Berechne 40 % von 320. Wenn 1% = 0,01 ist, dann entspricht 40 % = 40 0,01 = 0,40; also: 320 0,4 = 128 ; oder mit Dreisatzschluss:

Größe: px
Ab Seite anzeigen:

Download "Berechne 40 % von 320. Wenn 1% = 0,01 ist, dann entspricht 40 % = 40 0,01 = 0,40; also: 320 0,4 = 128 ; oder mit Dreisatzschluss:"

Transkript

1 2 2. Prozentrechnung Was du schon können musst: Du solltest proportionale Zusammenhänge kennen und wissen, wie man damit rechnet. Außerdem musst du Dreisatzrechnungen rasch und sicher durchführen können. Darum geht es Du lernst die Begriffe der Prozentrechnung kennen und erfährst, wie man mit ihnen rechnen kann. Merksatz Die Angabe Prozent bzw. % steht für den hundertsten Teil einer Größe oder Zahl. Dabei nennt man die Größe (oder Zahl), die das Ganze darstellt, Grundwert (G). Will man einen Teil des Grundwertes ermitteln, dann berechnet man den Prozentwert (W). Der jeweilige Anteil wird in Prozent angegeben und heißt Prozentsatz (P). Info Das Wort Prozent kommt aus dem Lateinischen und bedeutet für/von hundert. Beispiel Berechne 40 % von 320. Wenn % = 0,0 ist, dann entspricht 40 % = 40 0,0 = 0,40; also: 320 0,4 = 28 ; oder mit Dreisatzschluss: 00 % 320 s : 0 : 0 s 0 % 32 s 4 4 s 40 % 28 oder _

2 Merksatz Man berechnet den Prozentwert W bei einem Prozentsatz P von einem Grundwert G mit der Formel: W = G _ 00 P. Man kann die Formel zur Berechnung des Prozentsatzes P umstellen: P = W _ 00 G. Die Formel zur Berechnung des Grundwertes G lautet: G = W _ 00 P. Beispiele: () Ein Herrenanzug zum Preis von 275 wird um 24 % im Preis gesenkt. Wie viele Euro spart der Käufer ein? W = 275 0,24 = 66,00 Der Käufer spart 66 ein. (2) Ein Herrenanzug zum Preis von 275 wird um 66 billiger verkauft. Wie viel Prozent beträgt die Einsparung? P = = 0,24 00 = 24 Die Einsparung beträgt 24 %. (3) Beim Kauf eines Herrenanzugs wird ein Preisnachlass von 66 gewährt. Das sind 24 % des ursprünglichen Preises. Berechne den ursprünglichen Preis (Grundwert). G = = 00 2,75 = 275 Der Grundpreis beträgt 275. Bequeme Prozentsätze Mithilfe bequemer Prozentsätze kann man sich viele Rechenwege vereinfachen beziehungsweise leicht Überschlagsrechnungen ausführen. 2 %: teile G durch 50, denn 2 50 = 00 4 %: teile G durch 25, denn 4 25 = 00 5 %: teile G durch 20, denn 5 20 = 00 0 %: teile G durch 0, denn 0 0 = 00 2,5 %: teile G durch 8, denn 2,5 8 = %: teile G durch 4, denn 25 4 = %: teile G durch 2, denn 50 2 = %: multipliziere 25 % mit 3. Berechne mit allen bequemen Prozentsätzen die einzelnen Prozentwerte von G = 800 kg. 25

3 2 2 Berechne nur mittels Überschlag. a) G = 65,4 m 2 : () P = 2, %; W = (2) P = 48,9 %, W = b) G =.234 : () W = 2,20 ; P = (2) W = 32,67, P = c) P = 25,3 %: () W = 35,60 ; G = (2) G = m 3 : G = 3 In das Anfangsfeld kann man eine beliebige Größe (oder Zahl) einsetzen. Ergänze, den Pfeilen folgend, die Leerstellen. davon 50 % 4 davon 0 % davon 00 % 50 davon _ 3 davon 25 % davon 75 % 8 davon 20 % Landwirt Petermann hat 2,5 % seiner landwirtschaftlichen Nutzfläche, das sind 4,8 ha, mit Raps bestellt. Wie viele Hektar beträgt seine Gesamtfläche? Platz für Blumen Der Schulgarten der Theodor-Körner-Realschule hat eine Fläche von 240 m 2. _ 6 davon entfalle auf den Geräteschuppen, die Wege und den Komposthaufen. Auf 85 % der restlichen Fläche wird Gemüse angebaut. Wie viele Quadratmeter bleiben für Blumen übrig? Geld für die Klassenfahrt Die 7a hat fleißig Altpapier gesammelt und abgeliefert. Davon erzielten sie einen Erlös von 23,75. Das sind knapp 8 % der Summe, die für die Klassenfahrt geplant ist. Welcher Betrag ist geplant (runde sinnvoll)? Von 26 Schülern der 7b hatten nur 2 eine Note in der Mathearbeit. Wie viel Prozent sind das (runde sinnvoll)? 3 Schüler der Klasse 7c erhielten beim Diktat eine 4. Das entspricht etwa 8,3 %. Wie viele Schüler nahmen am Diktat teil? 26

4 9 Im Englisch-Diktat gab es folgende Notenverteilung: Note : 3 Schüler; Note 2: 8 Schüler; Note 3: 5 Schüler; Note 4: 3 Schüler; Note 5: 4 Schüler; Note 6: 2 Schüler. a) Gib die Notenverteilung in Prozent an. b) Stelle den Sachverhalt in einem Kreisdiagramm dar. 2.2 Prozentuale Änderung Was du schon können musst: Du solltest die Grundbegriffe und Grundregeln aus der Prozentrechnung kennen. Darum geht es Sicherlich hast du beim Einkaufen schon erlebt, dass Produkte teuerer oder billiger wurden. Hier lernst du, wie du schnell feststellen kannst, wie groß die Änderung der Preise in Prozent war. Die prozentuale Veränderung spielt auch in vielen anderen Bereichen, wo es um Wachstum oder Abnahme geht, eine wichtige Rolle. Regel a) Wird ein Grundwert um P % vermehrt, so erhält man den neuen Wert (Prozentwert), indem man rechnet W = G ( + P ) 00. b) Wird ein Grundwert um P % vermindert, so erhält man den neuen Wert (Prozentwert), indem man rechnet W = G ( + P ) 00. Anwendungen a) Ein Fahrrad kostet ohne Mehrwertsteuer 450. Die Mehrwertsteuer beträgt 9 %. Wie teuer ist das Fahrrad mit Mehrwertsteuer? W = 450 ( ) = 450,9 = 535,50. Das Fahrrad kostet mit Mehrwertsteuer 535,50. 27

