2. Freie Schwingungen

Größe: px
Ab Seite anzeigen:

Download "2. Freie Schwingungen"

Transkript

1 2. Freie Schwingungen Bei freien Schwingungen greifen keine zeitlich veränderlichen äußeren Kräfte am schwingenden System an. Das System wird nach einer anfänglichen Störung sich selbst überlassen. Die Störung kann in einer Anfangsauslenkung oder einer Anfangsgeschwindigkeit bestehen. Prof. Dr. Wandinger 4. Schwingungen TM 4.2-1

2 2. Freie Schwingungen Die einfachsten schwingungsfähigen Systeme sind lineare Systeme: Die Rückstellkräfte sind proportional zur Auslenkung. Die Dämpfungskräfte sind proportional zur Geschwindigkeit. Bei linearen Systemen gilt das Superpositionsprinzip: Jede lineare Überlagerung von Schwingungen ist ebenfalls eine Schwingung. Prof. Dr. Wandinger 4. Schwingungen TM 4.2-2

3 Grundmodell: 2. Freie Schwingungen Das Grundmodell eines einfachen linearen schwingungsfähigen Systems besteht aus einer Masse, einer Feder und einem Dämpfer. Feder Dämpfer Masse x Prof. Dr. Wandinger 4. Schwingungen TM 4.2-3

4 2. Freie Schwingungen Bewegungsgleichung: Schwerpunktsatz: F F F D m a= F F F D Mit F F =c x F D =d ẋ a= ẍ m x Federsteifigkeit c: N /m Dämpfungskonstante d: folgt: m ẍ d ẋ c x=0 N m/s = kg s Prof. Dr. Wandinger 4. Schwingungen TM 4.2-4

5 2. Freie Schwingungen 2.1 Freie ungedämpfte Schwingungen 2.2 Freie gedämpfte Schwingungen Prof. Dr. Wandinger 4. Schwingungen TM 4.2-5

6 2.1 Freie ungedämpfte Schwingungen Lösung der Bewegungsgleichung für das Grundmodell: Für freie ungedämpfte Schwingungen lautet die Bewegungsgleichung: m ẍ c x=0 Division durch die Masse m führt auf die Standardform der Schwingungsgleichung: ẍ c m x=0 Die Lösung dieser Gleichung ist eine harmonische Schwingung mit der Kreisfrequenz = c m Prof. Dr. Wandinger 4. Schwingungen TM 4.2-6

7 2.1 Freie ungedämpfte Schwingungen Die allgemeine Lösung lautet: Die Amplitude x a und die Phase φ werden aus den Anfangsbedingungen bestimmt: x 0 =x 0 = x a sin v 0 =ẋ 0 = x a cos Beispiele: x t =x a sin t tan = x 0 v 0, x a = x 0 0, v 0 =0 : x a = x 0, cot =0 = 2 = x 0 =0, v 0 0 : x v 0 a, tan =0 =0 x v Prof. Dr. Wandinger 4. Schwingungen TM 4.2-7

8 2.1 Freie ungedämpfte Schwingungen Beispiel: Kragbalken mit Einzelmasse L E, I m F w Um die Masse um die Strecke w zu verschieben, ist die Kraft F=3 EI L w 3 erforderlich (vgl. Festigkeitslehre). Für die Federkonstante c gilt also: c= F w =3 EI L 3 Prof. Dr. Wandinger 4. Schwingungen TM 4.2-8

9 2.1 Freie ungedämpfte Schwingungen Damit folgt für die Kreisfrequenz: = c m = 3 EI m L 3 Der Balken schwingt mit der Frequenz f = EI m L 3 und der Periode T = 1 f =2 m L3 3 EI Prof. Dr. Wandinger 4. Schwingungen TM 4.2-9

10 2.1 Freie ungedämpfte Schwingungen Beispiel: Rollschwinger Eine zylindrische Walze mit Masse m und Massenträgheitsmoment J S bezüglich m, J S des Schwerpunktes wird durch eine im Schwerpunkt r befestigte Feder der Steifigkeit c gehalten. c S x φ Die Walze kann auf einer horizontalen Ebene rollen. Prof. Dr. Wandinger 4. Schwingungen TM

11 2.1 Freie ungedämpfte Schwingungen Walze freigeschnitten: m, J S x r S c x mg φ H N Rollbedingung: x=r ẍ=r Momentensatz bezüglich Schwerpunkt S: J S =r H Schwerpunktsatz: m ẍ= c x H H = c r m r Schwingungsgleichung: J S mr 2 c r 2 =0 Prof. Dr. Wandinger 4. Schwingungen TM

12 2.1 Freie ungedämpfte Schwingungen Standardform der Schwingungsgleichung: Daraus kann abgelesen werden: = c r2 J S m r 2 =0 c r 2 f = 1 J S m r 2 2 c r 2 J S m r 2 Prof. Dr. Wandinger 4. Schwingungen TM

13 2.1 Freie ungedämpfte Schwingungen Beispiel: Pendel mit Feder A h m, J S A S B h B Der Körper mit Masse m und Massenträgheitsmoment J A ist im Punkt A gelenkig aufgehängt. Im Punkt B ist eine lineare Feder mit der Federkonstanten c befestigt. Gesucht ist die Frequenz für Schwingungen mit kleiner Amplitude. c Prof. Dr. Wandinger 4. Schwingungen TM

