Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.

Größe: px
Ab Seite anzeigen:

Download "Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C."

Transkript

1 Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines Salarprodutes Beispiele von Salarproduten e ix = cos x + i sin x für alle x R. Geometrische Bedeutung des Salarproduts (verallgemeinerter Winel) und die induzierte Norm. Damit die Cauchy Schwarz Ungleichung erläutern/wiederholen(ohne Beweis). Definition eines (omplexen) Hilbertraums H Beispiele von (endlich dimensionalen) Hilberträumen Definition von Projetionen P Definition des orthogonalen Komplements eines linearen Untervetorraumes W H. Beweisen Sie: Sei 0 ψ H ein festes Element. Sei ferner W = λ ψ λ C} der lineare Vetorraum aufgespannt durch w. Dann ist P : H W, definiert durch P(f) = f, ψ ψ eine Projetion und es gilt H = W W d. h. jedes f H lässt sich eindeutig darstellen als f = φ + φ 2 mit φ W, φ 2 W. Man ann W nun wieder in einen eindimensionalen Unterraum W 2 W und W 2 spalten und erhält und damit W = W 2 W 2, H = W W 2 W 2. Vermutung Man ann H in eindimensionale, paarweise orthogonale Unterräume aufteilen. (Kein Beweis!) Literatur: G. Fischer: Lineare Algebra (Kapitel 5), K. Königsberger: Analysis (Kapitel 3, 8), H. Amann, J. Escher: Analysis (Kapitel II.3)

2 Definition der Fouriertransformation Kurze Wiederholung zu stetigen Funtionen f : I C, wobei I ein ompates Intervall ist. Definition von periodischen Funtionen, und die Definition der stetigen Funtionen f: R C, welche periodisch auf I sind, als C 0 per(i). Beweisen Sie: Stetige, periodische Funtionen f : R C sind beschränt. Beweisen Sie: Die Abbildung, : Cper(I) 0 Cper(I) 0 C ˆ f, g = f(x) g(x)dx I definiert ein Salarprodut auf C 0 per(i). Der Raum C 0 per(i) ist also ein Prähilbertraum (aber ein Hilbertraum), welche wir mit der vom Salarprodut induzierten Norm ausstatten. Im Folgenden wird mit I grundsätzlich I = [, π] gemeint. Man definiere für alle Z die Funtionen ψ : R C ψ (x) = exp(i x). Man definiere die N-te Partialsumme der Fourierreihe von f Cper(I) 0 als P N (f) : C C P N (f)(z) = f, ψ ψ (z). Die Fourieroeffizienten werden mit f() = f, ψ bezeichnet und die dadurch definierte Funtion F(f) : N C heißt Fouriertransformierte von f. Für f C 0 per(i) gilt (formal) F(f)() = f(). f = lim N P N(f). Beweisen Sie: Die Funtionen (ψ ) sind paarweise orthonormal, d.h. ψ, ψ l = δ l für alle, l Z. Also ann die Fourierreihenentwiclung auch als orthogonale Projetion auf die Funtionen (ψ ) Z gesehen werden, und damit als Darstellung der Funtion f bzgl. der Orthonormalbasis (ψ ) Z. Literatur O. Forster: Analysis (Kapitel 23), K. Königsberger: Analysis (Kapitel 7,6), H. Amann, J. Escher: Analysis II (Kapitel VI.7)

3 Wohldefiniertheit und Konvergenz Formulieren und beweisen Sie: Die Bessel Ungleichung und die erläutern Sie diese anschaulich. Satz 7. in Analysis II von H. Amann, J. Escher. Formulieren und beweisen Sie: Das Lemma von Riemann Lebesgue: Ist f C per(i), so gilt für 0, dass f() = f, ψ = ˆ = i f(x)e ix dx I ˆ I f (x)e ix dx = i f (). Also f() = f () (0.) Folglich folgt mit der, in, gleichmäßigen Schrane f () f (x) dx, dass f() 0, falls oder. Beweisen Sie: Aus (0.) folgt P N (f) = f()ψ onvergiert absolut und gleichmäßig für N. Dazu bemere man, dass für zwei reelle Folgen (a ) Z, (b ) Z gilt a b = a N a N. a (N ) a N b N b N. b (N ) b N, wobei das Standardsalarprodut auf R 2N+ darstellt. Nach der, im ersten Vortrag vorgestellten, Cauchy Schwarz Ungleichung gilt somit Folglich, 0 a b a 2 b 2 = f () ( N 2, 0 2 a 2 ) 2 ( N, 0 Die Behauptung folgt nun mit der Bessel Ungleichung. b 2 ) 2 f () Literatur O. Forster: Analysis (Kapitel 23), K. Königsberger: Analysis (Kapitel 6), H. Amann, J. Escher: Analysis II (Kapitel VI.7) 2 2

4 Es wird gezeigt, dass P N f f für N puntweise onvergiert, und nach dem vorigen Result, sogar gleichmäßig (unter der Annahme, dass f C 2 ). Beweis: Bemere, dass P N f(x) = f(t) Mit dem Umschrieb e ix it dt; f(x) = e is = + f(x) (e is + e is) =0 e ix it dt. und Anwenden der geometrischen Summenformel für s [, π] und s 0 gilt e is = + (e is + e is) =0 (0.2) = + ei(n+)s e is + e i(n+)s e is. Erweitern den letzten Terms mit e is liefert weiter e i(n+)s e is = e ins e is e is. Alles auf einen Bruch zusammengefasst, lässt sich (0.2) schreiben als e is = ( e is e i(n+)s + e ins) = 2ie is/2 e is/2 e is/2 ( ) e i(n+ 2 )s + e i(n+ 2 )s 2ie is/2 Das Einsetzen von sin(x) = eix e ix 2i liefert nun für alle s [, π] die Gleichheit sin((n+ )s) e is 2 falls s 0, = sin( 2) s N + falls s = 0. Nach der Substitution s = t x ist somit Aus sin x x P N f(x) f(x) = = [f(x + s) f(x)] e is ds [f(x + s) f(x)] 2 sin( s 2 ) sin((n + 2 )s) ds. π x 0 folgt, dass s f(x+s) f(x) 2 sin(s/2) eine stetig differenzierbare Funtion ist. Mit sin((n + 2 )s) = Im(ei(N+ 2 )s ) folgt das Resultat mit dem Riemann Lebesgue Lemma. Literatur K. Königsberger: Analysis (Kapitel 6.3)