5 2 b) Ein Computer kostet ursprünglich.290. Bei einer Sonderaktion wird der Preis um 5 % gesenkt. Wie teuer ist der Computer nach der Preissenkung? W =.290 ( 5 00 ) =.290 0,85 =.096,50. Der Computer kostet nach der Preissenkung.096, Skonto Ein neuer Fernseher kostet 580. Wird er innerhalb von zwei Wochen bezahlt, darf man 2 % Skonto abziehen. Herr Schmidt bezahlt direkt beim Verkauf im Geschäft. Was muss er bezahlen? Mehrwertsteuer Ein Auto wird zu einem Nettopreis von angeboten. Es kommen noch 9 % Mehrwertsteuer hinzu. Wie teuer ist der Wagen? Gehaltserhöhung Herr Kieslowskis monatliches Gehalt ist bei der letzten Lohnerhöhung von auf gestiegen. Frau Wolfs Gehalt stieg zuletzt von auf Welche Lohnerhöhung ist prozentual höher ausgefallen? Sonderaktion Ein Elektronikkaufhaus wirbt bei einer Sonderaktion mit dem Slogan Wir erlassen Ihnen die Mehrwertsteuer. Lena möchte einen MP3-Player kaufen. Er kostet 29 einschließlich der Mehrwertsteuer von 9 %. Wie viel kostet das Gerät netto? 2.3 Zinsrechnung Was du schon können musst: Du solltest die Grundbegriffe und Grundregeln aus der Prozentrechnung kennen. Darum geht es Wenn man bei einer Sparkasse oder Bank ein Guthaben angelegt hat, erhält man nach Ablauf eines Jahres Zinsen gutgeschrieben. Hier lernst du, Zinsen mithilfe der Prozentrechnung zu bestimmen. 28

6 Merksatz Die Grundbegriffe der Prozentrechnung lassen sich auf die Zinsrechnung übertragen: Grundwert G (00%) p Kapital K (Guthaben, Spareinlage ) Prozentwert W p Zinsen Z Prozentsatz P p Zinssatz p Beispiel: Herr Förster bekommt für seine Spareinlage K =.807,50 pro Jahr (p. a.: von lateinisch per annum pro Jahr ) Zinsen mit einem Zinssatz von 3 _ 4 %. Wir berechnen seine Zinsen nach Ablauf eines Kalenderjahres. Z =.807,50 3,25 00 =.807,50 0,0325 = 58,74 Herr Förster besitzt nach Ablauf eines Jahres nun ein Guthaben von.807, ,74 =.866,24. Merksatz Berechnung der Jahreszinsen Z von einem Kapital K zu einem Zinssatz p %. Z = K _ p 00. Man kann die Formel zur Berechnung des Kapitals K umstellen: K = Z _ 00 p. Umstellung zur Berechnung des Zinssatzes p: p = Z _ 00 K. Beispiele: () Frau Fröhlich erhält auf ihr Sparguthaben in Höhe von von ihrer Sparkasse für ein Jahr 290,95 an Zinsen. Herr Schmidt bekommt für von seiner Bank 262,50 Zinsen. Welcher Zinssatz ist besser? 00 Frau Fröhlich: p = 290, = 2,75 Das ist ein Zinssatz von 2,75 %. Herr Schmidt: p = 262, = 3,0. Das ist ein Zinssatz von 3 %. Eine Spareinlage bei der Bank wäre demnach günstiger. (2) Welche Spareinlage hat Claudia vor einem Jahr vorgenommen, wenn sie bei einem Zinssatz von 3,25 % Zinsen in Höhe von 28,43 erhält? K = 28, ,25 = 874,77 Claudia hat 874,77 angelegt. 29

7 4 2 Berechne die Jahreszinsen für folgende Guthaben bei einem Zinssatz von 3,5 %. a) 375 b) c) Gut angelegt Tommy freut sich über 98,75 Zinsen bei einem Zinssatz von 4 %. Berechne sein Guthaben vom Vorjahresende. Welcher Zinssatz wurde gewährt, wenn im Jahr 942 Zinsen bringen? Ergänze die Tabelle. Kapital Zinssatz 4 % 3,75 % Zinsen 42,50 3, Zinsrechnung Monats- und Tageszinsen Was du schon können musst: Du solltest die Grundbegriffe und Grundregeln aus der Prozentrechnung kennen. Darum geht es Leiht man sich bei Bank Geld, so verlangt diese im Gegenzug Zinsen. Die Zinsen werden sehr häufig nicht nur für ein Jahr berechnet, sondern auch für Monate und Tage. Hier erfährst Du, wie dies funktioniert. Berechnung von Monatszinsen Nadine hat zum Jahresbeginn 250 auf ihrem Sparbuch. Im Laufe des Jahres zahlt sie nichts ein und hebt nichts ab. Nach fünf Monaten möchte sie eine neue Digitalkamera für 259 kaufen und das Geld vom Sparbuch nehmen. Sind inzwischen genügend Zinsen hinzugekommen, um die Kamera zu kaufen, wenn der Zinssatz für das Sparbuch 3 % beträgt? 30

8 Lösung: Wir berechnen die Zinsen wie für ein Jahr, multiplizieren jedoch noch mit 5 2 um die fünf Monate zu berücksichtigen. Zinsen ( Z t ) = 250 _ = 3,25 3,3. Nadine erhält in fünf Monaten 3,3 Zinsen. Das reicht nicht, um die Digitalkamera mit dem Geld auf dem Sparbuch zu kaufen. Regeln Berechnung der Monatszinsen. Gegeben sind Kapital K, Zinssatz p %, Laufzeit t Monate. Gesucht: Zinsen Z t. Z t = K p 00 t 2 Die Formel lässt sich zur Berechnung des Kapitals umstellen. Berechnung des Kapitals. Gegeben sind Zinsen Z t, Zinssatz p %, Laufzeit t Monate. Gesucht: Kapital K. K = Z t 00 p 2 t Die Formel lässt sich auch zur Berechnung des Zinssatzes p % umstellen. Berechnung des Zinssatz p %. Gegeben sind Kapital K, Zinsen Z t, Laufzeit t Monate. Gesucht: Zinssatz p % p = Z t 00 K 2 t Anwendungen der Regeln () Eine Bank bietet für ein Vierteljahr einen Zinssatz von 3,2 % an. Welche Summe muss Herr Mayer anlegen, wenn er 20 Zinsen für diesen Zeitraum erhalten möchte? Lösung: K = 20 _ 00 3,2 2 3 = Herr Mayer muss anlegen. (2) Ein Darlehen über soll nach 9 Monaten mit zurückgezahlt werden. Welchem Zinssatz entspricht das? Lösung: p = = 7. Der Zinssatz beträgt 7 %. 3

9 2 Berechung von Tageszinsen Die Berechnung von Tageszinsen ist ähnlich zu der Berechung von Monatszinsen. Jedoch anders als das Kalenderjahr rechnen die Banken nicht mit 365 Tagen, sondern mit 360 Tagen. Ein Monat wird mit 30 Tagen gezählt. Folgende Formeln ergeben sich daher: Regeln Berechnung der Tageszinsen. Gegeben sind Kapital K, Zinssatz p %, Laufzeit t Tage Gesucht: Zinsen Z t (). Z t = K p 00 t 360 Berechnung des Kapitals. Gegeben sind Zinsen Z t, Zinssatz p %, Laufzeit t Monate. Gesucht: Kapital K (2) K = Z t 00 p 360 t Berechnung des Zinssatz p %. Gegeben sind Kapital K, Zinsen Z t, Laufzeit t Monate. Gesucht: Zinssatz p % (3) p = Z t 00 K 360 t Anwendungen der Regeln () Guila hat 4 Monate und 8 Tage lang 20 auf dem Sparbuch. Berechne die Zinsen bei einem Zinssatz von 2,5 %. Lösung: Z t = 20 _ 2, _ 360 2,0. Sie erhält in diesem Zeitraum 2,0 Zinsen. (2) Frau Hager hat ihr Gehaltskonto 45 Tage lang überzogen. Bei einem Zinssatz von,5 % berechnet die Bank 6,90 Zinsen. Um wie viel Euro hat sie ihr Konto überzogen? Lösung: K = 6,90 _,5 00 _ = 480. Sie hat ihr Konto um 480 überzogen. (3) Das Bergmann-Kreditinstitut bietet folgendes Angebot: Bei uns kostet ein Kredit über nur Zinsen am Tag! Wie hoch ist der Zinssatz? Lösung: p = _ 360 = 8. Der Zinssatz beträgt 8 %. 32