14 2.1 Freie ungedämpfte Schwingungen Für kleine Winkel gilt: x S =h S sin h S x B =h B sin h B Kräfte am ausgelenkten Körper: A A G S h S x S S h B F F B x B φ B G=m g F F =c x B =c h B Prof. Dr. Wandinger 4. Schwingungen TM

15 2.1 Freie ungedämpfte Schwingungen Momentensatz bezüglich A: Mit cos und den Beziehungen für x S und die Kräfte folgt: J A c h 2 B h S m g =0 Standardform der Schwingungsgleichung: h 2 S m g c h B =0 J A Daraus kann abgelesen werden: J A = h B cos F F x S G = h 2 s m g c h B f = 1 h 2 s m g c h B J A 2 J A Prof. Dr. Wandinger 4. Schwingungen TM

16 2.1 Freie ungedämpfte Schwingungen Statische Vorlast: c(x s + x) x s G x x s + x G Prof. Dr. Wandinger 4. Schwingungen TM

17 2.1 Freie ungedämpfte Schwingungen Statische Ruhelage: c x s =G Schwerpunktsatz: m ẍ=g c x s x m ẍ c x=0 Eine Schwingung erfolgt immer um die statische Ruhelage. Vorspannkraft und statische Last sind im Gleichgewicht. Bei linearen Systemen muss die statische Last nicht berücksichtigt werden, wenn die Auslenkung von der statischen Ruhelage aus gemessen wird. Prof. Dr. Wandinger 4. Schwingungen TM

18 2.1 Freie ungedämpfte Schwingungen Die Frequenz kann aus der statischen Auslenkung berechnet werden: Gewichtskraft: G=m g Statische Ruhelage: c x s =m g c m = g x s Frequenz: f = 1 2 g x s Prof. Dr. Wandinger 4. Schwingungen TM

19 Bei realen Systemen werden die Schwingungsausschläge mit der Zeit kleiner, und die Schwingung kommt zum Stillstand. Ursache sind Energieverluste durch Reibungs- und Dämpfungskräfte: Lagerreibung Luftwiderstand innere Reibung des Werkstoffs Prof. Dr. Wandinger 4. Schwingungen TM

20 Dämpfungskräfte sind stets der Bewegungsrichtung entgegengesetzt. Die genaue Beschreibung aller dämpfenden Einflüsse ist aufwändig. Das einfachste Dämpfungsmodell ist das Modell einer geschwindigkeitsproportionalen Dämpfung: Dämpferkonstante d: F D =d v=d ẋ Einheit Kraft/Geschwindigkeit: 1Ns/m = 1kg/s Prof. Dr. Wandinger 4. Schwingungen TM

21 Lösung der Bewegungsgleichung: Aus m ẍ d ẋ c x=0 folgt nach Division durch m die Standardform ẍ 2 ẋ 2 x=0 Dabei wurde die Abklingkonstante = d 2m eingeführt. kg Die Dimension der Abklingkonstante ist. s kg = 1 s Prof. Dr. Wandinger 4. Schwingungen TM

22 Einsetzen des Lösungsansatzes x t = A e t, ẋ t = A e t, ẍ t = 2 A e t führt auf Ae t =0. Nichttriviale Lösungen mit A 0 existieren nur, wenn die charakteristische Gleichung =0 erfüllt ist. Prof. Dr. Wandinger 4. Schwingungen TM

23 Die charakteristische Gleichung hat die beiden Lösungen 1/2 = ± 2 2 = ± Mit dem Lehrschen Dämpfungsmaß folgt: D= 1/2 = ± D 2 1 Prof. Dr. Wandinger 4. Schwingungen TM

24 Dämpfungsfälle: Starke Dämpfung: D > 1: 2 reelle Lösungen Kritische Dämpfung: D = 1: 1 reelle Lösung Schwache Dämpfung: D < 1: 2 komplexe Lösungen Prof. Dr. Wandinger 4. Schwingungen TM

25 Starke Dämpfung: Es gibt 2 reelle Lösungen 1/2 = ± mit = D 2 1= 2 2. Die allgemeine Lösung der Schwingungsgleichung ist x t = A 1 e 1t A 2 e 2t =e t A 1 e t A 2 e t Das ist eine exponentiell abklingende Funktion. Für die Geschwindigkeit folgt: ẋ t = e t A 1 e t A 2 e t e t A 1 e t A 2 e t Prof. Dr. Wandinger 4. Schwingungen TM

26 Die Konstanten A 1 und A 2 können aus den Anfangsbedingungen bestimmt werden: Verschiebung: x 0 =x 0 = A 1 A 2 Geschwindigkeit: v 0=ẋ 0 = A 1 A 2 A 1 A 2 A 1 A 2 = x 0 A 1 A 2 = v 0 = A 1 A A 1 = x 0 v 0 A 1 = x 0 v 0 2 A 2 = x 0 v 0 A 2 = x 0 v 0 2 Prof. Dr. Wandinger 4. Schwingungen TM

27 v 0 > 0 v 0 = 0 x(t) -δx 0 < v 0 < 0 v 0 < -δx 0 t Prof. Dr. Wandinger 4. Schwingungen TM

28 Kritische Dämpfung: Es gibt nur eine reelle Lösung 1 = 2 = Die allgemeine Lösung lautet: x t = A 1 A 2 t e t Die Konstanten A 1 und A 2 können wieder aus den Anfangsbedingungen bestimmt werden. Dieser Fall wird auch als aperiodischer Grenzfall bezeichnet. Prof. Dr. Wandinger 4. Schwingungen TM