5 Elementare Rechenregeln Im folgenden seien f, g: R C stetige, periodische Funtionen. Beweisen Sie: Die Abbildung F ist linear, d.h. f + g = f + ĝ λf = λ f für alle λ C. Die Funtion f ist reellwertig genau dann, wenn f(x) = f( x) für alle x R gilt. Die Funtion f ist achsensymmetrisch, d.h. f() = f( ) für alle Z genau dann, wenn f achsensymmetrisch ist, d.h. f(x) = f( x) für alle x R. Die Funtion f ist puntsymmetrisch genau dann, wenn f puntsymmetrisch ist Sind zudem f, g stetig differenzierbare Funtionen, so gilt f g() = l= f(l)ĝ( l) für alle Z. Beweis: Es gilt nach Definition für festes Z die Gleichheit Nun ist f(x) = f g() = n= Eingesetzt ergibt dies f g() = ˆ ( π f(x)g(x)e ix dx. f(n)e inx und g(x) = n= f(n)e inx )( m= m= ĝ(m)e imx. ĝ(m)e imx )e ix dx. Mit der Cauchy Produtformel (Quelle) und der Orthogonalität der Basisfuntionen ψ folgt die Aussage. Sei h gegeben durch h(x) = f(x + x 0 ) für alle x R und eine feste Zahl x 0 R. Dann ist h ebenfalls eine stetige, periodische Funtion und es gilt ĥ() = exp( i x 0 ) f() für alle Z Literatur O. Forster: Analysis (Kapitel 8,23), K. Königsberger: Analysis (Kapitel 6,6)

6 Explizite Beispiele der Fouriertransformation Es sollen erste Beispiele zu Fourierreihen gerechnet werden. Berechnen Sie die Fourieroeffizienten der Funtionen und f : R R, x, falls π x < π f(x) = periodisch fortgesetzt. g : R R, x 2, g(x) = falls π x < π periodisch fortgesetzt. Bemerung: Obwohl die Funtionen nicht auf R stetig differenzierbar sind, so onvergiert die Fourierreihe dennoch gegen die Funtion. Es gilt 0 = 0, f() = i cos(π) 0. 0 = 0, = i ( ) 0. Bemerung: Obwohl f reell war, ist es die Fouriertransformation f nicht. Diese ist sogar rein imaginär! Mit g = 2f folgt ĝ() = iĝ () = 2i f() 0 = 0, = 8π ( ) + 0, also mit der direten Rechnung ĝ(0) = g(x)dx = x 2 dx = 2 3 π3, dass 2 3 ĝ() = π3 = 0, ( ) + 0,, 2 Beweisen Sie: Sei f Cper([, π]). Seien ferner die Folgen (c ) N, (s ) N definiert über c (f) = f() + f( ) ( ) und s (f) = i f() f( ). Dann gilt f(x) = c 0(f) 2 + ( ) c (f) cos(x) + s (f) sin(x) Literatur O. Forster: Analysis (Kapitel 8,23), K. Königsberger: Analysis (Kapitel 6,6) =

7 Die Dirichletreihe 2 Beweisen Sie: Sei f Cper[, π]. Die Fourierreihe onvergiert in der Norm gegen f, also f P N (f) 2 = f(t) P N (f)(t) 2 dt 0 für N. Dies folgt sofort aus der gleichmäßigen Konvergenz P N (f) f für N und der Abschätzung f(t) P N (f)(t) 2 dt sup f(s) P N (f)(s) 2 dt s [,π] = sup f(s) P N (f)(s) 2 dt s [,π] = sup f(s) P N (f)(s) 2. s [,π] Aus der Konvergenz folgt, dass die Bessel Ungleichung für N zur Gleichheit wird. Dies wird als Satz von Parseval/Plancherel bezeichnet: = f() 2 = f(x) 2 dx. Wir zeigen zuerst per Telesopsumme, dass N = 2 und mit folgt demnach = N 2 = + =2 N 2 + ( ) = =2 N 2 + =2 ( ) = onvergiert. Es gilt ( ) = + N = 2 N 2. Das gibt uns auch die obere Schrane von 2. Für den expliziten Grenzwert berechnen wir für f aus dem vorigen Vortrag [f(x) = x auf [, π)] den Wert Ferner ist = f() 2 = f(x) 2 dx = =, 0 2 = 4π 2 = x 2 dx = 2 3 π3. Nach dem Satz von Parseval sind beide Terme gleich und damit = 2 = π2 6. Literatur: H. Amann, J. Escher: Analysis (Kapitel II.7), K. Königsberger: Analysis (Kapitel 6.7)

exp(z) := k=0 sin(z) := k=0 cos(z) := k=0

exp(z) := k=0 sin(z) := k=0 cos(z) := k=0 Die komplexen Zahlen und komplexe Exponentialfunktion In diesem Vortrag sollen die komplexen Zahlen eingeführt werden, und wichtige Eigenschaften wiederholt und bewiesen werden. Wir definieren die komplexen

Mehr

Konvergenz im quadratischen Mittel - Hilberträume

Konvergenz im quadratischen Mittel - Hilberträume CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

Fourierreihen. Definition. Eine Funktion f(x) heißt periodisch mit der Periode T, wenn f(x + T ) = f(x)

Fourierreihen. Definition. Eine Funktion f(x) heißt periodisch mit der Periode T, wenn f(x + T ) = f(x) Fourierreihen Einer auf dem Intervall [, ] definierten Funtion f(x) ann ein (approximierendes) trigonometrisches Polynom (Fourier-Polynom) der Gestalt S n (x) = a + n a cos x + n b sin x zugeordnet werden.