10 2 Herr Schmidt hat sein Konto für 4 Monate um überzogen. Die Bank verlangt von ihm 8 % Zinsen. Wieviel Zinsen muss er zahlen? Berechne die Monatszinsen für ein Sparbuch mit einem Zinssatz von 2,5 %. a) Fabian hat 9 Monate lang 600 auf seinem Sparbuch. b) Aylin hat Monate lang 450 auf ihrem Sparbuch. 3 Ergänze die folgende Tabelle. a) b) c) Kapital Zinssatz 2 % 2,5 Laufzeit 5 Monate 3 Monate 7 Monate Monatszinsen 7, Berechne die Tageszinsen für ein Sparbuch mit einem Zinssatz von 2,5 %. a) Jakob hat 20 Tage lang 600 auf seinem Sparbuch. b) Sarah hat Monate und 0 Tage lang 450 auf ihrem Sparbuch. 5 Ergänze folgende Tabelle. a) b) c) Kapital Zinssatz 2 % 4 % Laufzeit 50 Tage 2 Tage Tageszinsen,75 2,50 6 Familie Ortner will ein neues Auto kaufen. Sie kann den Verkaufspreis von nicht sofort bezahlen. Das Autohaus Rottmayer bietet an: werden sofort bezahlt. Der Rest ist bei einem Zinssatz von 4,5 % in 2 Monatsraten zu begleichen. Wie hoch ist eine Monatsrate? 33

Die Zinsrechnung ist eine Anwendung der Prozentrechnung mit speziellen Begriffen. Frau Mayer erhält nach einem Jahr 8,40 Zinsen.

Die Zinsrechnung ist eine Anwendung der Prozentrechnung mit speziellen Begriffen. Frau Mayer erhält nach einem Jahr 8,40 Zinsen. Zinsen berechnen Die Zinsrechnung ist eine Anwendung der Prozentrechnung mit speziellen Begriffen. Grundwert G Kapital K Prozentwert P Zinsen Z Prozentsatz p Zinssatz p Frau Mayer hat ein Guthaben von

Mehr

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen:

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen: Prozentrechnung Wir beginnen mit einem Beisiel: Nehmen wir mal an, ein Handy kostet 200 und es gibt 5% Rabatt (Preisnachlass), wie groß ist dann der Rabatt in Euro und wie viel kostet dann das Handy? Wenn

Mehr

Prozentrechnung. Klaus : = Karin : =

Prozentrechnung. Klaus : = Karin : = Prozentrechnung Klaus erzählt, dass bei der letzten Mathe-Arbeit 6 seiner Mitschüler die Note gut erhalten hätten. Seine Schwester Karin hat auch eine Arbeit zurück bekommen. In ihrer Klasse haben sogar

Mehr

a) Kapital: 4 800 Zinssatz: 1,75 % Zeit: 7 Monate b) Kapital: 1 500 Zinssatz: 2 % Zeit: 9 Monate c) Kapital: 23 500 Zinssatz: 4,5 % Zeit: 3 Monate

a) Kapital: 4 800 Zinssatz: 1,75 % Zeit: 7 Monate b) Kapital: 1 500 Zinssatz: 2 % Zeit: 9 Monate c) Kapital: 23 500 Zinssatz: 4,5 % Zeit: 3 Monate Zinsrechnung 2 1 leicht Monatszinsen Berechne jeweils die Zinsen! a) Kapital: 4 800 Zinssatz: 1,75 % Zeit: 7 Monate b) Kapital: 1 500 Zinssatz: 2 % Zeit: 9 Monate c) Kapital: 23 500 Zinssatz: 4,5 % Zeit:

Mehr

PROZENTRECHNUNG. (Infoblatt)

PROZENTRECHNUNG. (Infoblatt) PROZENTRECHNUNG (Infoblatt) Bei der werden verschiedene Zahlengrößen zueinander in Beziehung gebracht. Die Bezeichnung PROZENT % (ital. = per cento) bedeutet so viel wie für Hundert. Das GANZE bezeichnet

Mehr

ist die Vergütung für die leihweise Überlassung von Kapital ist die leihweise überlassenen Geldsumme

ist die Vergütung für die leihweise Überlassung von Kapital ist die leihweise überlassenen Geldsumme Information In der Zinsrechnung sind 4 Größen wichtig: ZINSEN Z ist die Vergütung für die leihweise Überlassung von Kapital KAPITAL K ist die leihweise überlassenen Geldsumme ZINSSATZ p (Zinsfuß) gibt

Mehr

Bsp. 12% = 100. W- Prozentwert p-prozentsatz G- Grundwert. oder Dreisatz 100% 30 : 100 15% 4,50

Bsp. 12% = 100. W- Prozentwert p-prozentsatz G- Grundwert. oder Dreisatz 100% 30 : 100 15% 4,50 Prozent- und Zinsrechnung Grundgleichung der Prozentrechnung 1 1% = 100 % = 100 12 Bs. 12% = 100 W G W- Prozentwert -Prozentsatz G- Grundwert 1. Berechnung von Prozentwerten W = G Bs. Wie viel sind 15%

Mehr

2. Ein Unternehmer muss einen Kredit zu 8,5 % aufnehmen. Nach einem Jahr zahlt er 1275 Zinsen. Wie hoch ist der Kredit?

2. Ein Unternehmer muss einen Kredit zu 8,5 % aufnehmen. Nach einem Jahr zahlt er 1275 Zinsen. Wie hoch ist der Kredit? Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Aufgaben zu Zinsrechnung 1. Wie viel Zinsen sind

Mehr

Download. Klassenarbeiten Mathematik 8. Zinsrechnung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 8. Zinsrechnung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel: Download Jens Conrad, Hardy Seifert Klassenarbeiten Mathematik 8 Downloadauszug aus dem Originaltitel: Klassenarbeiten Mathematik 8 Dieser Download ist ein Auszug aus dem Originaltitel Klassenarbeiten

Mehr

Demo: Mathe-CD. Prozentrechnung Zinsrechnung. Aufgabensammlung zum Üben- und Wiederholen. Datei Nr. 10570. Friedrich Buckel. Stand 28.