29 x(t) Der Ausschlag geht schneller gegen Null als bei starker Dämpfung. Technische Anwendung findet der Grenzfall z.b. bei der Auslegung von Messgeräten. t Prof. Dr. Wandinger 4. Schwingungen TM

30 Schwache Dämpfung: Es gibt 2 komplexe Lösungen 1/2 = ±i d mit d = 1 D 2. Die allgemeine Lösung lautet x t = A 1 e 1t A 2 e 2t =e t A 1 e i t d A 2 e i d t mit zwei komplexen Konstanten A 1 =a 1 i b 1, A 2 =a 2 i b 2 Prof. Dr. Wandinger 4. Schwingungen TM

31 Mit den Eulerschen Formeln folgt: e ix =cos x i sin x, e ix =cos x i sin x x t =e t [ a 1 i b 1 cos d t i sin d t a 2 i b 2 cos d t i sin d t ] =e t [ a 1 a 2 cos d t b 1 b 2 sin d t i b 1 b 2 cos d t a 1 a 2 sin d t ] Die Lösung ist reell für a 1 =a 2 = C 1 2, b 1= b 2 = C 2 2 Prof. Dr. Wandinger 4. Schwingungen TM

32 Damit lautet die allgemeine Lösung: x t =e t C 1 cos d t C 2 sin d t Für die Geschwindigkeit folgt: ẋ t = e t C 1 cos d t C 2 sin d t e t d C 1 sin d t C 2 cos d t =e t [ d C 2 C 1 cos d t d C 1 C 2 sin d t ] Die Konstanten können aus den Anfangsbedingungen bestimmt werden: x 0 =x 0 =C 1 C 1 =x 0 v 0 =ẋ 0 = d C 2 C 1 C 2 = v 0 x 0 d Prof. Dr. Wandinger 4. Schwingungen TM

33 Ergebnis: x t =e t[ x 0cos d t v 0 x 0 d sin d t ] Wie im ungedämpften Fall lässt sich die Lösung auch in der Form x t =C e t sin d t schreiben. Dabei gilt: C= x 2 0 v 0 x 0 d 2, tan = d x 0 v 0 x 0 x 0 =C sin, v 0 x 0 d =C cos Prof. Dr. Wandinger 4. Schwingungen TM

34 T d d T d =2 x(t) t Prof. Dr. Wandinger 4. Schwingungen TM

35 Es liegt eine exponentiell abklingende Schwingung vor. Die Frequenz f d der gedämpften Schwingung ist kleiner als die Frequenz f der ungedämpften Schwingung: f d f = d = 1 D² Bei vielen praktischen Anwendungen ist D < 5%. Für D = 5% gilt: f d f = 1 0,05²=0,9987 Die Abweichung von der ungedämpften Frequenz beträgt also etwa 0,1%. Prof. Dr. Wandinger 4. Schwingungen TM

36 Logarithmisches Dekrement: Für das Verhältnis von 2 Ausschlägen im Abstand einer Periode T d gilt: x t x t T d = C e t sin d t C e t T d sin d t T d =e T d Das logarithmische Dekrement ist definiert durch =ln x t x t T d = T d= 2 d =2 Für sehr schwache Dämpfung (D < 10%) gilt die Näherung D 1 D 2 1 D D Prof. Dr. Wandinger 4. Schwingungen TM

37 Beispiel: Einachsiger Anhänger L F L D Das Berechnungsmodell des Anhängers besteht aus einem starren Körper mit Masse m und Massenträgheitsmoment J S um den Schwerpunkt. A L S S d m, J S c Das Fahrwerk wird durch eine Feder und einen Dämpfer beschrieben. Prof. Dr. Wandinger 4. Schwingungen TM

38 Gesucht: Anhänger freigeschnitten: Frequenz f der ungedämpften Schwingung Wert der Dämpferkonstanten d, damit eine Anfangsauslenkung φ 0 nach zwei vollen Schwingungen auf φ 0 /50 S abklingt Die Auslenkungen können als klein angenommen werden. A φ F D F F Prof. Dr. Wandinger 4. Schwingungen TM

39 Momentensatz bezüglich A: Kräfte: Schwingungsgleichung: Standardform: F F =c L F sin c L F F D =d L D cos d L D Frequenz der ungedämpften Schwingung: f = 2 = 1 2 c L F 2 2 J S m L S J S m L S2 = L F F F L D F D J S m L S2 d L D2 c L F 2 =0 d L 2 D J S m L c L 2 F 2 S J S m L =0 2 S Prof. Dr. Wandinger 4. Schwingungen TM

40 Ausschlag nach 2 vollen Schwingungen: 2T d =C e 2 T d sin 2 d T d =C e 2 T d sin 4 =e 2 T d 0 = 0 /50 e 2 T d =50 2 T d =ln 50 Mit T d =2 D folgt: 1 D 2 ln 50 =4 D ln D 2 =16 2 D 2 1 D 2 ln 2 50 = 16 2 ln 2 50 D 2 D=0,2972 Prof. Dr. Wandinger 4. Schwingungen TM

41 Mit D= / folgt: 2 D=2 = d L 2 D J S m L S 2 d = 2 D L D 2 J S m L 2 S Ergebnis: d= 2 D L D 2 2 c L F J S m L S2 = 0, L D 2 c L F J S m L S2 Prof. Dr. Wandinger 4. Schwingungen TM