Mehr

Taylor-Reihenentwicklung. Bemerkungen. f(z) = a k (z z 0 ) k mit a k,z 0,z C. z k z C. f (k) (x 0 ) (x x 0 ) k mit x 0,x R.

Taylor-Reihenentwicklung. Bemerkungen. f(z) = a k (z z 0 ) k mit a k,z 0,z C. z k z C. f (k) (x 0 ) (x x 0 ) k mit x 0,x R. 8.2 Potenzreihen Definition: Eine Reihe der Form f(z) = a ( ) mit a,z 0,z C heißt (omplexe) Potenzreihe zum Entwiclungspunt z 0 C. Beispiel: Die (omplexe) Exponentialfuntion ist definiert durch die Potenzreihe

Mehr

L 2 -Theorie und Plancherel-Theorem

L 2 -Theorie und Plancherel-Theorem L -Theorie und Plancherel-Theorem Seminar Grundideen der Harmonischen Analysis bei Porf Dr Michael Struwe HS 007 Vortrag von Manuela Dübendorfer 1 Wiederholung aus der L 1 -Theorie Um die Fourier-Transformation

Mehr

Klausur - Analysis 1

Klausur - Analysis 1 Prof. Dr. László Széelyhidi Analysis I, WS 22 Klausur - Analysis Lösungen Aufgabe. i Punt Definieren Sie, wann x n eine Cauchyfolge ist. Lösung : x n heisst Cauchyfolge wenn es zu jedem ε > ein N N gibt,

Mehr

3. Potenzreihen. Definition 7.5. Eine unendliche Reihe der Form. a k x k. Es handelt sich also um eine Funktionenreihe mit f k (x) = a k x k.

3. Potenzreihen. Definition 7.5. Eine unendliche Reihe der Form. a k x k. Es handelt sich also um eine Funktionenreihe mit f k (x) = a k x k. 3. Potenzreihen Definition 7.5. Eine unendliche Reihe der Form a x mit x R (veranderlich und a R (onstant heit Potenzreihe, die Zahlen a ( heien Koezienten der Potenzreihe. Es handelt sich also um eine

Mehr

Probeklausur zur Analysis für Informatiker

Probeklausur zur Analysis für Informatiker Lehrstuhl A für Mathemati Prof. Dr. R. Stens Aachen, den 28. Januar 20 Probelausur zur Analysis für Informatier Musterlösung Aufgabe Zeigen Sie, dass für alle n N gilt. 2n+ ( ) + Beweis durch vollständige

Mehr

Kapitel 5. Vektorräume mit Skalarprodukt

Kapitel 5. Vektorräume mit Skalarprodukt Kapitel 5 Vektorräume mit Skalarprodukt 119 120 Kapitel V: Vektorräume mit Skalarprodukt 5.1 Elementare Eigenschaften des Skalarprodukts Dienstag, 20. April 04 Wollen wir in einem Vektorraum wie in der

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 2017/18, am

Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 2017/18, am Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 07/8, am 9.3.08 Aufgabe : Zeigen Sie, dass für alle n N gilt: n n+ n ( ) (8 Punte) Beweis mittels vollständiger Indution n : ( )

Mehr

Fourierreihen. Die erste dieser Aussagen folgt direkt aus der Definition. Für die zweite bemerken

Fourierreihen. Die erste dieser Aussagen folgt direkt aus der Definition. Für die zweite bemerken Fachbereich Mathematik SS 0 J. Latschev Analysis II Fourierreihen In diesem Kapitel der Vorlesung widmen wir uns der Frage, inwieweit man jede periodische Funktion als Reihe in gewissen Standardfunktionen

Mehr

Ferienkurs Analysis 1

Ferienkurs Analysis 1 TECHNISCHE UNIVERSITÄT MÜNCHEN Ferienurs Analysis 1 Potenzreihen, Exponentialfuntion, Stetigeit, Konvergenz, Grenzwert Henri Thoma 1.03.014 Inhaltsverzeichnis 1. Potenzreihen:... 1. Exponentialfuntion...

Mehr

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Dr. Gerhard Mülich Christian Maaß 6.Mai 8 Im letzten Vortrag haben wir gesehen, dass das

Mehr

0.1 Formale Potenzreihen und Konvergenz

0.1 Formale Potenzreihen und Konvergenz 0. Formale Potenzreihen und Konvergenz Erinnerung: Ein Ausdruc der Form a x oder a (x a) mit a R heißt formale Potenzreihe oder unendlich langes Polynom. Seien a = a x und b = b x zwei Potenzreihen. Wir

Mehr

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt.

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt. Potenzreihen Potenzreihen sind Funtionenreihen mit einer besonderen Gestalt. Definition. Ist (a ) eine Folge reeller (bzw. omplexer) Zahlen und x 0 R (bzw. z 0 C), dann heißt die Reihe a (x x 0 ) (bzw.