Demo: Mathe-CD. Prozentrechnung Zinsrechnung. Aufgabensammlung zum Üben- und Wiederholen. Datei Nr. 10570. Friedrich Buckel. Stand 28. Mathematik für Klasse 7 Prozentrechnung Zinsrechnung Aufgabensammlung zum Üben- und Wiederholen Datei Nr. 10570 Stand 28. März 2008 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Inhalt Teil 1 17 Übungsaufgaben

Mehr

Download. Führerscheine Zinsrechnung. Schnell-Tests zur Lernstandserfassung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel:

Download. Führerscheine Zinsrechnung. Schnell-Tests zur Lernstandserfassung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel: Download Jens Conrad, Hardy Seifert Führerscheine Zinsrechnung Schnell-Tests zur Lernstandserfassung Downloadauszug aus dem Originaltitel: Führerscheine Zinsrechnung Schnell-Tests zur Lernstandserfassung

Mehr

1. Wie viel Zinsen bekommt man, wenn man 7000,00 1 Jahr lang mit 6 % anlegt?

1. Wie viel Zinsen bekommt man, wenn man 7000,00 1 Jahr lang mit 6 % anlegt? Zinsrechnung mit der Tabellenform: Berechnen der Jahreszinsen Ein Sparbuch mit 1600 wird mit 4% verzinst. Wie Zinsen erhält man im Jahr? Geg.: K = 1600 p% = 4% ges.: Z Das Kapital (Grundwert) entspricht

Mehr

Wochenplanarbeit Name:... % % Prozentrechnen % %

Wochenplanarbeit Name:... % % Prozentrechnen % % Inhaltsverzeichnis 1. Darstellung von Prozentwerten... 2 2. Veranschaulichen von Prozentwerten... 3 3. Prozent - / Bruch - / Dezimalschreibweise... 4 4. Grundaufgaben der Prozentrechnung... 4 5. Kreisdiagramme...

Mehr

Download. Mathematik üben Klasse 8 Zinsrechnung. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Zinsrechnung. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hardy Seifert Mathematik üben Klasse 8 Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Differenzierte Materialien

Mehr

Zinsrechnung 2 leicht 1

Zinsrechnung 2 leicht 1 Zinsrechnung 2 leicht 1 Berechne! a) b) c) Kapital 3 400 a) 16 000 b) 24 500 c) Zinsen 2,5% 85 400 612,50 Kapital 3 400 16 000 24 500 KESt (25% der Zinsen) 21,25 100 153,13 Zinsen effektive (2,5 Zinsen

Mehr

Zinsrechnung A: Die Zinsen

Zinsrechnung A: Die Zinsen Zinsrechnung A: Die Zinsen EvB Mathematik Köberich Berechne bei den nachfolgenden Aufgaben jeweils die Zinsen! Z X X X X X x K 2400 2400 2400 2400 2400 2400 i 15 Tage 2 Monate 100 Tage 7 Monate ¼ Jahr

Mehr

HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN

HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN Zinsen haben im täglichen Geschäftsleben große Bedeutung und somit auch die eigentliche Zinsrechnung, z.b: - Wenn Sie Ihre Rechnungen zu spät

Mehr

Tutorium zur Mathematik (WS 2004/2005) - Finanzmathematik Seite 1

Tutorium zur Mathematik (WS 2004/2005) - Finanzmathematik Seite 1 Tutorium zur Mathematik WS 2004/2005) - Finanzmathematik Seite 1 Finanzmathematik 1.1 Prozentrechnung K Grundwert Basis, Bezugsgröße) p Prozentfuß i Prozentsatz i = p 100 ) Z Prozentwert Z = K i bzw. Z

Mehr

1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate. b) 12800,00 8,75 % 2 Jahre, 9 Monate

1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate. b) 12800,00 8,75 % 2 Jahre, 9 Monate 1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate b) 12800,00 8,75 % 2 Jahre, 9 Monate c) 4560,00 9,25 % 5 Monate d) 53400,00 5,5 % 7 Monate e) 1 080,00

Mehr

.DXIPlQQLVFKHV5HFKQHQ =LQVUHFKQHQ. Für jeden Kaufmann unentbehrlich und vielseitig einsetzbar ist die Zinsrechnung. :DVVLQG=LQVHQ"

.DXIPlQQLVFKHV5HFKQHQ =LQVUHFKQHQ. Für jeden Kaufmann unentbehrlich und vielseitig einsetzbar ist die Zinsrechnung. :DVVLQG=LQVHQ =LQVUHFKQHQ Für jeden Kaufmann unentbehrlich und vielseitig einsetzbar ist die Zinsrechnung. :DVVLQG=LQVHQ" =LQV =LQVVDW]=LQVIX =HLW -DKU 0RQDW der Preis für die Nutzung eines Kapitals während einer bestimmten

Mehr

Zinsrechnung Z leicht 1

Zinsrechnung Z leicht 1 Zinsrechnung Z leicht 1 Berechne die Jahreszinsen im Kopf! a) Kapital: 500 Zinssatz: 1 % b) Kapital: 1 000 Zinssatz: 1,5 % c) Kapital: 20 000 Zinssatz: 4 % d) Kapital: 5 000 Zinssatz: 2 % e) Kapital: 10

Mehr

2 Terme 2.1 Einführung

2 Terme 2.1 Einführung 2 Terme 2.1 Einführung In der Fahrschule lernt man zur Berechnung des Bremsweges (in m) folgende Faustregel: Dividiere die Geschwindigkeit (in km h ) durch 10 und multipliziere das Ergebnis mit sich selbst.

Mehr

, und wie zuvor. 2. Einmalanlage mehrjährig mit festen Zinssatz (Kapitalentwicklung): mit Endkapital, Anfangskapital und 1 %

, und wie zuvor. 2. Einmalanlage mehrjährig mit festen Zinssatz (Kapitalentwicklung): mit Endkapital, Anfangskapital und 1 % Themenerläuterung Das Thema verlangt von dir die Berechnung von Zinsen bzw. Zinseszinsen, Anfangskapital, Endkapital und Sparraten. In seltenen Fällen wird auch einmal die Berechnung eines Kleinkredites

Mehr

Korrigenda Wirtschaft DHF/DHA umfassend repetiert

Korrigenda Wirtschaft DHF/DHA umfassend repetiert Korrigenda Wirtschaft DHF/DHA umfassend repetiert 1. Auflage 2012, ISBN 978-3-905726-45-9 7. Rechnen und Statistik 7.10 Zinsrechnen Der Zins (census, Abgabe) ist die Entschädigung für das Ausleihen von

Mehr

Das Darlehn wurde nach 42 Monaten (3,5 Jahren) abgelöst. Auf Artikel I ist ein Rabatt von 12,5% und auf Artikel II von 5%.

Das Darlehn wurde nach 42 Monaten (3,5 Jahren) abgelöst. Auf Artikel I ist ein Rabatt von 12,5% und auf Artikel II von 5%. R. Brinkmann http://brinkmann-du.de Seite 1 17.09.01 Lösungen zur Prozent und Zinsrechnung I se: E1 E E3 E4 E5 E6 E7 E8 E9 E10 E11 E1 E13 E14 E15 Nach 9 Monaten und 10 Tagen belaufen sich die anfallenden

Mehr

Nachholbildung Art. 32 BBV. Einstufungstest Rechnen Kauffrau/Kaufmann E-/B-Profil Nullserie 2016. Name. Vorname. Prüfungsdatum.