2. Freie gedämpfte Schwingungen

2. Freie gedämpfte Schwingungen 2. Freie gedämpfte Schwingungen Bei realen Systemen werden die Schwingungsausschläge mit der Zeit kleiner, und die Schwingung kommt zum Stillstand. Ursache sind Energieverluste durch Reibungs- und Dämpfungskräfte:

Mehr

2. Freie gedämpfte Schwingungen

2. Freie gedämpfte Schwingungen 2. Freie gedämpfte Schwingungen Bei realen Systemen werden die Schwingungsausschläge mit der Zeit kleiner, und die Schwingung kommt zum Stillstand. Ursache sind Energieverluste durch Reibungs- und Dämpfungskräfte:

Mehr

2. Freie Schwingungen

2. Freie Schwingungen 2. Freie Schwingungen Die einfachsten schwingungsfähigen Systeme sind lineare Systeme: Die Rückstellkräfte sind proportional zur Auslenkung. Die Dämpfungskräfte sind proportional zur Geschwindigkeit. Bei

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen Bei erzwungenen Schwingungen greift am schwingenden System eine zeitlich veränderliche äußere Anregung an. Kraftanregung: Am schwingenden System greift eine zeitlich veränderliche

Mehr

2. Schwingungen eines Einmassenschwingers

2. Schwingungen eines Einmassenschwingers Baudynamik (Master) SS 2017 2. Schwingungen eines Einmassenschwingers 2.1 Freie Schwingungen 2.1.1 Freie ungedämpfte Schwingungen 2.1.2 Federzahlen und Federschaltungen 2.1.3 Freie gedämpfte Schwingungen

Mehr

3. Erzwungene gedämpfte Schwingungen

3. Erzwungene gedämpfte Schwingungen 3. Erzwungene gedämpfte Schwingungen 3.1 Schwingungsgleichung 3.2 Unwuchtanregung 3.3 Weganregung 3.4 Komplexe Darstellung 2.3-1 3.1 Schwingungsgleichung F(t) m Bei einer erzwungenen gedämpften Schwingung

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

Übung zu Mechanik 4 Seite 28

Übung zu Mechanik 4 Seite 28 Übung zu Mechanik 4 Seite 28 Aufgabe 47 Auf ein Fundament (Masse m), dessen elastische Bettung durch zwei Ersatzfedern dargestellt wird, wirkt die periodische Kraft F(t) = F 0 cos (Ω t). Die seitliche

Mehr

4. Drehschwinger. B 2 Schwerpunkt S. c 2 P 2. S P 1 c 1 m, J B 1. Prof. Dr. Wandinger 6. Schwingungen Dynamik

4. Drehschwinger. B 2 Schwerpunkt S. c 2 P 2. S P 1 c 1 m, J B 1. Prof. Dr. Wandinger 6. Schwingungen Dynamik c 2 B 2 Schwerpunkt S P 2 S P 1 c 1 m, J O O B 1 Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.4-1 Aufgabenstellung: 4. Drehschwinger Der Drehschwinger besteht aus einem starren Körper, der im Punkt

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen Inhalt 9.1 Schwingungen 9.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 9.1.4 Erzwungene Schwingung 9.1 Schwingungen 9.1 Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen

Mehr

8. Periodische Bewegungen

8. Periodische Bewegungen 8. Periodische Bewegungen 8.1 Schwingungen 8.1.1 Harmonische Schwingung 8.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 8.1.4 Erzwungene Schwingung 8. Periodische Bewegungen Schwingung Zustand y wiederholt

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

Aufgabe 1: (18 Punkte)

Aufgabe 1: (18 Punkte) MODULPRÜFUNG TECHNISCHE MECHANIK IV (PO 2004) VOM 26.07.2011 Seite 1 Aufgabe 1: (18 Punkte) Zwei Massenpunkte m 1 = 5 kg und m 2 = 2 kg sind durch ein dehnstarres und massenloses Seil über eine reibungsfrei

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Seite /9 Frage ( Punkte) Eine Waschmaschine hat einen mit Feder und Dämpfer gelagerten Motor (Masse m), an dem ohne Unwucht die Trommel befestigt ist. Wieviel Wäsche m u kann geschleudert werden, wenn

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B1 A WS SS 17 13/14 Inhalt der Vorlesung A1 1. Einführung Methode der Physik Physikalische Größen Übersicht über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

Schwingungen. Inhaltsverzeichnis. TU München Experimentalphysik 1 DVP Vorbereitungskurs. Andreas Brenneis; Rebecca Saive; Felicitas Thorne

Schwingungen. Inhaltsverzeichnis. TU München Experimentalphysik 1 DVP Vorbereitungskurs. Andreas Brenneis; Rebecca Saive; Felicitas Thorne TU München Experimentalphysik 1 DVP Vorbereitungskurs Andreas Brenneis; Rebecca Saive; Felicitas Thorne Schwingungen Donnerstag, der 31.07.008 Inhaltsverzeichnis 1 Einleitung: Schwingungen und Wellen 1

Mehr

4. Einführung in die Baudynamik

4. Einführung in die Baudynamik Baustatik III SS 2017 4. Einführung in die Baudynamik 4.1 Allgemeine Vorbemerkungen 4.1.1 Bedeutungen der Baudynamik 4.1.2 Grundbegriffe und Klassifizierung 4.1.3 Modellierung der Bauwerksschwingungen

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen 3.1 Grundlagen 3.2 Tilger 3.3 Kragbalken 3.4 Fahrbahnanregung 3.3-1 3.1 Grundlagen Untersucht wird die Antwort des Systems auf eine Anregung mit harmonischem Zeitverlauf. Bewegungsgleichung:

Mehr

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN.