Mehr

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt.

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt. Potenzreihen Potenzreihen sind Funtionenreihen mit einer besonderen Gestalt Definition Ist (a ) eine Folge reeller (bzw omplexer) Zahlen und x 0 R (bzw z 0 C), dann heißt die Reihe a (x x 0 ) (bzw a (z

Mehr

1 + t dt = ( t) k dt. ( 1) k. k + 1 tk+1

1 + t dt = ( t) k dt. ( 1) k. k + 1 tk+1 6 POTENZREIHEN 161 Wir wollen diese Gleichung für x < 1 noch auf andere Weise herleiten. Es ist ln(1 + x) = x 1 x 1 + t dt = ( t) dt. Die geometrische Reihe = ( t) ist nach dem Majorantenriterium für t

Mehr

Lösung zum Tutorium für Topologie und Differentialrechnung mehrerer Variablen SS y. Mit A ist der Flächeninhalt des von

Lösung zum Tutorium für Topologie und Differentialrechnung mehrerer Variablen SS y. Mit A ist der Flächeninhalt des von Blatt Nr. Markus Nöth Lösung zum Tutorium für Topologie und Differentialrechnung mehrerer Variablen SS 1 Aufgabe 1 1 8 6 X w - 6 8 Abbildung 1: Cauchy-Schwarz-Ungl. A In der nebenstehenden Graphik sind

Mehr

Harmonische Analysis

Harmonische Analysis Seminar Harmonische Analysis Vortrag von Reidar Janssen 2. & 27. Oktober 211 Diese Übersetzung des ersten Kapitels von Anton Deitmars A First Course in Harmonical Analysis [] dient als Grundlage für meinen

Mehr

6 Fourierreihen und die Fouriertransformation

6 Fourierreihen und die Fouriertransformation Mathematik für Physiker IV, SS 13 Mittwoch 9.5 $Id: fourier.tex,v 1.4 13/5/31 16:8:3 hk Exp hk $ 6 Fourierreihen und die Fouriertransformation 6.1 Die Fourierreihe einer integrierbaren Funktion Am Ende

Mehr

Satz von Taylor, Taylor-Reihen

Satz von Taylor, Taylor-Reihen Satz von Taylor, Taylor-Reihen Die Kenntnis von f liefert gewisse Rücschlüsse auf die Funtion f selbst, zb Monotonie, mögliche loale Extrema Die Kenntnis von f liefert darüberhinaus eine Information, ob

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

Einige Gedanken zu gleichmäsziger Konvergenz

Einige Gedanken zu gleichmäsziger Konvergenz Einige Gedanen zu gleichmäsziger Konvergenz Henri Freymond 9. März 005 Zusammenfassung Dies ist die Ausarbeitung eines Vortrages im Rahmen des roseminars Fourieranalysis im Wintersemester 004, angelehnt

Mehr

Universität Ulm Abgabe: Donnerstag,

Universität Ulm Abgabe: Donnerstag, Universität Ulm Abgabe: Donnerstag, 8.6.9 Jun.-Prof. Dr. D. Mugnolo Manfred Sauter Sommersemester 29 Gesamtpuntzahl: 3+ Lösungen Elemente der Funtionalanalysis: Blatt 6 As for everything else, so for a

Mehr

Übungen Analysis I WS 03/04

Übungen Analysis I WS 03/04 Blatt Abgabe: Mittwoch, 29.0.03 Aufgabe : Beweisen Sie, daß für jede natürliche Zahl n gilt: n ( ) n (x + y) n = x i y n i, i (b) n ν 2 = ν= i=0 n(n + )(2n + ), 6 (c) 2 3n ist durch 7 teilbar. Aufgabe

Mehr

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel 4 Orthogonalität 4. Motivation Im euklidischen Raum ist das euklidische Produkt zweier Vektoren u, v IR n gleich, wenn die Vektoren orthogonal zueinander sind. Für beliebige Vektoren lässt sich sogar der

Mehr

Lösungsvorschläge zum 14. Übungsblatt.

Lösungsvorschläge zum 14. Übungsblatt. Übung zur Analysis III WS / Lösungsvorschläge zum 4. Übungsblatt. Aufgabe 54 Sei a R\{}. Ziel ist die Berechnung des Reihenwertes k a + k. Definiere dazu f : [ π, π] R, x coshax. Wir entwickeln f in eine

Mehr

Analysis I MATH, PHYS, CHAB. 2 k (2 k ) s = 2 k(1 s) = k=0. (2n 1) n=1. n=1. n n 2. n=1. n=1. = ζ(2) 1 4 ζ(2) = 3 4 ζ(2)

Analysis I MATH, PHYS, CHAB. 2 k (2 k ) s = 2 k(1 s) = k=0. (2n 1) n=1. n=1. n n 2. n=1. n=1. = ζ(2) 1 4 ζ(2) = 3 4 ζ(2) Prof. D. Salamon Analysis I MATH, PHYS, CHAB HS 204 Musterlösung Serie 7. Der Vollständigeit wegen, zeigen wir zunächst die Konvergenz der Reihendarstellung der ζ-funtion für s >. ζs : n n s 2 + n s 0

Mehr

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi Funktionentheorie, Woche 7 Eigenschaften holomorpher Funktionen 7.1 Ganze Funktionen Definition 7.1 Eine Funktion f : C C, die holomorph ist auf C, nennt man eine ganze Funktion. Bemerkung 7.1.1 Als Folge