Nachholbildung Art. 32 BBV. Einstufungstest Rechnen Kauffrau/Kaufmann E-/B-Profil Nullserie 2016. Name. Vorname. Prüfungsdatum. Nachholbildung Art. 32 BBV Einstufungstest Rechnen Kauffrau/Kaufmann E-/B-Profil Nullserie 2016 Name Vorname Prüfungsdatum Dauer 45 Minuten Bewertung Maximale Punktzahl 31 Punkte Erreichte Punktzahl Prozente

Mehr

Fritz verlangt einen Zins von 257.14% (Jahreszins. das ist übelster Wucher ) b) k = CHF 150.--, Zeit: 2 Monate, zm = CHF 10.

Fritz verlangt einen Zins von 257.14% (Jahreszins. das ist übelster Wucher ) b) k = CHF 150.--, Zeit: 2 Monate, zm = CHF 10. Seite 8 1 Zinssatz Bruttozins am 31.12. Verrechnungssteuer Nettozins am 31.12. Kapital k Saldo am 31.12. a) 3.5% 2436 852.60 1583.4 69 600 71 183.40 b) 2.3% 4046 1416.10 2629.90 175 913.05 178'542.95 c)

Mehr

Wachstum 2. Michael Dröttboom 1 LernWerkstatt-Selm.de

Wachstum 2. Michael Dröttboom 1 LernWerkstatt-Selm.de 1. Herr Meier bekommt nach 3 Jahren Geldanlage 25.000. Er hatte 22.500 angelegt. Wie hoch war der Zinssatz? 2. Herr Meiers Vorfahren haben bei der Gründung Roms (753. V. Chr.) 1 Sesterze auf die Bank gebracht

Mehr

Was ist eine Aktie? Detlef Faber

Was ist eine Aktie? Detlef Faber Was ist eine Aktie? Wenn eine Firma hohe Investitionskosten hat, kann sie eine Aktiengesellschaft gründen und bei privaten Geldgebern Geld einsammeln. Wer eine Aktie hat, besitzt dadurch ein Stück der

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 239 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Durch die wird ein Zahlungsstrom beschrieben, der zur Rückführung eines geliehenen Geldbetrags dient. Der zu zahlende

Mehr

6.3 Zusammengesetzter Dreisatz

6.3 Zusammengesetzter Dreisatz 6.3 Zusammengesetzter Dreisatz Beispiel: In 15 Stunden können 4 Arbeitskräfte 900 Geschenkpackungen Pralinen herrichten. Für einen Großauftrag werden 1 260 Geschenkpackungen benötigt, außerdem fällt eine

Mehr

Prozent- und Zinsrechnung. Mathematik 8. Klasse Realschule

Prozent- und Zinsrechnung. Mathematik 8. Klasse Realschule Naturwissenschaft Lisa Müller Prozent- und Zinsrechnung. Mathematik 8. Klasse Realschule Unterrichtsentwurf Lerngruppe: 8a Fach: Mathematik Unterrichtsentwurf Thema der Unterrichtseinheit: Prozent- und

Mehr

Zinsrechnung % leicht 1

Zinsrechnung % leicht 1 Zinsrechnung % leicht 1 Berechne den Zinssatz im Kopf! a) b) c) d) Kapital: 1 000 Kapital: 500 Kapital: 20 000 Kapital: 5 000 Zinsen: 20 a) p = 2 % b) p = Zinsen: 1 % 5 c) p = 4 % d) p = Zinsen: 3 % 800

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 23.02.2013

R. Brinkmann http://brinkmann-du.de Seite 1 23.02.2013 R. Brinkmann http://brinkmann-du.de Seite 1 23.02.2013 SEK I Lösungen zur Zinseszinsrechnung I Ergebnisse und ausführliche Lösungen zum nblatt SEK I Rechnen mit Zinseszinsen I. Zinseszins Rechenaufgaben

Mehr

Universität Duisburg-Essen

Universität Duisburg-Essen T U T O R I U M S A U F G A B E N z u r I N V E S T I T I O N u n d F I N A N Z I E R U N G Einführung in die Zinsrechnung Zinsen sind die Vergütung für die zeitweise Überlassung von Kapital; sie kommen

Mehr

A n a l y s i s Finanzmathematik

A n a l y s i s Finanzmathematik A n a l y s i s Finanzmathematik Die Finanzmathematik ist eine Disziplin der angewandten Mathematik, die sich mit Themen aus dem Bereich von Finanzdienstleistern, wie etwa Banken oder Versicherungen, beschäftigt.

Mehr

Übungsaufgaben Tilgungsrechnung

Übungsaufgaben Tilgungsrechnung 1 Zusatzmaterialien zu Finanz- und Wirtschaftsmathematik im Unterricht, Band 1 Übungsaufgaben Tilgungsrechnung Überarbeitungsstand: 1.März 2016 Die grundlegenden Ideen der folgenden Aufgaben beruhen auf

Mehr

Eva Douma: Die Vorteile und Nachteile der Ökonomisierung in der Sozialen Arbeit

Eva Douma: Die Vorteile und Nachteile der Ökonomisierung in der Sozialen Arbeit Eva Douma: Die Vorteile und Nachteile der Ökonomisierung in der Sozialen Arbeit Frau Dr. Eva Douma ist Organisations-Beraterin in Frankfurt am Main Das ist eine Zusammen-Fassung des Vortrages: Busines

Mehr

b) Wie hoch ist der Betrag nach Abschluss eines Studiums von sechs Jahren?

b) Wie hoch ist der Betrag nach Abschluss eines Studiums von sechs Jahren? Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de Übungen zur Mathematik für Prüfungskandidaten und Prüfungskandidatinnen Unterjährliche

Mehr

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre)

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre) 3. Finanzmathematik 3.1. Zinsrechnung 3.1.1. Grundbegriffe K... Kapital (caput - das Haupt) = Betrag, der der Verzinsung unterworfen ist; Geldbetrag (Währung) z... Zinsen = Vergütung (Preis) für das Überlassen

Mehr

Zinsrechnen. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000.de

Zinsrechnen. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000.de Das Zinsrechnen Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000.de 1 Begriffe der Zinsrechnung Das Zinsrechnen ist Prozentrechnen unter

Mehr

Wörterbuch der Leichten Sprache

Wörterbuch der Leichten Sprache Wörterbuch der Leichten Sprache A Anstalt des öffentlichen Rechts Anstalten des öffentlichen Rechts sind Behörden, die selbständig arbeiten. Die Beschäftigten dieser Einrichtungen sind selbständig. Sie

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 204 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Bei der Rentenrechnung geht es um aus einem angesparten Kapital bzw. um um das Kapital aufzubauen, die innerhalb

Mehr

Zinsrechnung 2 mittel 1

Zinsrechnung 2 mittel 1 Zinsrechnung 2 mittel 1 Berechne jeweils das Kapital! a) Zinsen: 42 Zinssatz: 1,5 % Zeitraum: 8 Monate b) Zinsen: 687,50 Zinssatz: 2,5 % Zeitraum: 11 Monate H2 Zinsrechnung 2 mittel 2 Berechne jeweils

Mehr

Der monatliche Tarif für ein Handy wurde als lineare Funktion der Form f(x) = k x + d modelliert (siehe Grafik).