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN. ÜBUNGSAUFGABEN ZUR PHYSIK KAPITEL S SCHWINGUNGEN UND WELLEN Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl IEUT 10/05 Kohl 1. Schwingungen 10/2005-koh 1. Welche Auslenkung hat ein schwingender

Mehr

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers.

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers. Schwingungen Aufgabe 1 Sie finden im Labor eine Feder. Wenn Sie ein Gewicht von 100g daran hängen, dehnt die Feder sich um 10cm. Dann ziehen Sie das Gewicht 6cm herunter von seiner Gleichgewichtsposition

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

M 10 Resonanz und Phasenverschiebung bei der mechanischen Schwingung

M 10 Resonanz und Phasenverschiebung bei der mechanischen Schwingung Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum M 1 esonanz und Phasenverschiebung bei der mechanischen Schwingung Aufgaben 1. Bestimmen Sie die Frequenz der freien gedämpften Schwingung

Mehr

Skript zum Ferienkurs Experimentalphysik 1

Skript zum Ferienkurs Experimentalphysik 1 Skript zum Ferienkurs Experimentalphysik 1 Christoph Buhlheller, Rebecca Saive, David Franke Florian Hrubesch, Wolfgang Simeth, Wolfhart Feldmeier 17. Februar 009 Inhaltsverzeichnis 1 Einleitung: Schwingungen

Mehr

Vorbereitung: Pendel. Marcel Köpke Gruppe

Vorbereitung: Pendel. Marcel Köpke Gruppe Vorbereitung: Pendel Marcel Köpke Gruppe 7 10.1.011 Inhaltsverzeichnis 1 Augabe 1 3 1.1 Physikalisches Pendel.............................. 3 1. Reversionspendel................................ 6 Aufgabe

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

5. Kritische Drehzahl

5. Kritische Drehzahl Aufgabenstellung: 5. Kritische Drehzahl y y Ω c/4 c/4 m c/4 e z O O S c/4 x Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.5-1 Der starre Körper mit der Masse m dreht sich mit der konstanten Winkelgeschwindigkeit

Mehr

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II Physik Schwingungen II Ort, Geschwindigkeit, Beschleunigung x(t) = cos! 0 t v(t) =ẋ(t) =! 0 sin! 0 t t a(t) =ẍ(t) =! 2 0 cos! 0 t Energie In einem mechanischen System ist die Gesamtenergie immer gleich

Mehr

3. Übertragungsfunktionen

3. Übertragungsfunktionen Definitionen: Die Fourier-Transformierte der Impulsantwortfunktion heißt Übertragungsfunktion: H ( f )= h(t )e 2 π i f t dt Mithilfe der Übertragungsfunktion kann die Fourier-Transformierte der Antwort

Mehr

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III Physik Schwingungen III Wiederholung Komplexe Zahlen Harmonischer Oszillator DGL Getrieben Gedämpft Komplexe Zahlen Eulersche Formel e i' = cos ' + i sin ' Komplexe Schwingung e i!t = cos!t + i sin!t Schwingung

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3.

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3. 4. Dämpfungsmodelle 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Dabei

Mehr

2.1 Kinematik 2.2 Momentensatz 2.3 Arbeit und Energie. 2. Kreisbewegung. Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.2-1

2.1 Kinematik 2.2 Momentensatz 2.3 Arbeit und Energie. 2. Kreisbewegung. Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.2-1 2.1 inematik 2.2 Momentensatz 2.3 Arbeit und Energie 2. reisbewegung Prof. Dr. Wandinger 3. inematik und inetik TM 3.2-1 2.1 inematik Bahngeschwindigkeit und Winkelgeschwindigkeit: Für den auf einer reisbahn

Mehr

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3.

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 4. Dämpfungsmodelle 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische

Mehr

b) Sie sind in der Lage, Experimente mit dem PASCO System durchzuführen, die Daten zu exportieren und in Excel auszuwerten und darzustellen.

b) Sie sind in der Lage, Experimente mit dem PASCO System durchzuführen, die Daten zu exportieren und in Excel auszuwerten und darzustellen. Das ist das Paradebeispiel eines schwingenden, schwach gedämpften Systems. waren vor der Erfindung des Quarz Chronometers die besten Zeitgeber in Taschenuhren. Als Unruh bestimmten sie die Dauer einer

Mehr

Lösung der harmonischen Oszillator-Gleichung

Lösung der harmonischen Oszillator-Gleichung Lösung der harmonischen Oszillator-Gleichung Lucas Kunz 8. Dezember 016 Inhaltsverzeichnis 1 Physikalische Herleitung 1.1 Gravitation................................... 1. Reibung.....................................