Mehr

72 Orthonormalbasen und Konvergenz im quadratischen Mittel

72 Orthonormalbasen und Konvergenz im quadratischen Mittel 72 Orthonormalbasen und Konvergenz im quadratischen Mittel 30 72 Orthonormalbasen und Konvergenz im quadratischen Mittel Wir untersuchen nun die Konvergenz von Fourier-Reihen im quadratischen Mittel in

Mehr

Lösungen der Übungsaufgaben von Kapitel 3

Lösungen der Übungsaufgaben von Kapitel 3 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen

Mehr

Wesentliche Sätze (Analysis 1 für Lehramt)

Wesentliche Sätze (Analysis 1 für Lehramt) Wesentliche Sätze (Analysis für Lehramt) Inhaltsverzeichnis Alexander Schmalstieg TU Dortmund, Wintersemester 203/204 Wichtige Formeln 2 Folgen 2 3 Maxima und Suprema 3 4 Gleichmäßige Konvergenz 3 5 Funtionen

Mehr

Westfälische Wilhelms-Universität Münster. Seminararbeit. Fourier-Reihen. vorgelegt von. Stefan Marczinzik

Westfälische Wilhelms-Universität Münster. Seminararbeit. Fourier-Reihen. vorgelegt von. Stefan Marczinzik Westfälische Wilhelms-Universität Münster Seminararbeit Fourier-Reihen vorgelegt von Stefan Marczinzik Fachbereich Mathematik und Informatik Seminar: Integraltransformationen (WS /3) Seminarleiter: Prof.

Mehr

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Prof Dr Picard, gehalten von Helena Malinowski In vorhergehenden Vorträgen und dazugehörigen

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 08.0.06 Höhere Mathemati für die Fachrichtung Physi Lösungsvorschläge zum 9. Übungsblatt

Mehr

Aufgaben zu Kapitel 0

Aufgaben zu Kapitel 0 Aufgaben zu Kapitel 0 0.1. Seien A und B zwei Mengen. Wie kann man paarweise disjunkte Mengen A 1, A 2 und A 3 so wählen, dass A 1 A 2 A 3 = A B gilt? 0.2. Seien E ein Menge und A eine Teilmengen von E.

Mehr

Punktweise Konvergenz stückweise glatter Funktionen. 1 Vorbereitungen

Punktweise Konvergenz stückweise glatter Funktionen. 1 Vorbereitungen Vortrag zum Seminar zur Fourieranalysis, 3.10.007 Margarete Tenhaak Im letzten Vortrag wurde die Fourier-Reihe einer -periodischen Funktion definiert. Fourier behauptete, dass die Fourier-Reihe einer periodischen

Mehr

1. Aufgabe (6 Punkte) Zeigen Sie mit Hilfe der vollständigen Induktion, dass folgende Gleichheit gilt für alle n N, n 2. k (k + 1)! = 1 1 n!.

1. Aufgabe (6 Punkte) Zeigen Sie mit Hilfe der vollständigen Induktion, dass folgende Gleichheit gilt für alle n N, n 2. k (k + 1)! = 1 1 n!. . Aufgabe (6 Punte) Zeigen Sie mit Hilfe der vollständigen Indution, dass folgende Gleichheit gilt für alle n N, n 2 n ( + )! n!. [6P] Ind. Anfang: n 2 oder l.s. ( + )! 2 r.s. 2! 2. ( + )! 2! 2! 2 2 2

Mehr

Fourierreihen und Funktionentheorie. 1 Der Poisson-Kern

Fourierreihen und Funktionentheorie. 1 Der Poisson-Kern Vortrag zum Seminar Fourieranalysis, 7..007 Corinna Schaaf Bisher haben wir Fourierreihen, die auf dem orus {x R : π x < π} definiert sind, betrachtet. Es ist jedoch auch möglich, Fourierreihen auf der

Mehr

Analysis für Informatiker und Statistiker Nachklausur

Analysis für Informatiker und Statistiker Nachklausur Prof. Dr. Peter Otte Wintersemester 213/14 Tom Bachmann, Sebastian Gottwald 14.3.214 Analysis für Informatiker und Statistiker Nachklausur Lösungsvorschlag Name:.......................................................

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof Dr E Triesch Höhere Mathematik II SoSe 5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1 Aufgabe a Hier kann man die Regel von de l Hospital zweimal anwenden (jeweils und die Ableitung des Nenners ist für hinreichend große x ungleich. Dies führt auf e x e x e x + e x e x + e x e x e x e x

Mehr

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an.

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. Analysis I, WiSe 2013/14, 04.02.2014 (Iske), Version A 1 Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. a) Welche der folgenden Aussagen über Folgen sind sinnvoll und

Mehr

Analysis I. 3. Beispielklausur mit Lösungen

Analysis I. 3. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 3. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine Abbildung F von einer Menge L in eine

Mehr

Aufgabe 1. Version A Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an.

Aufgabe 1. Version A Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. Analysis I, WiSe 013/14, 04.0.014 (Ise 1 Aufgabe 1. Version A Multiple Choice (4 Punte. Kreuzen Sie die richtige(n Antwort(en an. a Welche der folgenden Aussagen über Folgen sind sinnvoll und wahr? jede

Mehr

VIII. Fourier - Reihen

VIII. Fourier - Reihen VIII. Fourier - Reihen Dieses Kapitel enthält eine kurze Einführung in die mathematische Beschreibung von Schwingungen. Übersicht über den Inhalt von Kapitel VIII: 5. Der Satz von Fejér 53. Die Parsevalsche

Mehr

Inverse Fourier Transformation

Inverse Fourier Transformation ETH Zürich HS 27 Departement Mathematik Seminararbeit Inverse Fourier Transformation Patricia Hinder Sandra König Oktober 27 Prof. M. Struwe Im Vortrag der letzten Woche haben wir gesehen, dass die Faltung

Mehr

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C Kapitel 5. Die trigonometrischen Funktionen 5.1. Die komplexen Zahlen 5.. Folgen und Reihen in C 5.10. Definition. Eine Folge (c n n N komplexer Zahlen heißt konvergent gegen c C, falls zu jedem ε > 0

Mehr

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben. Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung

Mehr

Kapitel 10 Die Fourier Transformation. Disclaimer

Kapitel 10 Die Fourier Transformation. Disclaimer Kapitel 10 Die Fourier Transformation Paul Bergold 7. Januar 2016 Disclaimer Dies ist meine persönliche Vortragsvorbereitung für das Seminar Early Fourier Analysis im Wintersemester 2015/16 an der TUM.

