λ 1 λ2 = 2 gibt die Steigung der Asymptoten an. Die Hyperbeläste schneiden die x-achse bei ± Satz Sei jetzt A eine symmetrische 3 3-Matrix mit deta 0. Dann gibt es für die Lösungsmenge der quadratischen Gleichung q A (v) = 1 in R 3 insgesamt vier Möglichkeiten. 1. Sind alle Eigenwerte von A negativ, hat die Gleichung keine Lösungen in R Sind alle Eigenwerte von A positiv, handelt es sich um ein Ellipsoid. Die Eigenrichtungen geben die Hauptachsen und die Zahlen 1 λj jeweils den Halbachsenabschnitt an. 3. Sind zwei Eigenwerte positiv und einer negativ, so ist die Lösungsmenge ein einschaliges Hyperboloid. 4. Ist ein Eigenwert positiv und sind die zwei anderen negativ, so ist die Lösungsmenge ein zweischaliges Hyperboloid.

4 64 Kapitel 3. Quadratische Formen und symmetrische Matrizen Hierzu wiederum ein Beispiel Beispiel Sei q(x,y,z) = 2x 2 +4xy y 2 2xz+4yz+2z 2 = 1 für x,y,z R. Die quadratische Form q ist gegeben durch die symmetrische Matrix A = Bestimmen wir nun die Eigenwerte von A, um den Typ der Lösungsmenge der Gleichung q(x, y, z) = 1 herauszufinden. Das charakteristische Polynom von A lautet: λ p A (λ) = det(λe A) = 2 λ λ 2 = (λ 2)2 (λ+1)+8 (λ+1) 8(λ 2). Durch Umformen erhält man p A (λ) = λ 3 3λ 2 9λ+27 = (λ 3)(λ 2 9) = (λ 3) 2 (λ+3). Die Eigenwerte der Matrix A sind also 3 (doppelt) und 3 (einfach). Deshalb ist die Lösungsmenge der Gleichung q A (x,y,z) = 1 ein einschaliges Hyperboloid Definition Eine quadratische Form q auf einem Vektorraum V heisst positiv (bzw. negativ) definit, falls q(v) > 0 (bzw. q(v) < 0) für alle v 0. Die Form q heisst indefinit, falls q auf V sowohl positive als auch negative Werte (sowie den Wert 0) annimmt. Weil wir jede quadratische Form auf R n als Summe von gewichteten Quadraten schreiben können, gilt folgendes: 3.23 Bemerkung Sei A eine symmetrische n n-matrix. Die zugehörige quadratischeformq A aufr n istgenaudannpositiv(bzw.negativ)definit,wennalleeigenwerte von Apositiv (bzw. negativ) sind. q A ist genaudann indefinit, wenn A mindestens einen positiven und einen negativen Eigenwert besitzt. Eine weitere Anwendung des Hauptsatzes über symmetrische Matrizen findet man in der Mechanik bei der Beschreibung der Drehbewegungen eines starren Körpers. Nehmen wir an, ein starrer Körper rotiere um eine (bewegliche) freie Achse, die durch den Schwerpunkt des Körpers geht. Der Vektor ω R 3 gebe mit seiner Richtung die momentane Richtung der Drehachse und mit seinem Betrag die Winkelgeschwindigkeit an. Die kinetische Energie der Bewegung erweist sich als quadratische Form der Winkelgeschwindigkeit. Deshalb gibt es eine symmetrische Matrix J M 3 3 (R), den sogenannten Trägheitstensor des starren Körpers, so dass: E = 1 2 wt Jw.