Mehr

Schwingungen & Wellen

Schwingungen & Wellen Schwingungen & Wellen 2 2.1 Harmonische Schwingung, Dämpfung, Resonanz I Theorie Schwingungen spielen eine große Rolle in allen Bereichen der Physik. In Uhren sind sie fundamental, in mechanischen Maschinen

Mehr

Übung zu Mechanik 4 Seite 17

Übung zu Mechanik 4 Seite 17 Übung zu Mechanik 4 Seite 17 Aufgabe 31 Gegeben sei der dargestellte, gedämpfte Schwinger. Die beiden homogenen Kreisscheiben (m B, r B und m C, r C ) sind fest miteinander verbunden und frei drehbar auf

Mehr

Physik LK 11, 3. Klausur Harmonischer Oszillator Lösung

Physik LK 11, 3. Klausur Harmonischer Oszillator Lösung Die Rechnungen bitte vollständig angeben und die Einheiten mitrechnen. Antwortsätze schreiben, wenn Zahlenwerte zu berechnen sind. Die Reibung ist bei allen Aufgaben zu vernachlässigen, wenn nicht explizit

Mehr

Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch Aufgaben Dynamik Vorkurs Mathematik-Physik, Teil 8 c 6 A. Kersch. Ein D-Zug (Masse 4t) fährt mit einer Geschwindigkeit von 8km/h. Er wird auf einer Strecke von 36m mit konstanter Verzögerung zum Stehen

Mehr

Übungsaufgaben Physik II

Übungsaufgaben Physik II Fachhochschule Dortmund Blatt 1 1. Ein Auto hat leer die Masse 740 kg. Eine Nutzlast von 300 kg senkt den Wagen in den Radfedern um 6 cm ab. Welche Periodendauer hat die vertikale Schwingung, die der Wagen

Mehr

6. Erzwungene Schwingungen

6. Erzwungene Schwingungen 6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen

Mehr

Resonanz Versuchsvorbereitung

Resonanz Versuchsvorbereitung Versuche P1-1,, Resonanz Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 0.1.010 1 1 Vorwort Im Praktikumsversuch,,Resonanz geht es um freie

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 Julian Seyfried Wintersemester 2014/2015 1 Seite 2 Inhaltsverzeichnis 3 Energie, Arbeit und Leistung 3 3.1 Energie.................................. 3 3.2 Arbeit...................................

Mehr

Versuch III. Drehpendel. Oliver Heinrich. Bernd Kugler Abgabe:

Versuch III. Drehpendel. Oliver Heinrich. Bernd Kugler Abgabe: Versuch III Drehpendel Oliver Heinrich oliver.heinrich@uni-ulm.de Bernd Kugler berndkugler@web.de 12.10.2006 Abgabe: 03.11.2006 Betreuer: Alexander Berg 1 Inhaltsverzeichnis 1 Theoretische Grundlagen 3

Mehr

2.9 Gedämpfter Harmonischer Oszillator

2.9 Gedämpfter Harmonischer Oszillator 72 KAPITEL 2. DYNAMIK EINES MASSENPUNKTES 2.9 Gedämpfter Harmonischer Oszillator In diesem Abschnitt wollen wir die Bewegung eines Massenpunktes betrachten, der sich in einer Raumrichtung x in einer Harmonischen

Mehr

Formelzusammenstellung

Formelzusammenstellung Übung zu Mechanik 4 - ormelsammlung Seite 4 ormelzusammenstellung. Grundbegriffe Harmonische Schwingung Sinusschwingung: (t) sin ( t + ϕ) Schwingungsamplitude: Kreisfrequenz: Phasenwinkel: requenz: f Schwingungsdauer,

Mehr

a) Wir nutzen den Drallsatz für die Rolle und horizontale Komponente des Schwerpunktsatzes, für kleine Auslenkungen: Abb.

a) Wir nutzen den Drallsatz für die Rolle und horizontale Komponente des Schwerpunktsatzes, für kleine Auslenkungen: Abb. Tutoriumsaufgaben. Aufgabe a) Wir nutzen den Drallsatz für die olle und horizontale Komponente des Schwerpunktsatzes, für kleine Auslenkungen: Θ S φ = M(t) rs + cos(φ) F c + F H () m x = S + F H F c Gl.

Mehr

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS Dämpfung. Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung 5. Dämpfung 5-1 1. Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische Energie

Mehr

3 Schwingungsvorgänge

3 Schwingungsvorgänge 3 Schwingungsvorgänge Bei vielen Vorgängen nehmen wichtige Größen, die den Zustand eines Systems beschreiben, regelmäßig wieder den gleichen Wert an. Beispiel sind die Mondphasen, die Jahreszeiten, das

Mehr

Physik für Oberstufenlehrpersonen. Frühjahrssemester Schwingungen und Wellen

Physik für Oberstufenlehrpersonen. Frühjahrssemester Schwingungen und Wellen Physik für Oberstufenlehrpersonen Frühjahrssemester 2018 Schwingungen und Wellen Zum Einstieg in das neue Semester Schwingungen Schwingungen spielen bei natürlichen Prozessen bedeutende Rolle: -Hören und

Mehr

Ferienkurs Experimentalphysik Übung 4 - Musterlösung

Ferienkurs Experimentalphysik Übung 4 - Musterlösung Ferienkurs Experimentalphysik 1 1 Übung 4 - Musterlösung 1. Feder auf schiefer Ebene (**) Auf einer schiefen Ebene mit Neigungswinkel α = befindet sich ein Körper der Masse m = 1 kg. An dem Körper ist

Mehr

4. Wellenausbreitung

4. Wellenausbreitung Motivation: Beim Stab konnten Lösungen der Form gefunden werden. u x,t = f 1 x ct f 2 x ct Diese Lösungen beschreiben die Ausbreitung von Wellen im Stab. Die Funktionen f 1 x und f 2 x werden durch die

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Gedämpfte & erzwungene Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 16. Dez. 16 Harmonische Schwingungen Auslenkung

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Differentialgleichungen 2. Ordnung

Differentialgleichungen 2. Ordnung Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei

Mehr

A02 Schwingung Resonanz Dämpfung

A02 Schwingung Resonanz Dämpfung A Schwingung Resonanz Dämpfung (A) x t t A Schwingung Resonanz Dämpfung Ziele In diesem Versuch untersuchen Sie Schwingungsphänomene und deren Gesetzmäßigkeiten mit einem Drehschwingsystem ein Beispiel

Mehr

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik 1 für Naturwissenschaften Modul 112 Lineare Differenzialgleichungen zweiter Ordnung Hans Walser: Modul 112, Lineare Differenzialgleichungen zweiter Ordnung ii Inhalt 1 Lineare Differenzialgleichungen

Mehr

Klassische und relativistische Mechanik

Klassische und relativistische Mechanik Klassische und relativistische Mechanik Othmar Marti 13. 02. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und relativistische Mechanik

Mehr

Technische Schwingungslehre

Technische Schwingungslehre Technische Schwingungslehre Von Dipl.-Math. M. Knaebel Professor an der Fachhochschule für Technik Esslingen 5., überarbeitete und erweiterte Auflage Mit 219 Bildern, 41 Beispielen und 73 Aufgaben B. G.

Mehr

Galvanometer Versuchsvorbereitung

Galvanometer Versuchsvorbereitung Versuche P1-13,14,15 Galvanometer Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 10.1.2011 1 1 Galvanometer Bei einem Galvanometer handelt

Mehr

Schwingwagen ******

Schwingwagen ****** 5.3.0 ****** Motivation Ein kleiner Wagen und zwei Stahlfedern bilden ein schwingungsfähiges System. Ein Elektromotor mit Exzenter lenkt diesen Wagen periodisch aus seiner Ruhestellung aus. Die Antriebsfrequenz

Mehr

2. Anfangswertprobleme 2. Ordnung

2. Anfangswertprobleme 2. Ordnung 2. Anfangswertprobleme 2. Ordnung 2.1 Grundlagen 2.2 Mathematisches Pendel 2.3 Selbstzentrierung Prof. Dr. Wandinger 7. Numerische Methoden Dynamik 2 7.2-1 2.1 Grundlagen Für ein Anfangswertproblem 2.

Mehr

4.2 Der Harmonische Oszillator

4.2 Der Harmonische Oszillator Dieter Suter - 208 - Physik B3, SS03 4.2 Der Harmonische Oszillator 4.2.1 Harmonische Schwingungen Die Zeitabhängigkeit einer allgemeinen Schwingung ist beliebig, abgesehen von der Periodizität. Die mathematische

Mehr

MR - Mechanische Resonanz Blockpraktikum Herbst 2005

MR - Mechanische Resonanz Blockpraktikum Herbst 2005 MR - Mechanische Resonanz, Blockpraktikum Herbst 5 7. September 5 MR - Mechanische Resonanz Blockpraktikum Herbst 5 Assistent Florian Jessen Tübingen, den 7. September 5 Vorwort In diesem Versuch ging

Mehr

Lineare Systeme mit einem Freiheitsgrad

Lineare Systeme mit einem Freiheitsgrad Höhere Technische Mechanik Lineare Systeme mit einem Freiheitsgrad Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/200 Übersicht. Grundlagen der Analytischen

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr Dynamik der ebenen Kreisbewegung Eine Kreis- oder Rotationsbewegung entsteht, wenn ein Drehmoment:: M = Fr um den Aufhängungspunkt des Kraftarms r (von der Drehachse) wirkt; die Einheit des Drehmoments

Mehr

1. Bewegungsgleichung

1. Bewegungsgleichung 1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik

Mehr

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4. 4. Die ebene Platte 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.4-1 Schallabstrahlung einer unendlichen ebenen Platte: Betrachtet

Mehr

Harmonische Schwingungen

Harmonische Schwingungen Kapitel 6 Harmonische Schwingungen Von periodisch spricht man, wenn eine feste Dauer zwischen wiederkehrenden ähnlichen oder gleichen Ereignissen besteht. Von harmonisch spricht man, wenn die Zeitentwicklung

Mehr

3 Lineare DGlen mit konstanten Koeffizienten

3 Lineare DGlen mit konstanten Koeffizienten 3 Lineare DGlen mit konstanten Koeffizienten In diesem wichtigen Fall linearer DGlen, dem wir ein eigenes Kapitel widmen wollen, sind die Koeffizientenfunktionen a k (t) a k Konstanten, n 1 x (n) (t)+

Mehr

Gekoppelte Schwingung

Gekoppelte Schwingung Versuch: GS Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: C. Blockwitz am 01. 07. 000 Bearbeitet: E. Hieckmann J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Aktualisiert: am 16. 09. 009

Mehr

Anwendung: Gedämpfter, getriebener harmonischer Oszillator Unendlich viele Anwendungen in der Physik, auch außerhalb der Mechanik!

Anwendung: Gedämpfter, getriebener harmonischer Oszillator Unendlich viele Anwendungen in der Physik, auch außerhalb der Mechanik! Anwendung: Gedämpfter, getriebener harmonischer Oszillator Unendlich viele Anwendungen in der Physik, auch außerhalb der Mechanik! Bewegungsgleichung: Dämpfungsrate: Einheit: Kreisfrequenz des Oszillators:

Mehr

MR Mechanische Resonanz

MR Mechanische Resonanz MR Mechanische Resonanz Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis Grundlagen 2. Freie, ungedämpfte Schwingung....................... 2.2 Freie, gedämpfte Schwingung........................

Mehr

Physik I Einführung in die Physik Mechanik

Physik I Einführung in die Physik Mechanik Physik I Einführung in die Physik Mechanik Winter 00/003, Prof. Thomas Müller, Universität Karlsruhe Lösung 13; Letztes Lösungsblatt 1. Torsionspendel (a) Vergleichen Sie die Größen rehwinkel ϕ, Winkelgeschwindigkeit

Mehr

11.4. Lineare Differentialgleichungen höherer Ordnung

11.4. Lineare Differentialgleichungen höherer Ordnung 4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in

Mehr

TONTECHNIK HÖREN // SCHALLWANDLER // IMPULSANTWORT UND FALTUNG // DIGITALE SIGNALE // MEHRKANALTECHNIK // TONTECHNISCHE PRAXIS

TONTECHNIK HÖREN // SCHALLWANDLER // IMPULSANTWORT UND FALTUNG // DIGITALE SIGNALE // MEHRKANALTECHNIK // TONTECHNISCHE PRAXIS 4., aktualisierte Auflage thomas GÖRNE TONTECHNIK HÖREN // SCHALLWANDLER // IMPULSANTWORT UND FALTUNG // DIGITALE SIGNALE // MEHRKANALTECHNIK // TONTECHNISCHE PRAXIS 18 1 Schall und Schwingungen 1.1 Mechanische

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester 2016 Physik-Institut der Universität Zürich Inhaltsverzeichnis 4 Resonanz (R) 4.1 4.1 Einleitung........................................

Mehr

Resonanzverhalten eines Masse-Feder Systems (M10)

Resonanzverhalten eines Masse-Feder Systems (M10) Resonanzverhalten eines Masse-Feder Systems M0) Ziel des Versuches In diesem Versuch werden freie, freie gedämpfte und erzwungene Schwingungen an einem Masse-Feder System untersucht Die Resonanzkurven

Mehr

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen Prof. Dr.-Ing. Prof. E.h. P. Eberhard / Prof. Dr.-Ing. M. Hanss SS 17 Ü1 Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss Aufgabensammlung mit Kurzlösungen Sommersemester 017 Prof. Dr.-Ing.

Mehr

3.2 Das physikalische Pendel (Körperpendel)

3.2 Das physikalische Pendel (Körperpendel) 18 3 Pendelschwingungen 32 Das physikalische Pendel (Körperpendel) Ein starrer Körper (Masse m, Schwerpunkt S, Massenträgheitsmoment J 0 ) ist um eine horizontale Achse durch 0 frei drehbar gelagert (Bild

Mehr

VORBEREITUNG: GALVANOMETER

VORBEREITUNG: GALVANOMETER VORBEREITUN: ALVANOMETER FREYA NAM, RUPPE 6, DONNERSTA SCHWINVERHALTEN DES ALVANOMETERS Das alvanometern ist ein sensibles Messgerät mit dem auch kleine Ströme und Spannungen gemessen werden können. Es

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel Anfänger-Praktikum I WS 11/1 Michael Seidling Timo Raab Praktikumsbericht: Gekoppelte Pendel 1 Inhaltsverzeichnis Inhaltsverzeichnis I. Einführung 4 II. Grundlagen 4 1. Harmonische Schwingung 4. Gekoppelte

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Aufgabe 1 (14 Punkte)

Aufgabe 1 (14 Punkte) Technische Mechanik & Fahrzeugdynamik TM II Prof. Dr.-Ing. habil. D. Bestle 8. September 1 Familienname, Vorname Matrikel-Nummer Prüfungsklausur Technische Mechanik II Fachrichtung 1. Die Prüfung umfasst

Mehr

Ausblick. 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen. Prof. Dr. Wandinger 5. Ausblick FEM 5-1

Ausblick. 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen. Prof. Dr. Wandinger 5. Ausblick FEM 5-1 Ausblick 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen Prof. Dr. Wandinger 5. Ausblick FEM 5-1 1. Lineare dynamische Analysen Beschleunigungen: Bei linearen dynamischen

Mehr

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2 Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 212 P 2 BachelorPrüfung in Technischer Mechanik II/III Nachname, Vorname Matr.Nummer Fachrichtung 28.

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen Physik Schwingungen Zusammenfassung Mechanik Physik Mathe Einheiten Bewegung Bewegung 3d Newtons Gesetze Energie Gravitation Rotation Impuls Ableitung, Integration Vektoren Skalarprodukt Gradient Kreuzprodukt

Mehr

Eine DG ist eine Gleichung, die Ableitungen der gesuchten Funktion enthält.

Eine DG ist eine Gleichung, die Ableitungen der gesuchten Funktion enthält. C7 Differentgleichungen (DG) (enthalten Ableitungen der gesuchten Funktionen) [Stoffgliederung im Skript für Kapitel C7 weicht ab vom Altland-Delft-Text] C7.1 Was ist eine DG, wozu wird sie gebraucht?

Mehr