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Nachklausur Analysis 2

Nachklausur Analysis 2 Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,

Mehr

Leitfaden a tx t

Leitfaden a tx t Leitfaden -0.7. Potenz-Reihen. Definition: Es sei (a 0, a, a 2,...) eine Folge reeller Zahlen (wir beginnen hier mit dem Index t 0). Ist x R, so kann man die Folge (a 0, a x, a 2 x 2, a 3 x 3,...) und

Mehr

Ferienkurs der TU München- - Analysis 2 Fourierreihen und Taylorreihen. Marcus Jung, Jonas J. Funke

Ferienkurs der TU München- - Analysis 2 Fourierreihen und Taylorreihen. Marcus Jung, Jonas J. Funke Ferienkurs der U München- - Analysis Fourierreihen und aylorreihen Lösung Marcus Jung, Jonas J. Funke 3.8. FOURIERREIHEN Fourierreihen Aufgabe. Sei f : R R stetig und periodisch mit Fourierkoeffizienten

Mehr

cos(kx) sin(nx)dx =?

cos(kx) sin(nx)dx =? 3.5 Fourierreihen 3.5.1 Vorbemerkungen cos(kx) sin(nx)dx =? cos gerade Funktion x cos(kx) gerade Funktion sin ungerade Funktion x sin(nx) ungerade Funktion x cos(kx) sin(nx) ungerade Funktion Weil [, π]

Mehr

Unter einem reellen inneren Produktraum verstehen wir einen Vektorraum V über

Unter einem reellen inneren Produktraum verstehen wir einen Vektorraum V über 9 Innere Produkte In diesem Kapitel betrachten wir immer Vektorräume über dem Körper der reellen Zahlen R oder dem Körper der komplexen Zahlen C. Definition 9.1: Sei V ein Vektorraum über R. Ein inneres

Mehr

7. Die Funktionalgleichung der Zetafunktion

7. Die Funktionalgleichung der Zetafunktion 7. Die Funktionalgleichung der Zetafunktion 7.. Satz (Poissonsche Summenformel. Sei f : R C eine stetig differenzierbare Funktion mit und sei f(x = O( x und f (x = O( x für x ˆf(t := f(xe πixt dx. die

Mehr

53 Die Parsevalsche Gleichung

53 Die Parsevalsche Gleichung 53 Die Parsevalsche Gleichung 53 Die Parsevalsche Gleichung 5 53. Skalarprodukte auf Räumen quadratintegrierbarer Funktionen. a) Die Orthogonalitätsrelationen (5.5) legen die Interpretation des Ausdrucks

Mehr

Lösungsvorschläge für das 5. Übungsblatt

Lösungsvorschläge für das 5. Übungsblatt Lösungsvorschläge für das 5. Übungsblatt Aufgabe 6 a) Sei = [0, ], f(x) := [e x ] für x. Hierbei ist [y] := maxk Z k y} für y. Behauptung: f ist messbar und es ist f(x) dx = 2 log 2. falls x [0, log 2),

Mehr

Differentialgleichungen und Hilberträume Sommersemester 2014 Übungsblatt 11

Differentialgleichungen und Hilberträume Sommersemester 2014 Übungsblatt 11 Institut für Analysis Prof. Dr. Wolfgang Reichel Dipl.-Math. Anton Verbitsky Aufgabe 1 Differentialgleichungen und Hilberträume Sommersemester 14 Übungsblatt 11 5 Punkte In dieser Aufgabe geht es um die

Mehr

Liste wichtiger Stammfunktionen

Liste wichtiger Stammfunktionen Liste wichtiger Stammfunktionen Funktion Stammfunktion x n, x ln(x) n R \ { } n + xn+ ln( x ) x ln(x) x a x, a > sin(x) cos(x) sin 2 (x) cos 2 (x) x 2 x 2 a x ln(a) cos(x) sin(x) (x sin(x) cos(x)) 2 (x

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche

Mehr

Kapitel 1. Holomorphe Funktionen

Kapitel 1. Holomorphe Funktionen Kapitel 1 Holomorphe Funktionen Zur Erinnerung: I IR sei ein offenes Intervall, und sei z 0 I. Eine Funktion f : I IR heißt differenzierbar in z 0, falls der Limes fz fz 0 lim =: f z 0 z z 0 z z 0 existiert.