Der monatliche Tarif für ein Handy wurde als lineare Funktion der Form f(x) = k x + d modelliert (siehe Grafik). 1) Handytarif Der monatliche Tarif für ein Handy wurde als lineare Funktion der Form f(x) = k x + d modelliert (siehe Grafik). Euro Gesprächsminuten Tragen Sie in der folgenden Tabelle ein, welche Bedeutung

Mehr

Berechnung des Grundwertes 27. Zinsrechnung

Berechnung des Grundwertes 27. Zinsrechnung Berechnung des Grundwertes 27 Das Rechnen mit Zinsen hat im Wirtschaftsleben große Bedeutung. Banken vergüten Ihnen Zinsen, wenn Sie Geld anlegen oder berechnen Zinsen, wenn Sie einen Kredit beanspruchen.

Mehr

Übungsaufgaben Prozentrechnung und / oder Dreisatz

Übungsaufgaben Prozentrechnung und / oder Dreisatz Übungsaufgaben Prozentrechnung und / oder Dreisatz 1. Bei der Wahl des Universitätssprechers wurden 800 gültige Stimmen abgegeben. Die Stimmen verteilten sich so auf die drei Kandidat/innen: A bekam 300,

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit. 51 722 Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit. 51 722 Elementarmathematik (LH) und Fehlerfreiheit 30 % 25 % 37 % Universität Regensburg 4. Prozent-, Promille- und Zinsrechnung 4.1. Grundbegriffe der Prozentrechnung Die Prozent, Promille- und Zinsrechnung ist ein Teil der Bruchrechnung mit dem vorgegebenen

Mehr

Finanzmathematik. Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.

Finanzmathematik. Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000. Finanzmathematik Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.de Das Tilgungsrechnen Für Kredite gibt es drei unterschiedliche

Mehr

Schritte 4. Lesetexte 13. Kosten für ein Girokonto vergleichen. 1. Was passt? Ordnen Sie zu.

Schritte 4. Lesetexte 13. Kosten für ein Girokonto vergleichen. 1. Was passt? Ordnen Sie zu. Kosten für ein Girokonto vergleichen 1. Was passt? Ordnen Sie zu. a. die Buchung, -en b. die Auszahlung, -en c. der Dauerauftrag, - e d. die Überweisung, -en e. die Filiale, -n f. der Kontoauszug, - e

Mehr

Im weiteren werden die folgenden Bezeichnungen benutzt: Zinsrechnung

Im weiteren werden die folgenden Bezeichnungen benutzt: Zinsrechnung 4.2 Grundbegriffe der Finanzmathematik Im weiteren werden die folgenden Bezeichnungen benutzt: K 0 Anfangskapital p Zinsfuß pro Zeiteinheit (in %) d = p Zinssatz pro Zeiteinheit 100 q = 1+d Aufzinsungsfaktor

Mehr

Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe 8.1 Ein Auto wird auf Leasingbasis zu folgenden Bedingungen erworben:

Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe 8.1 Ein Auto wird auf Leasingbasis zu folgenden Bedingungen erworben: Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 22, Tel. 394 jutta.arrenberg@th-koeln.de Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe

Mehr

Kapitel 8.3: Kalkulation vom Hundert und im Hundert. Kapitel 8.4: Durchführung der Absatzkalkulation an einem Beispiel

Kapitel 8.3: Kalkulation vom Hundert und im Hundert. Kapitel 8.4: Durchführung der Absatzkalkulation an einem Beispiel 1 von 7 04.10.2010 15:59 Hinweis: Diese Druckversion der Lerneinheit stellt aufgrund der Beschaffenheit des Mediums eine im Funktionsumfang stark eingeschränkte Variante des Lernmaterials dar. Um alle

Mehr

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen 5.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind zwei

Mehr

Aufgabe 12 Nach dem Eintippen der Kantenlänge soll die folgende Tabelle den Rauminhalt und die Oberfläche eines Würfels automatisch berechnen.

Aufgabe 12 Nach dem Eintippen der Kantenlänge soll die folgende Tabelle den Rauminhalt und die Oberfläche eines Würfels automatisch berechnen. Aufgabe 11 Excel hat für alles eine Lösung. So kann das Programm automatisch den größten oder den kleinsten Wert einer Tabelle bestimmen. Wenn man die richtige Funktion kennt, ist das überhaupt kein Problem.

Mehr

Zinsen, Zinseszins, Rentenrechnung und Tilgung

Zinsen, Zinseszins, Rentenrechnung und Tilgung Zinsen, Zinseszins, Rentenrechnung und Tilgung 1. Zinsen, Zinseszins 2. Rentenrechnung 3. Tilgung Nevzat Ates, Birgit Jacobs Zinsrechnen mit dem Dreisatz 1 Zinsen Zinsrechnen mit den Formeln Zinseszins

Mehr

Jedes Jahr mehr Zinsen!

Jedes Jahr mehr Zinsen! Aufgabe 21 Zinsen erhält man für gewöhnlich nur für ein Jahr. Wenn man aber schon vorher an Erspartes möchte, muss man die Tageszinsen ermitteln. Erstelle eine Tabelle, die nach der Eingabe von Kapital,

Mehr

Übungsaufgaben zum Rechnungswesen für Auszubildende

Übungsaufgaben zum Rechnungswesen für Auszubildende Übungsaufgaben zum Rechnungswesen für Auszubildende Notieren Sie Rechenweg und Ergebnisse (unterstrichen)! Aufgabe 1 6 Punkte Das Barvermögen eines verstorbenen Bürovorstehers soll entsprechend seiner

Mehr

Papa - was ist American Dream?

Papa - was ist American Dream? Papa - was ist American Dream? Das heißt Amerikanischer Traum. Ja, das weiß ich, aber was heißt das? Der [wpseo]amerikanische Traum[/wpseo] heißt, dass jeder Mensch allein durch harte Arbeit und Willenskraft

Mehr

Was meinen die Leute eigentlich mit: Grexit?

Was meinen die Leute eigentlich mit: Grexit? Was meinen die Leute eigentlich mit: Grexit? Grexit sind eigentlich 2 Wörter. 1. Griechenland 2. Exit Exit ist ein englisches Wort. Es bedeutet: Ausgang. Aber was haben diese 2 Sachen mit-einander zu tun?