5 3.3. Klassifikation quadratischer Formen auf R n 65 Der Drehimpuls L R 3 der Bewegung ist gegeben durch L(t) = J ω(t). Ist ω ein Eigenvektor von J, so zeigen Drehimpuls und Rotationsachse in dieselbe Richtung. Das bedeutet, dass es dann keine Unwucht gibt. Weil der Trägheitstensor eine symmetrische Matrix ist, gibt es eine Basis des Raumes aus Eigenvektoren für J. Die Eigenrichtungen sind die sogenannten Hauptträgheitsachsen des starren Körpers. Wählt man Eigenvektoren als Basis, so wird aus dem Trägheitstensor eine Diagonalmatrix. In der Diagonalen stehen die Eigenwerte J 1,J 2,J 3, die jeweils die Trägheitsmomente bezüglich der gewählten Hauptträgheitsachsen angeben (und daher positive Zahlen sind). Denn in diesem Koordinatensystem nehmen die Gleichungen folgende Form an: L = J 1ω 1 J 2 ω 2 und E = 1 2 (J 1ω1 2 +J 2ω2 2 +J 3ω3 2 ). J 3 ω 3 Für eine Kugel ist J 1 = J 2 = J 3, in diesem Fall ist jede beliebige Achse durch den Schwerpunkt eine Hauptträgheitsachse. Es gibt auch starre Körper, für die zwei der drei Eigenwerte zusammenfallen (zum Beispiel ein Bleistift). In diesem Fall ist die Hauptträgheitsachse zu dem einfachen Eigenwert eindeutig bestimmt, und alle dazu senkrechten Achsen durch den Schwerpunkt des Körpers sind Hauptträgheitsachsen für den doppelten Eigenwert. Ist der starre Körper zum Beispiel ein homogener Quader mit drei verschiedenen Seitenlängen, so sind alle Eigenwerte verschieden. Hier sind die Hauptträgheitsachsen gerade die drei Symmetrieachsen des Quaders. Stabil sind die Bewegungen um die Achse mit dem grössten und die Achse mit dem kleinsten Trägheitsmoment.

Kapitel 3 Quadratische Formen und symmetrische Matrizen

Kapitel 3 Quadratische Formen und symmetrische Matrizen Kapitel 3 Quadratische Formen und symmetrische Matrizen 3.1 Skalarprodukte und Normen Das übliche Skalarprodukt für Vektoren aus dem R ist folgendermassen erklärt: ( ) ( ) x1 x v,w =, := x 1 x +y 1 y.

Mehr

Kapitel 3 Quadratische Formen und symmetrische Matrizen

Kapitel 3 Quadratische Formen und symmetrische Matrizen Kapitel 3 Quadratische Formen und symmetrische Matrizen 3.1 Skalarprodukte und Normen Das übliche Skalarprodukt für Vektoren aus dem R ist folgendermassen erklärt: ( ) ( ) x1 x v w = := x 1 x +y 1 y. y

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte Teschl/Teschl 4. Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x 0, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

Lineare Algebra II 11. Übungsblatt

Lineare Algebra II 11. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross 9 / Juni Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Minitest (Bearbeitung innerhalb von Minuten und ohne Benutzung des

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag 9.6 $Id: quadrat.tex,v. 9/6/9 4:6:48 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6. Symmetrische Matrizen Eine n n Matrix heißt symmetrisch wenn

Mehr

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Sommer 4 Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT. [ Punkte] Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in

Mehr

6 Metrische Klassifikation der Quadriken

6 Metrische Klassifikation der Quadriken 6 Metrische Klassifikation der Quadriken A Wiederholung von Kap V, 5 Sei A = (a ij ) eine symmetrische n n Matrix. n x 1 q(x) := x t Ax = a ij x i x j, x =. i,j=1 ist dann ein quadratisches Polynom in

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Musterlösungen zur Linearen Algebra II Übungsklausur

Musterlösungen zur Linearen Algebra II Übungsklausur Musterlösungen zur Linearen Algebra II Übungsklausur Aufgabe. Sei A R 3 3. Welche der folgenden Aussagen sind richtig? a Ist det(a =, dann ist A eine orthogonale Matrix. b Ist A eine orthogonale Matrix,

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

Kapitel 5 : Eigenwerte und Eigenvektoren

Kapitel 5 : Eigenwerte und Eigenvektoren Kapitel 5 : Eigenwerte und Eigenvektoren 5.1 Definition und allgemeine Eigenschaften Definition 5.1 Sei A eine quadratische (n n)-matrix. λ C heißt Eigenwert von A, wenn ein Vektor x C n mit x 0 existiert,

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Lineare Algebra II (SS 13)