Mehr

Die Fourier-Transformierte

Die Fourier-Transformierte Die Fourier-Transformierte Proseminar Analysis Sommersemester 008 Natalia Dück 6.06.08 Inhaltsverzeichnis Einleitung/Fourier-Transformierte. Definition..................................... Beispiele......................................3

Mehr

Teil III. Fourieranalysis

Teil III. Fourieranalysis Teil III Fourieranalysis 3 / 3 Fourierreihen Ziel: Zerlegung einer gegebenen Funktion in Schwingungen Konkret: f : (, L) R gegebene Funktion Gesucht: Darstellung der Form ( f (x) = a + a n cos ( n L x)

Mehr

1.1 Vorbemerkung: Konvergenz von Reihen. g = lim. n=0. n=0 a n sei konvergent und schreibt. a n = g. (2) n=0

1.1 Vorbemerkung: Konvergenz von Reihen. g = lim. n=0. n=0 a n sei konvergent und schreibt. a n = g. (2) n=0 1 Taylor-Entwicklung 1.1 Vorbemerkung: Konvergenz von Reihen Gegeben sei eine unendliche Folge a 0,a 1,a,... reeller Zahlen a n R. Hat der Grenzwert g = lim k a n (1) einen endlichen Wert g R, so sagt

Mehr

Lösungen der Übungen. zur Vorlesung HILBERTRAUM-METHODEN UND ANWENDUNGEN

Lösungen der Übungen. zur Vorlesung HILBERTRAUM-METHODEN UND ANWENDUNGEN Fachbereich Mathemati und Informati Philipps-Universität Marburg Lösungen der Übungen zur Vorlesung HILBERTRAUM-METHODEN UND ANWENDUNGEN Prof. Dr. C. Portenier Wintersemester 24/25 Fassung vom 6. Januar

Mehr

Wichtige Kenntnisse der Linearen Algebra

Wichtige Kenntnisse der Linearen Algebra Wichtige Kenntnisse der Linearen Algebra In Kapitel 3 der Vorlesung werden wir sehen (und in Kapitel 6 vertiefen, dass zur Beschreibung von Quantensystemen mathematische Begriffe aus dem Gebiet der Linearen

Mehr

Analysis I Mathematik für InformatikerInnen II SoSe 12 Musterlösungen zur Prüfungsklausur vom 18. Juli 2012

Analysis I Mathematik für InformatikerInnen II SoSe 12 Musterlösungen zur Prüfungsklausur vom 18. Juli 2012 Humboldt-Universität zu Berlin Mathematisch-Naturwissenschaftliche Faultät II Institut für Mathemati Unter den Linden 6, D-0099 Berlin Prof. Andreas Griewan Ph.D. Dr. Thomas M. Surowiec Dr. Fares Maalouf

Mehr

Musterlösungen zur 10. Serie: Fourier-Reihen

Musterlösungen zur 10. Serie: Fourier-Reihen Musterlösungen zur. Serie: Fourier-Reihen. Aufgabe Bestimmen Sie die Fourier-Koeffizienten der Funktionen fx) x, gx) x und hx) e x a) auf [, ] bzgl., cosx, sinx, cosx,,sinx..., b) auf [, ] bzgl. c) auf

Mehr

Fourierreihen und -transformation

Fourierreihen und -transformation Kapitel Fourierreihen und -transformation. Fourierreihen 8 postulierte Fourier (ohne stichhaltige Beweise: Jede beliebige Funktion f(x mit Periode, d. h. f(x = f(x +, lässt sich in eine Reihe der Gestalt

Mehr

Mathematik 2 (Master Sicherheitstechnik)

Mathematik 2 (Master Sicherheitstechnik) Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 4.6.8 Mathematik Master Sicherheitstechnik) Übungsblatt 8 Aufgabe 5. Konvergenz von Fourierreihen) Der Sinus Hyperbolicus ist die Funktion sinhx) = e x e x). Es

Mehr

Universität Ulm Abgabe: Mittwoch,

Universität Ulm Abgabe: Mittwoch, Universität Ulm Abgabe: Mittwoch, 8.5.23 Prof. Dr. W. Arendt Jochen Glück Sommersemester 23 Punktzahl: 36+4* Lösungen Halbgruppen und Evolutionsgleichungen: Blatt 2. Sei X ein Banachraum und (T (t)) t

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr

Spektraltheorie. 1. Übungsblatt - Lösungsvorschlag PD Dr. Peer Kunstmann M.Sc. Michael Ullmann

Spektraltheorie. 1. Übungsblatt - Lösungsvorschlag PD Dr. Peer Kunstmann M.Sc. Michael Ullmann 804208 PD Dr Peer Kunstmann MSc Michael Ullmann Spetraltheorie Übungsblatt - Lösungsvorschlag Aufgabe Gegenbeispiele Finden Sie Gegenbeispiele zum Satz vom abgeschlossenen Graphen, falls wir i nur, als

Mehr

Lösungen zu Übungsblatt 9

Lösungen zu Übungsblatt 9 Analysis : Camillo de Lellis HS 007 Lösungen zu Übungsblatt 9 Lösung zu Aufgabe 1. Wir müssen einfach das Integral 16 (x + y d(x, y x +y 4 ausrechnen. Dies kann man einfach mittels Polarkoordinaten, da

Mehr

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016)

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016) 1 Vorlesung Mathematik 2 für Ingenieure (Sommersemester 216) Kapitel 11: Potenzreihen und Fourier-Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

Übungen zu Analysis, SS 2015

Übungen zu Analysis, SS 2015 Übungen zu Analysis, SS 215 Ulisse Stefanelli 15. Juni 215 1 Wiederholung 1. Untersuchen Sie das Verhalten der folgenden Folgen a n = n 2 cosh(1/n), b n = ln(ln(n))/n, c n = (2 n n 2 )/n!, 2. Stellen Sie

Mehr

Karteikarten, Analysis 2, Sätze und Definitionen nach der Vorlesung von PD Hanke

Karteikarten, Analysis 2, Sätze und Definitionen nach der Vorlesung von PD Hanke Karteikarten, Analysis 2, Sätze und en nach der Vorlesung von PD Hanke Felix Müller, felix.b.mueller@physik.lmu.de Diese Karteikärtchen sollten alle en und Sätze der Vorlesung Analysis 2 bei Herrn PD Hanke