Mehr

n 0 1 2 3 4 5 6 7 8 9 10 11 12 S n 1250 1244, 085 1214, 075 1220, 136 1226, 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 S n 1250 1244, 085 1214, 075 1220, 136 1226, 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09. Gymnasium Leichlingen 10a M Lö 2007/08.2 2/2 Aufgaben/Lösungen der Klassenarbeit Nr. 4 von Fr., 2008-04-25 2 45 Aufgabe 1: Die A-Bank bietet Kredite zu einem Zinssatz von 6% pro Jahr an. Ein privater Keditvermittler

Mehr

Buch: Einblicke Mathematik 8 Klett ISBN 3-12-745580-1. Modul 8. Prozentrechnen (Seiten 86 96)

Buch: Einblicke Mathematik 8 Klett ISBN 3-12-745580-1. Modul 8. Prozentrechnen (Seiten 86 96) Buch: Einblicke Mathematik 8 Klett ISBN 3-12-745580-1 Modul 8 Prozentrechnen (Seiten 86 96) 1) Vergleichen von Anteilen über Prozentsätze Als erstes soll man auf den Unterschied zwischen dem absoluten

Mehr

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen 1 3.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Wichtige Forderungen für ein Bundes-Teilhabe-Gesetz

Wichtige Forderungen für ein Bundes-Teilhabe-Gesetz Wichtige Forderungen für ein Bundes-Teilhabe-Gesetz Die Parteien CDU, die SPD und die CSU haben versprochen: Es wird ein Bundes-Teilhabe-Gesetz geben. Bis jetzt gibt es das Gesetz noch nicht. Das dauert

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2015/16 Prof. Dr. M. Hinze Dr. P. Kiani Analysis I für Studierende der Ingenieurwissenschaften Lösungshinweise zu Blatt 2 Aufgabe 1: (12 Punkte) a) Beweisen

Mehr

9 Auto. Rund um das Auto. Welche Wörter zum Thema Auto kennst du? Welches Wort passt? Lies die Definitionen und ordne zu.

9 Auto. Rund um das Auto. Welche Wörter zum Thema Auto kennst du? Welches Wort passt? Lies die Definitionen und ordne zu. 1 Rund um das Auto Welche Wörter zum Thema Auto kennst du? Welches Wort passt? Lies die Definitionen und ordne zu. 1. Zu diesem Fahrzeug sagt man auch Pkw oder Wagen. 2. kein neues Auto, aber viel billiger

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Wichtig ist die Originalsatzung. Nur was in der Originalsatzung steht, gilt. Denn nur die Originalsatzung wurde vom Gericht geprüft.

Wichtig ist die Originalsatzung. Nur was in der Originalsatzung steht, gilt. Denn nur die Originalsatzung wurde vom Gericht geprüft. Das ist ein Text in leichter Sprache. Hier finden Sie die wichtigsten Regeln für den Verein zur Förderung der Autonomie Behinderter e. V.. Das hier ist die Übersetzung der Originalsatzung. Es wurden nur

Mehr

Der Auto Report. Der Auto-Report. Prozent Rechnen. Autozählen Verbrauch - Abschreibung. Copyright by ILV-H

Der Auto Report. Der Auto-Report. Prozent Rechnen. Autozählen Verbrauch - Abschreibung. Copyright by ILV-H Der Auto-Report Prozent Rechnen Autozählen Verbrauch - Abschreibung 1. Thematik: Autozählung auf der Autobahn Der Staatsrat gibt im Auftrag der Umweltkommission eine Autozählung in Auftrag. Das Ziel dieser

Mehr

9.3. Berechnung des Gewinns (Differenzkalkulation) Übungsaufgaben

9.3. Berechnung des Gewinns (Differenzkalkulation) Übungsaufgaben 1. Der Einkäufer eines Textilgeschäftes soll eine Kollektion neuer Anzüge beschaffen. Die Anzüge dürfen den von der Konkurrenz angebotenen Preis von 250,00 EUR nicht übersteigen. Welchen Preis je Anzug

Mehr

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Allgemein: Das RSA-Verschlüsselungsverfahren ist ein häufig benutztes Verschlüsselungsverfahren, weil es sehr sicher ist. Es gehört zu der Klasse der

Mehr

LEASING Arbeitsauftrag

LEASING Arbeitsauftrag Aufgabe 1 Verbinden Sie die Personen (links) mit der entsprechenden Tätigkeit (rechts) mit Linien. Mehrfache Zuordnungen sind möglich. Ihm gehört das Auto. Autohändler Er darf das Auto benutzen. Er kauft

Mehr

Übungen lineare Gleichungssysteme - Lösungen 1. Bestimme die Lösungsmenge und führe eine Probe durch! a)

Übungen lineare Gleichungssysteme - Lösungen 1. Bestimme die Lösungsmenge und führe eine Probe durch! a) Übungen lineare Gleichungssysteme - Lösungen. Bestimme die Lösungsmenge und führe eine Probe durch! a) b) c) 2x5y=23 2x 3y= 6x0y=64 6x 2y=6 2x3y=20 5x y=33 2x5y=23 2x 3y= 2x5y=23 2x3y= 8y=24 : 8 y=3 6x0y=64

Mehr

Korrigenda Handbuch der Bewertung

Korrigenda Handbuch der Bewertung Korrigenda Handbuch der Bewertung Kapitel 3 Abschnitt 3.5 Seite(n) 104-109 Titel Der Terminvertrag: Ein Beispiel für den Einsatz von Future Values Änderungen In den Beispielen 21 und 22 ist der Halbjahressatz

Mehr

Was ich als Bürgermeister für Lübbecke tun möchte

Was ich als Bürgermeister für Lübbecke tun möchte Wahlprogramm in leichter Sprache Was ich als Bürgermeister für Lübbecke tun möchte Hallo, ich bin Dirk Raddy! Ich bin 47 Jahre alt. Ich wohne in Hüllhorst. Ich mache gerne Sport. Ich fahre gerne Ski. Ich

Mehr

Kaufmännische Kalkulation

Kaufmännische Kalkulation (Infoblatt) Johnny Stiefletto ist Schuhhändler. Er möchte durchrechnen, um wie viel er ein Paar Sportschuhe verkaufen muss, damit alle seine Kosten gedeckt sind und er auch noch Gewinn erzielen kann. Er

Mehr

In der Klasse sind 11 der 27 Schüler Jungen. Der Anteil der Jungen an allen Schülern dieser Klasse beträgt 11 27

In der Klasse sind 11 der 27 Schüler Jungen. Der Anteil der Jungen an allen Schülern dieser Klasse beträgt 11 27 Prozentrechnung I Anteile - Berechnung des Prozentsatzes In der Klasse 8a mit 30 Schülern sind 12 Jungen. Der Anteil der Jungen an allen Schülern dieser Klasse 12 6 2 beträgt also = =. 30 15 5 Um die Größe

Mehr

Mathematik Serie 2 (60 Min.)

Mathematik Serie 2 (60 Min.) Aufnahmeprüfung 2008 Mathematik Serie 2 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtig! -

Mehr

2 Lineare Gleichungen mit zwei Variablen

2 Lineare Gleichungen mit zwei Variablen 2 Lineare Gleichungen mit zwei Variablen Die Klasse 9 c möchte ihr Klassenzimmer mit Postern ausschmücken. Dafür nimmt sie 30, aus der Klassenkasse. In Klasse 7 wurden lineare Gleichungen mit einer Variablen

Mehr

Berufliches Schulzentrum Matthäus Runtinger Rechnen für Bankkaufleute - 11. Jgst. BRW11-1

Berufliches Schulzentrum Matthäus Runtinger Rechnen für Bankkaufleute - 11. Jgst. BRW11-1 Berufliches Schulzentrum Matthäus Runtinger Rechnen für Bankkaufleute - 11. Jgst. BRW11-1 1. Aufgabe Der durchschnittliche Einlagenbestand eines KI gliedert sich in - Sichteinlagen 360 Mio. zu 0,4 % -

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

infach Geld FBV Ihr Weg zum finanzellen Erfolg Florian Mock

infach Geld FBV Ihr Weg zum finanzellen Erfolg Florian Mock infach Ihr Weg zum finanzellen Erfolg Geld Florian Mock FBV Die Grundlagen für finanziellen Erfolg Denn Sie müssten anschließend wieder vom Gehaltskonto Rückzahlungen in Höhe der Entnahmen vornehmen, um

Mehr

Wie funktioniert eine Bank?

Wie funktioniert eine Bank? Wie funktioniert eine Bank? Prof. Dr. Curdin Derungs 09. September 2015 Mitglied der FHO Fachhochschule Ostschweiz Seite 1 Eine kleine Aufgabe zum Einstieg Begrüssungsaufgabe 1. Nimm Deine Namenstafel.

Mehr

Das Leitbild vom Verein WIR

Das Leitbild vom Verein WIR Das Leitbild vom Verein WIR Dieses Zeichen ist ein Gütesiegel. Texte mit diesem Gütesiegel sind leicht verständlich. Leicht Lesen gibt es in drei Stufen. B1: leicht verständlich A2: noch leichter verständlich

Mehr

Alle Schlüssel-Karten (blaue Rückseite) werden den Schlüssel-Farben nach sortiert und in vier getrennte Stapel mit der Bildseite nach oben gelegt.

Alle Schlüssel-Karten (blaue Rückseite) werden den Schlüssel-Farben nach sortiert und in vier getrennte Stapel mit der Bildseite nach oben gelegt. Gentlemen", bitte zur Kasse! Ravensburger Spiele Nr. 01 264 0 Autoren: Wolfgang Kramer und Jürgen P. K. Grunau Grafik: Erhard Dietl Ein Gaunerspiel für 3-6 Gentlemen" ab 10 Jahren Inhalt: 35 Tresor-Karten

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 221 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird im Bereich der Rentenrechnung die zugehörige zu Beginn eines Jahres / einer Zeitperiode eingezahlt, so spricht

Mehr

Lösungshinweise zur Einsendearbeit 2 SS 2011

Lösungshinweise zur Einsendearbeit 2 SS 2011 Lösungshinweise zur Einsendearbeit 2 zum Kurs 41500, Finanzwirtschaft: Grundlagen, SS2011 1 Lösungshinweise zur Einsendearbeit 2 SS 2011 Finanzwirtschaft: Grundlagen, Kurs 41500 Aufgabe Finanzierungsbeziehungen

Mehr

Übungsplan zu ganzen Zahlen Aufgaben zur Prüfungsvorbereitung von Markus Baur, StR Werdenfels-Gymnasium

Übungsplan zu ganzen Zahlen Aufgaben zur Prüfungsvorbereitung von Markus Baur, StR Werdenfels-Gymnasium Übungsplan zu ganzen Zahlen Aufgaben zur Prüfungsvorbereitung von Markus Baur, StR Werdenfels-Gymnasium Das Dokument steht unter einer Creative Commons Lizens: Das Werk darf unter den folgenden Bedingungen

Mehr

* Leichte Sprache * Leichte Sprache * Leichte Sprache *

* Leichte Sprache * Leichte Sprache * Leichte Sprache * * Leichte Sprache * Leichte Sprache * Leichte Sprache * Was ist die Aktion Mensch? Viele Menschen sollen gut zusammenleben können. Dafür setzen wir uns ein. Wie macht die Aktion Mensch das? Wir verkaufen

Mehr

Die Wirtschaftskrise aus Sicht der Kinder

Die Wirtschaftskrise aus Sicht der Kinder Die Wirtschaftskrise aus Sicht der Kinder Telefonische Befragung bei 151 Kindern im Alter von 8 bis 12 Jahren Präsentation der Ergebnisse Mai 2009 EYE research GmbH, Neuer Weg 14, 71111 Waldenbuch, Tel.

Mehr

MATHE - CHECKER 6. Klasse L Ö S U N G E N. by W. Rasch

MATHE - CHECKER 6. Klasse L Ö S U N G E N. by W. Rasch MATHE - CHECKER 6. Klasse L Ö S U N G E N by W. Rasch 1. Aufgabe Ein Auto verbraucht 8 Liter Benzin auf 100 km. Wie viele Liter braucht es für 350 km? A: 32 Liter B: 24 Liter C: 28 Liter D: 36 Liter 2.

Mehr

REGELN REICHTUMS RICHARD TEMPLAR AUTOR DES INTERNATIONALEN BESTSELLERS DIE REGELN DES LEBENS

REGELN REICHTUMS RICHARD TEMPLAR AUTOR DES INTERNATIONALEN BESTSELLERS DIE REGELN DES LEBENS REGELN REICHTUMS RICHARD TEMPLAR AUTOR DES INTERNATIONALEN BESTSELLERS DIE REGELN DES LEBENS INHALT 10 DANKSAGUNG 12 EINLEITUNG 18 DENKEN WIE DIE REICHEN 20 REGEL i: Jeder darf reich werden - ohne Einschränkung

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

1. Weniger Steuern zahlen

1. Weniger Steuern zahlen 1. Weniger Steuern zahlen Wenn man arbeitet, zahlt man Geld an den Staat. Dieses Geld heißt Steuern. Viele Menschen zahlen zu viel Steuern. Sie haben daher wenig Geld für Wohnung, Gewand oder Essen. Wenn

Mehr

Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009)

Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009) Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009) Probleme unseres Alltags E-Mails lesen: Niemand außer mir soll meine Mails lesen! Geld abheben mit der EC-Karte: Niemand außer mir soll

Mehr

Tipps zur Nutzung der ViT 1 Lernen ViT Üben HAU ViT ViT ViT ViT ViT Testen ViT VORSC Bewerten RAGTIME ViT zur Vollversion ViT

Tipps zur Nutzung der ViT 1 Lernen ViT Üben HAU ViT ViT ViT ViT ViT Testen ViT VORSC Bewerten RAGTIME ViT zur Vollversion ViT Fit mit Tipps zur Nutzung der s Auf den folgenden Seiten finden Sie 50 Tests mit ähnlichem Inhalt. Damit können Sie z.b. Parallelklassen, Nachzügler, Gruppen oder alle Schüler einer Klasse bei Klassenarbeiten

Mehr

GEHEN SIE ZUR NÄCHSTEN SEITE.

GEHEN SIE ZUR NÄCHSTEN SEITE. Seite 1 1. TEIL Das Telefon klingelt. Sie antworten. Die Stimme am Telefon: Guten Tag! Hier ist das Forschungsinstitut FLOP. Haben Sie etwas Zeit, um ein paar Fragen zu beantworten? Wie denn? Am Telefon?

Mehr

Mathematik-Klausur vom 4.2.2004

Mathematik-Klausur vom 4.2.2004 Mathematik-Klausur vom 4.2.2004 Aufgabe 1 Ein Klein-Sparer verfügt über 2 000, die er möglichst hoch verzinst anlegen möchte. a) Eine Anlage-Alternative besteht im Kauf von Bundesschatzbriefen vom Typ

Mehr