Lineare Algebra II (SS 13) Lineare Algebra II (SS 13) Bernhard Hanke Universität Augsburg 03.07.2013 Bernhard Hanke 1 / 16 Selbstadjungierte Endomorphismen und der Spektralsatz Definition Es sei (V,, ) ein euklidischer oder unitärer

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen Hannover, den 7. Februar 2002 Aufgabe. Übungsblatt: Lineare Algebra II Abgabe: 8./9.4.2002 in den Übungsgruppen (2, 2, 3 Punkte) Der Vektorraum V = C[, ] sei mit dem üblichen Skalarprodukt f, g = f(t)g(t)

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 2 2. (Frühjahr 29, Thema 3, Aufgabe 3) Gegeben sei die reelle 3 3 Matrix 4 2 A = 2 7 2 R 3 3. 2 2 a)

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B Sommersemester 6 Prof. Dr. Alexander Mirlin Musterlösung: Blatt. PD Dr. Igor

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 43 Polynome in mehreren Variablen und Nullstellenmengen Als eine Anwendung der Diagonalisierbarkeit von symmetrischen

Mehr

6 Hauptachsentransformation

6 Hauptachsentransformation 6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten

Mehr

Kapitel 5. Eigenwerte. Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42

Kapitel 5. Eigenwerte. Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42 Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Probeprüfung Lineare Algebra I/II für D-MAVT

Probeprüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Frühling 018 Probeprüfung Lineare Algebra I/II für D-MAVT Die Prüfung dauert 10 Minuten. Sie dient der Selbstevaluation. Die Musterlösungen folgen. Die Multiple Choice

Mehr

Kapitel V. Räumliche Geometrie. 1. Drehungen

Kapitel V. Räumliche Geometrie. 1. Drehungen Kapitel V Räumliche Geometrie 1. Drehungen Punkte in R 3 sind durch 3 Koordinaten (x 1,x 2,x 3 ) bestimmt. Wir benützen die Matrix-Schreibweise x 1 x = x 2 x 3 Eine Drehung um die Koordinatenachse x 3

Mehr

47 Singulärwertzerlegung

47 Singulärwertzerlegung 47 Singulärwertzerlegung 47.1 Motivation Wir haben gesehen, dass symmetrische Matrizen vollständig mithilfe ihrer Eigenwerte und Eigenvektoren beschrieben werden können. Diese Darstellung kann unmittelbar

Mehr

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw. Kapitel 5 Lineare Algebra 51 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen

Mehr

P AP 1 = D. A k = P 1 D k P. = D k. mit P 0 3

P AP 1 = D. A k = P 1 D k P. = D k. mit P 0 3 Matrixpotenzen In Anwendungen müssen oft hohe Potenzen einer quadratischen Matrix berechnet werden Ist die Matrix diagonalisierbar, dann kann diese Berechnung wie folgt vereinfacht werden Sei A eine diagonalisierbare

Mehr

Lösungen der Aufgaben zu Kapitel 11

Lösungen der Aufgaben zu Kapitel 11 Lösungen der Aufgaben zu Kapitel Vorbemerkung: Zur Bestimmung der Eigenwerte (bzw. des charakteristischen Polynoms) einer (, )-Matrix verwenden wir stets die Regel von Sarrus (Satz..) und zur Bestimmung

Mehr

Klausur zur Vorlesung Lineare Algebra B im SS 2002 an der Universität Hannover

Klausur zur Vorlesung Lineare Algebra B im SS 2002 an der Universität Hannover Dozent: Prof. Dr. Wolfgang Ebeling Übungsleiter: Dr. Detlef Wille Klausur zur Vorlesung Lineare Algebra B im SS an der Universität Hannover Joachim Selke 9. Februar Lineare Algebra B SS Klausur zur Vorlesung

Mehr

Mathematik I für MB/ME

Mathematik I für MB/ME Mathematik I für MB/ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 25/26 Übungsaufgaben Serie 4: Lineare Unabhängigkeit, Matrizen, Determinanten, LGS Prüfen Sie, ob die folgenden

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte (Teschl/Teschl 4.2 Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 15: Eigenwerte und -vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 5. November 2009) Diagonalisierbarkeit

Mehr

20. und 21. Vorlesung Sommersemester

20. und 21. Vorlesung Sommersemester 2. und 21. Vorlesung Sommersemester 1 Der Spezialfall fester Drehachse Aus dem Trägheitstensor sollte der früher behandelte Spezialfall fester Drehachse wieder hervorgehen. Wenn man ω = ω n mit einem Einheitsvektor

Mehr

Stroppel Musterlösung , 180min

Stroppel Musterlösung , 180min Stroppel Musterlösung 040907, 80min Aufgabe (8 Punkte) (a) Seien A, D, T R d d für ein d N Weiter sei T invertierbar und es gelte T AT D Zeigen Sie durch vollständige Induktion, dass A n T D n T gilt für

Mehr

6.3 Hauptachsentransformation

6.3 Hauptachsentransformation Im Wintersemester 6/7 wurde in der Vorlesung Höhere Mathematik für Ingenieurstudiengänge der folgende Algorithmus zur Hauptachsentransformation besprochen: 63 Hauptachsentransformation Die Matrizen, die

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Eigenvektoren

Mehr

Musterlösung Serie 21

Musterlösung Serie 21 D-MATH Lineare Algebra II FS 09 Prof. Richard Pink Musterlösung Serie Positiv-Definitheit und Singulärwertzerlegung. Welche der folgenden drei reellen symmetrischen Matrizen sind positiv definit? A : 6

Mehr

2.2 Kern und Bild; Basiswechsel

2.2 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 35 Jede lineare Abbildung definiert charakteristische Unterräume, sowohl im Ausgangsraum als auch im Bildraum 22 Satz Sei L: V W eine lineare

Mehr

6 Symmetrische und hermitesche Matrizen

6 Symmetrische und hermitesche Matrizen Mathematik für Physiker II, SS Freitag 4.6 $Id: quadrat.tex,v.8 /6/4 4:44:39 hk Exp hk $ 6 Symmetrische und hermitesche Matrizen 6. Prä-Hilberträume Wir sind gerade mit der Diskussion der sogenannten Ausgleichsgerade

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Matrizen und Vektoren, LGS, Gruppen, Vektorräume 1.1 Multiplikation von Matrizen Gegeben seien die Matrizen A := 1 1 2 0 5 1 8 7 Berechnen Sie alle möglichen

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 3 Der Axiator Eigenschaften des Axiators Bestimmung des Kegelschnitts Geometrische Betrachtungen Dualer Kegelschnitt Pol-Polare

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass I. a) Es sei (G, ) eine abelsche Gruppe mit neutralem Element e G. Zeigen Sie, dass U := {g G g 3 = e G } eine Untergruppe von G ist. b) In der symmetrischen Gruppe S 4 definieren wir analog zu a) die

Mehr

6 Symmetrische und hermitesche Matrizen

6 Symmetrische und hermitesche Matrizen Mathematik für Physiker II, SS 7 Freitag 3.6 $Id: quadrat.tex,v.3 7/6/3 :8:3 hk Exp $ 6 Symmetrische und hermitesche Matrizen 6. Symmetrische und hermitesche Matrizen Wir kommen jetzt zu den symmetrischen

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 8

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 204): Lineare Algebra und analytische Geometrie 8 8. (Herbst 202, Thema 3, Aufgabe 4) Bestimmen Sie die euklidische Normalform der Quadrik Q, gegeben

Mehr

Lösung 8: Quadratische Formen, Sylvesters Trägheitssatz

Lösung 8: Quadratische Formen, Sylvesters Trägheitssatz D-MATH Lineare Algebra II FS 207 Dr. Meike Akveld Lösung 8: Quadratische Formen, Sylvesters Trägheitssatz. Wir erinnern an den Hauptachsensatz: Jede von 0 verschiedene quadratische Form Q auf R 3 ist bis

Mehr

5 Quadriken. K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f = 0} wobei a, b, c, d, e, f reelle Zahlen sind mit (a, b, c) (0, 0, 0).

5 Quadriken. K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f = 0} wobei a, b, c, d, e, f reelle Zahlen sind mit (a, b, c) (0, 0, 0). 5 Quadriken Kegelschnitte Ein Kegelschnitt ist eine Teilmenge K R 2, welche durch eine quadratische Gleichung in zwei Unbestimmten beschrieben werden kann: x K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f =

Mehr

40 Lokale Extrema und Taylor-Formel

40 Lokale Extrema und Taylor-Formel 198 VI. Differentialrechnung in mehreren Veränderlichen 40 Lokale Extrema und Taylor-Formel Lernziele: Resultate: Satz von Taylor und Kriterien für lokale Extrema Methoden aus der linearen Algebra Kompetenzen:

Mehr

Ferienkurs Theoretische Mechanik 2009 Starre Körper und Rotation - Lösungen

Ferienkurs Theoretische Mechanik 2009 Starre Körper und Rotation - Lösungen Physik Department Technische Universität München Matthias Eibl Blatt 4 Ferienkurs Theoretische Mechanik 9 Starre Körper und Rotation - en Aufgaben für Donnerstag 1 Kinetische Energie eines rollenden Zylinders

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Inhaltsverzeichnis INHALTSVERZEICHNIS 1

Inhaltsverzeichnis INHALTSVERZEICHNIS 1 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4

Mehr

eine vom Nullvektor verschiedene Lösung hat. r heisst in diesem Fall Eigenvektor der Matrix A zum Eigenwert λ.

eine vom Nullvektor verschiedene Lösung hat. r heisst in diesem Fall Eigenvektor der Matrix A zum Eigenwert λ. Eigenwert, Eigenvektor In der Regel hat bei einer linearen Abbildung das Bild eines Vektors eine andere Richtung als das Original r. Bei der Untersuchung der geometrischen Eigenschaften von linearen Abbildungen

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

Anwendung v. symmetrischen Matrizen: Hauptachsentransformation

Anwendung v. symmetrischen Matrizen: Hauptachsentransformation Anwendung v. symmetrischen Matrizen: Hauptachsentransformation Einleitende Bemerkungen: Gl. für Kreis: Gl. für Elllipse: (gestauchter Kreis) Gl. für Kugel: Gl. für Elllipsoid: (gestauchter Kugel) Diese

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Mathematik I für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 28/29 Übungsaufgaben Serie 4: Lineare Unabhängigkeit, Matrizen, Determinanten, LGS Prüfen Sie, ob die folgenden

Mehr

45 Eigenwerte und Eigenvektoren

45 Eigenwerte und Eigenvektoren 45 Eigenwerte und Eigenvektoren 45.1 Motivation Eigenvektor- bzw. Eigenwertprobleme sind wichtig in vielen Gebieten wie Physik, Elektrotechnik, Maschinenbau, Statik, Biologie, Informatik, Wirtschaftswissenschaften.

Mehr

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich:

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: Lineare Algebra D-MATH, HS 04 Prof. Richard Pink Lösung zu Serie. [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: a) F (X) := X 5 X in R[X] und C[X]. b) F (X) := X 4 +X 3 +X in

Mehr

7 Lineare Abbildungen und Skalarprodukt

7 Lineare Abbildungen und Skalarprodukt Mathematik II für inf/swt, Sommersemester 22, Seite 121 7 Lineare Abbildungen und Skalarprodukt 71 Vorbemerkungen Standard Skalarprodukt siehe Kap 21, Skalarprodukt abstrakt siehe Kap 34 Norm u 2 u, u

Mehr

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw. Kapitel 5 Lineare Algebra 5 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe Beispiel einer Koordinatentransformation Gegeben seien zwei

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden?

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden? Kapitel Lineare Abbildungen Verständnisfragen Sachfragen Was ist eine lineare Abbildung? Erläutern Sie den Zusammenhang zwischen Unterräumen, linearer Unabhängigkeit und linearen Abbildungen! 3 Was ist

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2 2

Mehr

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich Henning Krause Lineare Algebra Julia Sauter SS 27 Klausur 2.9.27 mit Lösungsvorschlag Jan Geuenich Aufgabe (4 Punkte: Sei n N und seien A und B zwei (n n-matrizen über einem Körper K. Wahr Falsch (a Es

Mehr

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2)

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2) Lineare Abbildungen (Teschl/Teschl.3,.2 Eine lineare Abbildung ist eine Abbildung zwischen zwei Vektorräumen, die mit den Vektoroperationen Addition und Multiplikation mit Skalaren verträglich ist. Formal:

Mehr

Untersuchen Sie, ob die folgenden Abbildungen linear oder nicht linear sind. x y

Untersuchen Sie, ob die folgenden Abbildungen linear oder nicht linear sind. x y Aufgabe 1 Untersuchen Sie, ob die folgenden Abbildungen linear oder nicht linear sind. (( )) 3x x (a) Sei f : R 2 R 3 mit f = 2y + x y x y ( ) 4 (b) Sei f : R R 2 mit f(x) = x + 1 (( )) ( ) x x y (c) Sei

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.44 2018/05/17 14:11:13 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.6 Bewegungen und Kongruenzbegriffe Wir untersuchen gerade die Spiegelung an einer Hyperebene h R d. Ist ein

Mehr

Musterlösung zur Serie 10

Musterlösung zur Serie 10 D-MATH, D-PHYS, D-CHAB Lineare Algebra II FS 1 Prof. Giovanni Felder, Thomas Willwacher Musterlösung zur Serie 1 1. a) Zur Erinnerung: Eine Äquivalenzrelation auf einer Menge M ist eine Relation, die die

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

(a), für i = 1,..., n.

(a), für i = 1,..., n. .4 Extremwerte Definition Sei M R n eine Teilmenge, f : M R stetig, a M ein Punkt. f hat in a auf M ein relatives (oder lokales) Maximum bzw. ein relatives (oder lokales) Minimum, wenn es eine offene Umgebung

Mehr

Quadratische Formen. und. Symmetrische Matrizen

Quadratische Formen. und. Symmetrische Matrizen Quadratische Formen und Symmetrische Matrizen 1 Ouverture: Lineare Funktionen von R n nach R 1 2 Beispiel: n = 2 l : (x 1, x 2 ) T 0.8x 1 + 0.6x 2 = < x, g > mit g := (0.8, 0.6) T. Wo liegen alle x = (x

Mehr

Ferienkurs Theoretische Mechanik. Mechanik des starren Körpers

Ferienkurs Theoretische Mechanik. Mechanik des starren Körpers Ferienkurs Theoretische Mechanik Mechanik des starren Körpers Sebastian Wild Freitag, 16.09.011 Inhaltsverzeichnis 1 Einführung und Definitionen Kinetische Energie und Trägheitstensor 4.1 Definition des

Mehr

Klausur HM I F 2004 HM I : 1

Klausur HM I F 2004 HM I : 1 Klausur HM I F 004 HM I : Aufgabe (5 Punkte): Für welche n gilt die folgende Aussage? ( n ) det n! n 0 (n )! () Führen Sie den Beweis mit Hilfe der vollständigen Induktion. Lösung: Beweis per Induktion

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen Hannover, den 0. April 2006. Übungsblatt: Lineare Algebra II Abgabe: 24./25.4.2006 in den Übungsgruppen ( ) 2 5 a) Zeigen Sie, dass A = und B = 2 ( 7 6 invertierbare Matrix T an mit T AT = B. b) Zeigen

Mehr

Aufgaben zu Kapitel 18

Aufgaben zu Kapitel 18 Aufgaben zu Kapitel 8 Aufgaben zu Kapitel 8 Verständnisfragen Aufgabe 8. Gegeben ist ein Eigenvektor v zum Eigenwert λ einer Matrix A. (a) Ist v auch Eigenvektor von A? Zu welchem Eigenwert? (b) Wenn A

Mehr

Variante A. Hinweise

Variante A. Hinweise Lehrstuhl C für Mathematik (Analysis Prof Dr Holger Rauhut Aachen, den 373 Wiederholungsklausur zur Höheren Mathematik I SoSe 3 Variante A Hinweise Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind

Mehr

Ein Produkt ist Null, wenn einer der Faktoren gleich Null ist. Die beiden Eigenwerte sind demnach. λ 1 = 0, λ 2 = 2i. 1 i

Ein Produkt ist Null, wenn einer der Faktoren gleich Null ist. Die beiden Eigenwerte sind demnach. λ 1 = 0, λ 2 = 2i. 1 i TU Dresden Fakultät Mathematik Institut für Numerische Mathematik Lösung zur Aufgabe (b des Übungsblattes Ermitteln Sie on der folgenden Matrix alle (komplexen Eigenwerte und zu jedem Eigenwert einen zugehörigen

Mehr

Quadriken. Quadriken und Hauptachsentransformation. Lineare Algebra I, WS 10/11 Ingo Blechschmidt 13. März 2011

Quadriken. Quadriken und Hauptachsentransformation. Lineare Algebra I, WS 10/11 Ingo Blechschmidt 13. März 2011 Hier eine kurze Erklärung zu der. Als Grundlage diente teilweise eine Beschreibung von Markus Göhl vom Sommersemester 00. Quadriken Definition. Eine Quadrik ist die Nullstellenmenge eines quadratischen

Mehr

Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - Lösungen

Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - Lösungen Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - en Kommentare an HannesKlarner@FU-Berlinde FU Berlin SS 1 Dia- und Trigonalisierbarkeit Aufgabe (1) Gegeben seien A = i i C 3 3 und B = 1

Mehr

5.2 Drehimpuls, Drehmoment und Trägheitstensor

5.2 Drehimpuls, Drehmoment und Trägheitstensor 186 KAPITEL 5. STARRE KÖRPER 5. Drehimpuls, Drehmoment und Trägheitstensor Wie wir im vorhergehenden Abschnitt gesehen haben, besitzt ein starrer Körper 3 Freiheitsgrade zur Beschreibung seiner Position

Mehr

2.2 Eigenwerte und Eigenvektoren

2.2 Eigenwerte und Eigenvektoren 2.2. Eigenwerte und Eigenvektoren 39 2.2 Eigenwerte und Eigenvektoren Lineare Abbildungen werden je nach Basiswahl durch unterschiedliche Matrizen beschrieben. Besonders einfach ist die Diagonalform. Wir

Mehr

Kapitel 14. Geometrie Eine kurze Einführung in die affine Geometrie

Kapitel 14. Geometrie Eine kurze Einführung in die affine Geometrie Kapitel 14 Geometrie Sei V ein Vektorraum, z.b. V = R 3. Wenn wir uns für geometrische Eigenschaften vonr 3 interessieren, so stört manchmal dieausnahmerolle des Nullvektors, die es ja in V gibt. Beispielsweise

Mehr

11 Eigenwerte und Eigenvektoren

11 Eigenwerte und Eigenvektoren 11 Eigenwerte und Eigenvektoren Wir wissen bereits, dass man jede lineare Abbildung ϕ : K n K n durch eine n n-matri A beschreiben kann, d.h. es ist ϕ() = A für alle K n. Die Matri A hängt dabei von der

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Höhere Mathematik I. Variante B

Höhere Mathematik I. Variante B Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik I SoSe Variante B Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA-Blätter (Vorder- und Rückseite beschriftet,

Mehr

++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen dx+ey+f = 0 1.1

++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen dx+ey+f = 0 1.1 Hauptachsentransformation. Einleitung Schneidet man den geraden Kreiskegel mit der Gleichung = + und die Ebene ++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen +2 + +dx+ey+f = 0. Die

Mehr

Probeklausur zu Mathematik 2 für Informatik

Probeklausur zu Mathematik 2 für Informatik Gunter Ochs Wintersemester 4/5 Probeklausur zu Mathematik für Informatik Lösungshinweise wie immer ohne Garantie auf Fehlefreiheit. Gegeben sei das Dreieck im R mit den Eckpunkten A a Berechnen Sie die

Mehr

Zusammenfassung. 1. Starre Körper: Zwei Koordinatensysteme (L und K). Die Bewegung im K-system ist eine Rotation.

Zusammenfassung. 1. Starre Körper: Zwei Koordinatensysteme (L und K). Die Bewegung im K-system ist eine Rotation. Zusammenfassung 1. Starre Körper: Zwei Koordinatensysteme (L und K). Die Bewegung im K-system ist eine Rotation. Z P r x 3 K-System x 2 R O R c x 1 L-System Y 2. Die kinetische Energie des Körpers und

Mehr