Mehr

13 Die trigonometrischen Funktionen

13 Die trigonometrischen Funktionen 13 Die trigonometrischen Funktionen Wir schreiben die Werte der komplexen Exponentialfunktion im Folgenden auch als e z = exp(z) (z C). Geometrisch definiert man üblicherweise die Werte der Winkelfunktion

Mehr

9. Übung zur Maß- und Integrationstheorie, Lösungsskizze Aufgaben

9. Übung zur Maß- und Integrationstheorie, Lösungsskizze Aufgaben 9. Übung zur aß- und Integrationstheorie, Lösungsskizze Aufgaben A 50 (Eine Flächenberechnung mit dem Cavalierischen Prinzip). Es seien a, b > 0 und : { (x, y) R 2 : (x/a) 2 + (y/b) 2 1 }. (a) Skizzieren

Mehr

Analysis für Informatiker und Statistiker Modulprüfung

Analysis für Informatiker und Statistiker Modulprüfung Prof. Dr. Peter Otte Wintersemester 2013/14 Tom Bachmann, Sebastian Gottwald 18.02.2014 Analysis für Informatiker und Statistiker Modulprüfung Lösungsvorschlag Name:.......................................................

Mehr

9. Übung zur Linearen Algebra II -

9. Übung zur Linearen Algebra II - 9. Übung zur Linearen Algebra II - en Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. SS 00. Aufgabe 33 (i) Beweise oder widerlege: In einem euklidischen VR gilt x + y = x + y x y (Satz von Pythagoras).

Mehr

Vorlesung Analysis I WS 07/08

Vorlesung Analysis I WS 07/08 Vorlesung Analysis I WS 07/08 Erich Ossa Vorläufige Version 07/12/04 Ausdruck 8. Januar 2008 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Elementare Logik.................................. 1 1.1.A Aussagenlogik................................

Mehr

Nachklausur Analysis I

Nachklausur Analysis I SS 008 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Nachklausur Analysis I 07.0.008 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

6.1 Zerlegungen Ober- und Unterintegrale Existenz des Integrals

6.1 Zerlegungen Ober- und Unterintegrale Existenz des Integrals Kapitel 6 Das Riemann-Integral In diesem Abschnitt wollen wir einen Integralbegriff einführen. Dieser Integralbegriff geht auf Riemann 1 zurück und beruht auf einer naheliegenden Anschauung. Es wird sich

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel IV SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

(a, 0) (c, 0) = (ac, 0) (0, 1) =: i. Re(z) := a der Realteil und Im(z) := b der Imaginärteil

(a, 0) (c, 0) = (ac, 0) (0, 1) =: i. Re(z) := a der Realteil und Im(z) := b der Imaginärteil 14 DIE EXPONENTIALFUNKTION IM KOMPLEXEN 73 Wegen (a, 0) + (c, 0) = (a + c, 0) (a, 0) (c, 0) = (ac, 0) kann man die Teilmenge {(a, 0) a R} mit den darauf eingeschränkten Verknüpfungen identifizieren mit

Mehr

Der Satz von Taylor. Kapitel 7

Der Satz von Taylor. Kapitel 7 Kapitel 7 Der Satz von Taylor Wir haben bereits die Darstellung verschiedener Funktionen, wie der Exponentialfunktion, der Cosinus- oder Sinus-Funktion, durch unendliche Reihen kennen gelernt. In diesem

Mehr

Reihenentwicklung II. 1 Potenzreihenentwicklung von Lösungen

Reihenentwicklung II. 1 Potenzreihenentwicklung von Lösungen Vortrag zum Seminar Gewöhnliche Differentialgleichungen, 29.11.2011 Julia Rittich In dem vorherigen Vortrag haben wir erfahren, dass in vielen Anwendungsproblemen eine Differentialgleichung nicht in geschlossener

Mehr

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C)

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C) Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, 14..009 (Version C Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen aus der Vorlesung

Mehr

Aufgabensammlung zur Analysis 1

Aufgabensammlung zur Analysis 1 Analysis 1 18.12.2017 Prof. Dr. H. Koch Dr. F. Gmeineder Abgabe: Keine Abgabe. Aufgabensammlung zur Analysis 1 Anmerkungen: Das vorliegende Blatt enthält eine Auswahl von Aufgaben, die auf Klausuren zur

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

4 Funktionenfolgen und normierte Räume

4 Funktionenfolgen und normierte Räume $Id: norm.tex,v 1.57 2018/06/08 16:27:08 hk Exp $ $Id: jordan.tex,v 1.34 2018/07/12 20:08:29 hk Exp $ 4 Funktionenfolgen und normierte Räume 4.7 Kompakte Mengen Am Ende der letzten Sitzung hatten wir zwei

Mehr

Stetigkeit, Konvergenz, Topologie

Stetigkeit, Konvergenz, Topologie Ferienkurs Seite 1 Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Wintersemester 2011/12 Stetigkeit, Konvergenz, Topologie 21.03.2012 Inhaltsverzeichnis 1 Stetigkeit und Konvergenz

Mehr

Mathematik für Sicherheitsingenieure II (MScS, MScQ)

Mathematik für Sicherheitsingenieure II (MScS, MScQ) Priv.-Doz. Dr. J. Ruppenthal Wuppertal,..28 Mathematik für Sicherheitsingenieure II (MScS, MScQ) Modulteil: Mathematik II Aufgabe. (6+7+7 Punkte) a) Bringen Sie folgende komplexe Zahlen in die Form x +

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr