Logik für Informatiker

Größe: px
Ab Seite anzeigen:

Download "Logik für Informatiker"

Transkript

1 Vorlesung Logik für Informatiker 7. Aussagenlogik Analytische Tableaus Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1

2 Der aussagenlogische Tableaukalkül Wesentliche Eigenschaften Widerlegungskalkül: Testet auf Unerfüllbarkeit Logik für Informatiker, SS 06 p.2

3 Der aussagenlogische Tableaukalkül Wesentliche Eigenschaften Widerlegungskalkül: Testet auf Unerfüllbarkeit Beweis durch Fallunterscheidung Logik für Informatiker, SS 06 p.2

4 Der aussagenlogische Tableaukalkül Wesentliche Eigenschaften Widerlegungskalkül: Testet auf Unerfüllbarkeit Beweis durch Fallunterscheidung Top-down-Analyse der gegebenen Formeln Logik für Informatiker, SS 06 p.2

5 Der aussagenlogische Tableaukalkül Vorteile Intuitiver als Resolution Logik für Informatiker, SS 06 p.3

6 Der aussagenlogische Tableaukalkül Vorteile Intuitiver als Resolution Formeln müssen nicht in Normalform sein Logik für Informatiker, SS 06 p.3

7 Der aussagenlogische Tableaukalkül Vorteile Intuitiver als Resolution Formeln müssen nicht in Normalform sein Falls Formelmenge erfüllbar ist (Test schlägt fehl), wird ein Gegenbeispiel (eine erfüllende Interpretation) konstruiert Logik für Informatiker, SS 06 p.3

8 Der aussagenlogische Tableaukalkül Vorteile Intuitiver als Resolution Formeln müssen nicht in Normalform sein Falls Formelmenge erfüllbar ist (Test schlägt fehl), wird ein Gegenbeispiel (eine erfüllende Interpretation) konstruiert Nachteil Mehr als eine Regel Logik für Informatiker, SS 06 p.3

9 Kleine Deutsch- und Englischsstunde Deutsch das Tableau des Tableaus (Gen.) die Tableaus (pl.) Logik für Informatiker, SS 06 p.4

10 Kleine Deutsch- und Englischsstunde Deutsch das Tableau des Tableaus (Gen.) die Tableaus (pl.) der Tableaukalkül (nicht das) Logik für Informatiker, SS 06 p.4

11 Kleine Deutsch- und Englischsstunde Deutsch das Tableau des Tableaus (Gen.) die Tableaus (pl.) der Tableaukalkül (nicht das) Englisch the tableau (sing.) the tableaux (pl.) the tableau calculus Logik für Informatiker, SS 06 p.4

12 Zur Erinnerung: Uniforme Notation Konjunktive Formeln: Typ α A A B (A B) (A B) Logik für Informatiker, SS 06 p.5

13 Zur Erinnerung: Uniforme Notation Konjunktive Formeln: Typ α A A B (A B) (A B) Disjunktive Formeln: Typ β (A B) A B A B Logik für Informatiker, SS 06 p.5

14 Zur Erinnerung: Uniforme Notation Zuordnungsregeln Formeln / Unterformeln α α 1 α 2 A B A B (A B) A B (A B) A B A A A Logik für Informatiker, SS 06 p.6

15 Zur Erinnerung: Uniforme Notation Zuordnungsregeln Formeln / Unterformeln α α 1 α 2 A B A B (A B) A B (A B) A B β β 1 β 2 (A B) A B A B A B A B A B A A A Logik für Informatiker, SS 06 p.6

16 Regeln des (aussagenlogischen) Tableaukalküls α α 1 α 2 konjunktiv p q p q Logik für Informatiker, SS 06 p.7

17 Regeln des (aussagenlogischen) Tableaukalküls α α 1 α 2 konjunktiv p q p q β disjunktiv p q β 1 β 2 p q Logik für Informatiker, SS 06 p.7

18 Regeln des (aussagenlogischen) Tableaukalküls α α 1 α 2 konjunktiv p q p q β disjunktiv p q β 1 β 2 p q F F Widerspruch F F Logik für Informatiker, SS 06 p.7

19 Instanzen der α- und β-regel Instanzen der α-regel P Q (P Q) (P Q) P P P P P Q Q Q Logik für Informatiker, SS 06 p.8

20 Instanzen der α- und β-regel Instanzen der α-regel P Q (P Q) (P Q) P P P P P Q Q Q Instanzen der β-regel P Q (P Q) P Q P Q P Q P Q Logik für Informatiker, SS 06 p.8

21 Beispiel ((( A B) C) (( B A) C)) ( A B) C (( B A) C) B A C ( A B) C A B B A B Logik für Informatiker, SS 06 p.9

22 Determinismus von Kalkül und Regeln Determinismus Die Regeln sind alle deterministisch Logik für Informatiker, SS 06 p.10

23 Determinismus von Kalkül und Regeln Determinismus Die Regeln sind alle deterministisch Der Kalkül aber nicht: Auswahl der nächsten Formel, auf die Regel angewendet wird Logik für Informatiker, SS 06 p.10

24 Determinismus von Kalkül und Regeln Determinismus Die Regeln sind alle deterministisch Der Kalkül aber nicht: Auswahl der nächsten Formel, auf die Regel angewendet wird Heuristik Nicht-verzweigende Regeln zuerst: α vor β Logik für Informatiker, SS 06 p.10

25 Determinismus von Kalkül und Regeln Determinismus Die Regeln sind alle deterministisch Der Kalkül aber nicht: Auswahl der nächsten Formel, auf die Regel angewendet wird Heuristik Nicht-verzweigende Regeln zuerst: α vor β Nota bene Selbe Formel kann mehrfach (auf verschiedenen Ästen) verwendet werden Logik für Informatiker, SS 06 p.10

26 Formale Definition des Kalküls Definition: Tableau Binärer Baum, dessen Knoten mit Formeln markiert sind Logik für Informatiker, SS 06 p.11

27 Formale Definition des Kalküls Definition: Tableau Binärer Baum, dessen Knoten mit Formeln markiert sind Definition: Tableauast Maximaler Pfad in Einem Tableau (von Wurzel zu Blatt) Logik für Informatiker, SS 06 p.11

28 Formale Definition des Kalküls Sei M eine Formelmenge Initialisierung Das Tableau, das nur aus dem Knoten 1 besteht, ist ein Tableau für M Logik für Informatiker, SS 06 p.12

29 Formale Definition des Kalküls Sei M eine Formelmenge Initialisierung Das Tableau, das nur aus dem Knoten 1 besteht, ist ein Tableau für M Erweiterung T ein Tableau für M Logik für Informatiker, SS 06 p.12

30 Formale Definition des Kalküls Sei M eine Formelmenge Initialisierung Das Tableau, das nur aus dem Knoten 1 besteht, ist ein Tableau für M Erweiterung T ein Tableau für M B ein Ast von T Logik für Informatiker, SS 06 p.12

31 Formale Definition des Kalküls Sei M eine Formelmenge Initialisierung Das Tableau, das nur aus dem Knoten 1 besteht, ist ein Tableau für M Erweiterung T ein Tableau für M B ein Ast von T F eine Formel auf B oder in M, die kein Literal ist Logik für Informatiker, SS 06 p.12

32 Formale Definition des Kalküls Sei M eine Formelmenge Initialisierung Das Tableau, das nur aus dem Knoten 1 besteht, ist ein Tableau für M Erweiterung T ein Tableau für M B ein Ast von T F eine Formel auf B oder in M, die kein Literal ist T entstehe durch Erweiterung von B gemäß der auf F anwendbaren Regel (α oder β) Logik für Informatiker, SS 06 p.12

33 Formale Definition des Kalküls Sei M eine Formelmenge Initialisierung Das Tableau, das nur aus dem Knoten 1 besteht, ist ein Tableau für M Erweiterung T ein Tableau für M B ein Ast von T F eine Formel auf B oder in M, die kein Literal ist T entstehe durch Erweiterung von B gemäß der auf F anwendbaren Regel (α oder β) Dann ist T ein Tableau für M Logik für Informatiker, SS 06 p.12

34 Formale Definition des Kalküls Nota bene Alle Äste in einem Tableau für M enthalten implizit alle Formeln in M Logik für Informatiker, SS 06 p.13

35 Formale Definition des Kalküls Definition: Geschlossener Ast Ast B eines Tableaus für M ist geschlossen, wenn F, F B M Logik für Informatiker, SS 06 p.14

36 Formale Definition des Kalküls Definition: Geschlossener Ast Ast B eines Tableaus für M ist geschlossen, wenn F, F B M Definition: Geschlossenes Tableau Ein Tableau ist geschlossen, wenn jeder seiner Äste geschlossen ist Logik für Informatiker, SS 06 p.14

37 Formale Definition des Kalküls Definition: Geschlossener Ast Ast B eines Tableaus für M ist geschlossen, wenn F, F B M Definition: Geschlossenes Tableau Ein Tableau ist geschlossen, wenn jeder seiner Äste geschlossen ist Definition: Tableaubeweis Ein Tableau für M, das geschlossen ist, ist ein Tableaubeweis für (die Unerfüllbarkeit von) M Logik für Informatiker, SS 06 p.14

38 Beispiel: Nun formal richtig M = ((( A B) C) (( B A) C)) 1 ( A B) C (( B A) C) B A C ( A B) C A B B A B Logik für Informatiker, SS 06 p.15

39 Korrektheit und Vollständigkeit des Tableaukalküls Theorem Eine Formelmenge M ist unerfüllbar genau dann, wenn es einen Tableaubeweis für (die Unerfüllbarkeit von) M gibt Logik für Informatiker, SS 06 p.16

40 Kern des Korrektheitsbeweises Definition: Erfüllbares Tableau Tableauast ist erfüllbar, wenn die Menge seiner Formeln erfüllbar ist Tableau ist erfüllbar, wenn es (mindestens) einen erfüllbaren Ast hat Logik für Informatiker, SS 06 p.17

41 Kern des Korrektheitsbeweises Definition: Erfüllbares Tableau Tableauast ist erfüllbar, wenn die Menge seiner Formeln erfüllbar ist Tableau ist erfüllbar, wenn es (mindestens) einen erfüllbaren Ast hat Lemma Jedes Tableau für eine erfüllbare Formelmenge M ist erfüllbar Logik für Informatiker, SS 06 p.17

42 Kern des Korrektheitsbeweises Definition: Erfüllbares Tableau Tableauast ist erfüllbar, wenn die Menge seiner Formeln erfüllbar ist Tableau ist erfüllbar, wenn es (mindestens) einen erfüllbaren Ast hat Lemma Jedes Tableau für eine erfüllbare Formelmenge M ist erfüllbar Lemma Ein geschlossenes Tableau ist nicht erfüllbar Logik für Informatiker, SS 06 p.17

43 Kern des Korrektheitsbeweises Definition: Erfüllbares Tableau Tableauast ist erfüllbar, wenn die Menge seiner Formeln erfüllbar ist Tableau ist erfüllbar, wenn es (mindestens) einen erfüllbaren Ast hat Lemma Jedes Tableau für eine erfüllbare Formelmenge M ist erfüllbar Lemma Ein geschlossenes Tableau ist nicht erfüllbar Also Kein geschlossenes Tableau für erfüllbare Formelmenge Logik für Informatiker, SS 06 p.17

44 Kern des Vollständigkeitsbeweises Definition: Voll expandiertes Tableau Ein Tableau heißt voll expandiert, wenn jede Regel auf jede passende Formel auf jedem offenen Ast angewendet worden ist Logik für Informatiker, SS 06 p.18

45 Kern des Vollständigkeitsbeweises Definition: Voll expandiertes Tableau Ein Tableau heißt voll expandiert, wenn jede Regel auf jede passende Formel auf jedem offenen Ast angewendet worden ist Lemma B offener Ast in voll expandiertem Tableau, dann B M erfüllbar Also Voll expandierte Tableau für unerfüllbares M ist geschlossen Logik für Informatiker, SS 06 p.18

46 Klauseltableau M eine Menge von Klauseln Logik für Informatiker, SS 06 p.19

47 Klauseltableau M eine Menge von Klauseln Änderungen Keine α-regel Logik für Informatiker, SS 06 p.19

48 Klauseltableau M eine Menge von Klauseln Änderungen Keine α-regel Erweiterungsregel kann Verzweigungsgrad >2 haben Logik für Informatiker, SS 06 p.19

49 Klauseltableau M eine Menge von Klauseln Änderungen Keine α-regel Erweiterungsregel kann Verzweigungsgrad >2 haben Alle Knoten im Tableau enthalten Literale Logik für Informatiker, SS 06 p.19

50 Klauseltableau: Beispiel M = { {P, Q, R}, { R}, { P, Q}, {P, Q}, { P, Q} } Logik für Informatiker, SS 06 p.20

51 Klauseltableau: Beispiel M = { {P, Q, R}, { R}, { P, Q}, {P, Q}, { P, Q} } 1 P Q P Q P Q R P P Q Q Logik für Informatiker, SS 06 p.20

52 Klauseltableau: Einschränkungen des Suchraums Regularität Kein Literal darf auf einem Ast mehr als einmal vorkommen Logik für Informatiker, SS 06 p.21

53 Klauseltableau: Einschränkungen des Suchraums Regularität Kein Literal darf auf einem Ast mehr als einmal vorkommen Schwache Konnektionsbedingung Bei Erweiterung von Ast B muss mindestens eines der neuen Literale komplementär zu Literal in B M sein Logik für Informatiker, SS 06 p.21

54 Klauseltableau: Einschränkungen des Suchraums Regularität Kein Literal darf auf einem Ast mehr als einmal vorkommen Schwache Konnektionsbedingung Bei Erweiterung von Ast B muss mindestens eines der neuen Literale komplementär zu Literal in B M sein Starke Konnektionsbedingung (Modellelimination) Bei Erweiterung von Ast B muss mindestens eines der neuen Literale komplementär zum Blatt von B sein außer beim ersten Schritt Logik für Informatiker, SS 06 p.21

55 Klauseltableau: Einschränkungen des Suchraums Regularität, starke u. schwache Konnektionsbedingung erhalten Vollständigkeit Logik für Informatiker, SS 06 p.22

56 Klauseltableau: Einschränkungen des Suchraums Regularität, starke u. schwache Konnektionsbedingung erhalten Vollständigkeit Jedoch Bei starker Konnektionsbedingung kann ungünstige Erweiterung in Sackgasse führen Logik für Informatiker, SS 06 p.22

57 Klauseltableau: Einschränkungen des Suchraums Regularität, starke u. schwache Konnektionsbedingung erhalten Vollständigkeit Jedoch Bei starker Konnektionsbedingung kann ungünstige Erweiterung in Sackgasse führen (bei schwacher Konnektionsbedinung nicht) Logik für Informatiker, SS 06 p.22

58 Klauseltableau: Einschränkungen des Suchraums Regularität, starke u. schwache Konnektionsbedingung erhalten Vollständigkeit Jedoch Bei starker Konnektionsbedingung kann ungünstige Erweiterung in Sackgasse führen (bei schwacher Konnektionsbedinung nicht) Beispiel: M = { {P}, { Q}, { P, Q}, { P, R} } Logik für Informatiker, SS 06 p.22

59 Klauseltableau: Weiteres Beispiel Signatur: F: Flugreise V: Vollpension M: Meer P: Pool Logik für Informatiker, SS 06 p.23

60 Klauseltableau: Weiteres Beispiel Signatur: F: Flugreise V: Vollpension M: Meer P: Pool Falls sie nicht mit dem Flugzeug fliegen, besteht der Vater auf Vollpension am Meer. F (V M) Logik für Informatiker, SS 06 p.23

61 Klauseltableau: Weiteres Beispiel Signatur: F: Flugreise V: Vollpension M: Meer P: Pool Falls sie nicht mit dem Flugzeug fliegen, besteht der Vater auf Vollpension am Meer. F (V M) Die Mutter möchte mindestens einen ihrer drei Wünsche erfüllt sehen: ans Meer fliegen, oder am Meer ohne Pool, oder Vollpension und Pool. (M F) (M P) (V P) Logik für Informatiker, SS 06 p.23

62 Klauseltableau: Weiteres Beispiel Signatur: F: Flugreise V: Vollpension M: Meer P: Pool Falls sie nicht mit dem Flugzeug fliegen, besteht der Vater auf Vollpension am Meer. F (V M) Die Mutter möchte mindestens einen ihrer drei Wünsche erfüllt sehen: ans Meer fliegen, oder am Meer ohne Pool, oder Vollpension und Pool. (M F) (M P) (V P) Gibt es keinen Pool, so besteht Tochter Lisa auf einer Flugreise und Urlaub am Meer und darauf, dass keine Vollpension gebucht wird. P (F M V) Logik für Informatiker, SS 06 p.23

63 Klauseltableau: Weiteres Beispiel Signatur: F: Flugreise V: Vollpension M: Meer P: Pool Falls sie nicht mit dem Flugzeug fliegen, besteht der Vater auf Vollpension am Meer. F (V M) Die Mutter möchte mindestens einen ihrer drei Wünsche erfüllt sehen: ans Meer fliegen, oder am Meer ohne Pool, oder Vollpension und Pool. (M F) (M P) (V P) Gibt es keinen Pool, so besteht Tochter Lisa auf einer Flugreise und Urlaub am Meer und darauf, dass keine Vollpension gebucht wird. P (F M V) Auch dem Baby soll einer seiner Wünsche erfüllt werden: erstens einen Pool und nicht fliegen oder zweitens Vollpension, dann aber ohne Pool. (P F) (V P) Logik für Informatiker, SS 06 p.23

64 Klauseltableau: Weiteres Beispiel Behauptung Dann müssen sie ans Meer mit Vollpension, mit Pool und ohne Flug. M V P F Logik für Informatiker, SS 06 p.24

65 Klauseltableau: Weiteres Beispiel Behauptung Dann müssen sie ans Meer mit Vollpension, mit Pool und ohne Flug. M V P F Negation der Behauptung: M V P F Logik für Informatiker, SS 06 p.24

66 Klauseltableau: Weiteres Beispiel F (V M) (1) F V (2) F M (M F) (M P) (V P) (3) M V (4) M P (5) M P V (6) F M V (7) F M P (8) F P V P (F M V) (9) P F (10) P M (11) P V (P F) (V P) (12) P V (13) F V (14) F P Negation der Behauptung (15) M V P F Logik für Informatiker, SS 06 p.25

67 Klauseltableau: Weiteres Beispiel Beobachtung Konstruktion des Konnektionstableaus bei Beginn mit Klausel (1) mit Regularität mit starker Konnektionsbedingung Dann Nahezu deterministische Beweiskonstruktion Logik für Informatiker, SS 06 p.26

68 Zusammenfassung: Tableaukalkül Beweis durch Widerspruch und Fallunterscheidung Logik für Informatiker, SS 06 p.27

69 Zusammenfassung: Tableaukalkül Beweis durch Widerspruch und Fallunterscheidung Tableauregeln (mit uniformer Notation) Logik für Informatiker, SS 06 p.27

70 Zusammenfassung: Tableaukalkül Beweis durch Widerspruch und Fallunterscheidung Tableauregeln (mit uniformer Notation) Formale Definition des Kalküls Logik für Informatiker, SS 06 p.27

71 Zusammenfassung: Tableaukalkül Beweis durch Widerspruch und Fallunterscheidung Tableauregeln (mit uniformer Notation) Formale Definition des Kalküls Korrektheit und Vollständigkeit Logik für Informatiker, SS 06 p.27

72 Zusammenfassung: Tableaukalkül Beweis durch Widerspruch und Fallunterscheidung Tableauregeln (mit uniformer Notation) Formale Definition des Kalküls Korrektheit und Vollständigkeit Klauseltableau Logik für Informatiker, SS 06 p.27

73 Zusammenfassung: Tableaukalkül Beweis durch Widerspruch und Fallunterscheidung Tableauregeln (mit uniformer Notation) Formale Definition des Kalküls Korrektheit und Vollständigkeit Klauseltableau Regularität Logik für Informatiker, SS 06 p.27

74 Zusammenfassung: Tableaukalkül Beweis durch Widerspruch und Fallunterscheidung Tableauregeln (mit uniformer Notation) Formale Definition des Kalküls Korrektheit und Vollständigkeit Klauseltableau Regularität Schwache und starke Konnektionsbedingung Logik für Informatiker, SS 06 p.27

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 10 4.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Organisatorisches Hauptklausur: Montag, 23.07.2012, 16:00-18:00,

Mehr

Klauseltableau: Einschränkungen des Suchraums

Klauseltableau: Einschränkungen des Suchraums Klauseltableau: Einschränkungen des Suchraums Regularität Kein Literal darf auf einem Ast mehr als einmal vorkommen Schwache Konnektionsbedingung Bei Erweiterung von Ast B muss mindestens eines der neuen

Mehr

Formale Systeme. Prof. Dr. Bernhard Beckert. Winter 2008/2009. Fakultät für Informatik Universität Karlsruhe (TH)

Formale Systeme. Prof. Dr. Bernhard Beckert. Winter 2008/2009. Fakultät für Informatik Universität Karlsruhe (TH) Formale Systeme Prof. Dr. Bernhard Beckert Fakultät für Informatik Universität Karlsruhe (TH) Winter 2008/2009 Prof. Dr. Bernhard Beckert Formale Systeme Winter 2008/2009 1 / 22 Kalküle für die Aussagenlogik

Mehr

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Formale Systeme Prof. Dr. Bernhard Beckert, WS 2016/2017 Aussagenlogik: Tableaukalku l KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2017/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2017/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Aussagenlogik: Tableaukalku l KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

Formale Systeme, WS 2008/2009 Lösungen zum Übungsblatt 2

Formale Systeme, WS 2008/2009 Lösungen zum Übungsblatt 2 UNIVERSITÄT KARLSRUHE (TH) Institut für Theoretische Informatik Prof. Dr. B. Beckert M. Ulbrich Formale Systeme, WS 2008/2009 Lösungen zum Übungsblatt 2 Dieses Blatt wurde in der Übung am 14.11.2008 besprochen.

Mehr

Formale Systeme. Tableaukalku l (ohne Gleichheit) Prof. Dr. Bernhard Beckert, WS 2015/ KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK

Formale Systeme. Tableaukalku l (ohne Gleichheit) Prof. Dr. Bernhard Beckert, WS 2015/ KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert, WS 2015/2016 Tableaukalku l (ohne Gleichheit) KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK KIT Universita t des Landes Baden-Wu rttemberg und nationales Forschungszentrum

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 8 31.05.2016 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Normalformen: CNF/DNF Subsumption SAT-Problem

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 6. Aussagenlogik Resolution Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Resolutionkalkül Wesentliche

Mehr

Logik. Gabriele Kern-Isberner LS 1 Information Engineering. TU Dortmund Wintersemester 2014/15 WS 2014/15

Logik. Gabriele Kern-Isberner LS 1 Information Engineering. TU Dortmund Wintersemester 2014/15 WS 2014/15 Logik Gabriele Kern-Isberner LS 1 Information Engineering TU Dortmund Wintersemester 2014/15 WS 2014/15 G. Kern-Isberner (TU Dortmund) Logik WS 2014/15 1 / 125 Übersicht Modallogik 5. Grundlagen 6. Erfüllbarkeit

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 13. Prädikatenlogik Der Satz von Herbrand Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Semantische Bäume Eine klassische

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 4. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der Aussagenlogik:

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 8 18.05.2017 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Normalformen: CNF/DNF Subsumption SAT-Problem

Mehr

Aussagenlogische Kalküle

Aussagenlogische Kalküle Aussagenlogische Kalküle Ziel: mit Hilfe von schematischen Regeln sollen alle aus einer Formel logisch folgerbaren Formeln durch (prinzipiell syntaktische) Umformungen abgeleitet werden können. Derartige

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische

Mehr

Tableaukalkül für Aussagenlogik

Tableaukalkül für Aussagenlogik Tableaukalkül für Aussagenlogik Tableau: Test einer Formel auf Widersprüchlichkeit Fallunterscheidung baumförmig organisiert Keine Normalisierung, d.h. alle Formeln sind erlaubt Struktur der Formel wird

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 7 15.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Unser Ziel Kalkül(e) zur systematischen Überprüfung

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 5 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Normalformen Atome, Literale, Klauseln Konjunktive

Mehr

Beweisen mit Semantischen Tableaux

Beweisen mit Semantischen Tableaux Beweisen mit Semantischen Tableaux Semantische Tableaux geben ein Beweisverfahren, mit dem ähnlich wie mit Resolution eine Formel dadurch bewiesen wird, dass ihre Negation als widersprüchlich abgeleitet

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 6 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2017/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2017/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Pra dikatenlogik: Tableaukalku l (ohne Gleichheit) KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der

Mehr

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Formale Systeme Prof. Dr. Bernhard Beckert, WS 2016/2017 Pra dikatenlogik: Tableaukalku l (ohne Gleichheit) KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 06.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax (Formeln) Semantik Wertebelegungen/Valuationen/Modelle

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 4 7.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

3.1.1 Die Variante T1 und ein Entscheidungsverfahren für die Aussagenlogik

3.1.1 Die Variante T1 und ein Entscheidungsverfahren für die Aussagenlogik Deduktionssysteme der Aussagenlogik, Kap. 3: Tableaukalküle 38 3 Tableaukalküle 3.1 Klassische Aussagenlogik 3.1.1 Die Variante T1 und ein Entscheidungsverfahren für die Aussagenlogik Ein zweites Entscheidungsverfahren

Mehr

Formale Systeme. Aussagenlogik: Resolutionskalku l. Prof. Dr. Bernhard Beckert, WS 2018/2019

Formale Systeme. Aussagenlogik: Resolutionskalku l. Prof. Dr. Bernhard Beckert, WS 2018/2019 Formale Systeme Prof. Dr. Bernhard Beckert, WS 2018/2019 Aussagenlogik: Resolutionskalku l KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

Formale Systeme. Prädikatenlogik: Tableaukalkül (ohne Gleichheit) Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Prädikatenlogik: Tableaukalkül (ohne Gleichheit) Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Das SAT Problem oder Erfüllbarkeitsproblem. Formale Systeme. Teilklassen. Satz von Cook. SAT Instanz: Eine aussagenlogische Formel F For 0

Das SAT Problem oder Erfüllbarkeitsproblem. Formale Systeme. Teilklassen. Satz von Cook. SAT Instanz: Eine aussagenlogische Formel F For 0 Das SAT Problem oder Erfüllbarkeitsproblem Formale Systeme Prof. Dr. Bernhard Beckert Fakultät für Informatik Universität Karlsruhe TH SAT Instanz: Eine aussagenlogische Formel F For 0 Frage: Ist F erfüllbar?

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 5 8.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Teil 2: Logik 1 Prädikatenlogik (Einleitung) 2 Aussagenlogik Motivation Grundlagen Eigenschaften Eigenschaften Normalformen

Mehr

Klauselmengen. Definition Sei

Klauselmengen. Definition Sei Klauselmengen Definition 2.38 Sei α = (p 11... p 1k1 )... (p n1... p nkn ) eine in aussagenlogische Formel in KNF. Dann heißen die Mengen {p i1,..., p iki }, 1 i n, der jeweils disjunktiv verknüpften Literale

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 1. Einführung Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Formale Logik Ziel Formalisierung und Automatisierung rationalen

Mehr

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Frank Heitmann heitmann@informatik.uni-hamburg.de 9. Juni 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/36 Ersetzbarkeitstheorem

Mehr

Resolutionsalgorithmus

Resolutionsalgorithmus 112 Resolutionskalkül Mit dem Begriff Kalkül bezeichnet man eine Menge von syntaktischen Umformungsregeln, mit denen man semantische Eigenschaften der Eingabeformel herleiten kann. Für den Resolutionskalkül:

Mehr

Hilbert-Kalkül (Einführung)

Hilbert-Kalkül (Einführung) Hilbert-Kalkül (Einführung) Es gibt viele verschiedene Kalküle, mit denen sich durch syntaktische Umformungen zeigen läßt, ob eine Formel gültig bzw. unerfüllbar ist. Zwei Gruppen von Kalkülen: Kalküle

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 4 07.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Gestern Normalformen Atome, Literale, Klauseln Konjunktive

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 12. Prädikatenlogik Resolution Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Zur Erinnerung Definition: Aussagenlogische

Mehr

Formale Systeme. Aussagenlogik: Sequenzenkalkül. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Aussagenlogik: Sequenzenkalkül. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Logik Vorlesung 5: Grundlagen Resolution

Logik Vorlesung 5: Grundlagen Resolution Logik Vorlesung 5: Grundlagen Resolution Andreas Maletti 21. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere

Mehr

How To Prove A Propositional Logic

How To Prove A Propositional Logic Klausur Formale Systeme Fakultät für Informatik SS 2015 Prof. Dr. Bernhard Beckert 31. Juli 2015 Vorname: Matrikel-Nr.: Die Bearbeitungszeit beträgt 60 Minuten. A1 (10) A2 (8) A3 (6) A4 (7) A5 (9) A6 (11)

Mehr

Resolutionskalkül. wird t als eine Menge K t von Klauseln geschrieben, welche die einzelnen Maxterme repräsentieren:

Resolutionskalkül. wird t als eine Menge K t von Klauseln geschrieben, welche die einzelnen Maxterme repräsentieren: Resolutionskalkül Ein Kalkül ist eine Kollektion von syntaktischen Umformungsregeln, die unter gegebenen Voraussetzungen aus bereits vorhandenen Formeln neue Formeln erzeugen. Der Resolutionskalkül besteht

Mehr

Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Hornformeln

Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Hornformeln Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Frank Heitmann heitmann@informatik.uni-hamburg.de 30. Mai 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/42 Zusammenfassung Syntax

Mehr

Zusammenfassung Syntax: Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Hornformeln. Zusammenfassung

Zusammenfassung Syntax: Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Hornformeln. Zusammenfassung Formale der Informatik 1 Kapitel 15 und Frank Heitmann heitmann@informatik.uni-hamburg.de 30. Mai 2016 Zusammenfassung Syntax Zusammenfassung Syntax: Motivation Definition der Syntax: Alphabet, Junktor

Mehr

23. Vorlesung: Logisches Schließen Markus Kr otzsch Professur f ur Wissensbasierte Systeme Normalformen

23. Vorlesung: Logisches Schließen Markus Kr otzsch Professur f ur Wissensbasierte Systeme Normalformen Logik: Glossar FORMALE SYSTEME 23. Vorlesung: Logisches Schließen Markus Krötzsch Professur für Wissensbasierte Systeme TU Dresden, 15. Januar 2018 Atom kleinste mögliche Formel p P Teilformel Unterausdruck,

Mehr

Formale Systeme, WS 2015/2016 Übungsblatt 3

Formale Systeme, WS 2015/2016 Übungsblatt 3 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Bernhard Beckert Thorsten Bormer, Dr. Vladimir Klebanov, Dr. Mattias Ulbrich Formale Systeme, WS 25/26 Übungsblatt 3 Dieses

Mehr

1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet.

1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet. Grundlagen der Mathematik für Informatiker 1 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage)

Mehr

Jeder Aussage p kann ein Wahrheitswert W(p) {0, 1} zugeordnet werden. Beispiele: W(Es regnet.) =? (je nach Lage der Dinge) W(Die Straße ist naß.) =?

Jeder Aussage p kann ein Wahrheitswert W(p) {0, 1} zugeordnet werden. Beispiele: W(Es regnet.) =? (je nach Lage der Dinge) W(Die Straße ist naß.) =? Grundlagen der Mathematik für Informatiker 1 Grundlagen der Mathematik für Informatiker 2 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl.

Mehr

Logik Vorlesung 4: Horn-Logik und Kompaktheit

Logik Vorlesung 4: Horn-Logik und Kompaktheit Logik Vorlesung 4: Horn-Logik und Kompaktheit Andreas Maletti 14. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

FORMALE SYSTEME. 23. Vorlesung: Logisches Schließen. TU Dresden, 16. Januar Markus Krötzsch Lehrstuhl Wissensbasierte Systeme

FORMALE SYSTEME. 23. Vorlesung: Logisches Schließen. TU Dresden, 16. Januar Markus Krötzsch Lehrstuhl Wissensbasierte Systeme FORMALE SYSTEME 23. Vorlesung: Logisches Schließen Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 16. Januar 2017 Rückblick Markus Krötzsch, 16. Januar 2017 Formale Systeme Folie 2 von 31

Mehr

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2.

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2. Theorie der Informatik 24. Februar 2014 2. Aussagenlogik II Theorie der Informatik 2. Aussagenlogik II 2.1 Äquivalenzen Malte Helmert Gabriele Röger 2.2 Vereinfachte Schreibweise Universität Basel 24.

Mehr

Was bisher geschah: klassische Aussagenlogik

Was bisher geschah: klassische Aussagenlogik Was bisher geschah: klassische Aussagenlogik Syntax Symbole und Struktur, Junktoren: t, f,,,,, Prinzip der strukturellen Induktion über Baumstruktur von Formeln, arithmetischen Ausdrücken usw. induktive

Mehr

1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet.

1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet. Grundlagen der Mathematik für Informatiker 1 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage)

Mehr

Formale Systeme. Wiederholung. Prof. Dr. Bernhard Beckert, WS 2017/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Formale Systeme. Wiederholung. Prof. Dr. Bernhard Beckert, WS 2017/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Wiederholung KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Themen Aussagenlogik

Mehr

Theoretische Informatik: Logik

Theoretische Informatik: Logik Theoretische Informatik: Logik Vorlesung mit Übungen im WS 2006/2007 Vorlesung: Montag Montag 9-10 Uhr, Raum 1603 WAneu 14-16 Uhr, Raum 1603 WAneu Beginn: Montag, den 23.10.2006, 9 15 Uhr. Übungen in 3

Mehr

Klausur Formale Systeme Fakultät für Informatik SS 2017

Klausur Formale Systeme Fakultät für Informatik SS 2017 Klausur Formale Systeme Fakultät für Informatik SS 2017 Prof. Dr. Bernhard Beckert 3. August 2017 Name: Vorname: Matrikel-Nr.: Die Bearbeitungszeit beträgt 60 Minuten. A1 (14) A2 (6) A3 (6) A4 (8) A5 (11)

Mehr

Algorithmischer Aufbau der Aussagenlogik

Algorithmischer Aufbau der Aussagenlogik Algorithmischer Aufbau der Aussagenlogik In diesem Abschnitt betrachten wir Verfahren die bei gegebener endlichen Menge Σ und A-Form A entscheiden ob Σ = A gilt. Die bisher betrachteten Verfahren prüfen

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 16. Resolution. Motivation. Beispiel

Motivation. Formale Grundlagen der Informatik 1 Kapitel 16. Resolution. Motivation. Beispiel rundlagen und Motivation Formale rundlagen der Informatik 1 Kapitel 16 Frank Heitmann heitmann@informatik.uni-hamburg.de 31. Mai 2016 Motivation Wir benötigen einen (Un-)Erfüllbarkeitstest für aussagenlogische

Mehr

Formale Systeme, WS 2015/2016. Lösungen zu Übungsblatt 7

Formale Systeme, WS 2015/2016. Lösungen zu Übungsblatt 7 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Bernhard Beckert Dr. Thorsten Bormer, Dr. Vladimir Klebanov, Dr. Mattias Ulbrich Formale Systeme, WS 2015/2016 Lösungen

Mehr

Vorlesung Logiksysteme

Vorlesung Logiksysteme Vorlesung Logiksysteme Teil 1 - Aussagenlogik Martin Mundhenk Univ. Jena, Institut für Informatik 15. Mai 2014 Formalien zur Vorlesung/Übung Termine: dienstags 16:15 17:45 Uhr freitags 10:15 11:45 Uhr

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/25 Einführendes Beispiel Falls Lisa Peter trifft, dann trifft Lisa auch Gregor.

Mehr

Erfüllbarkeitstests. Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl.

Erfüllbarkeitstests. Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl. Erfüllbarkeitstests Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl. Grundlagen und diskrete Strukturen ) Ein für Formeln

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 2 28.04.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Organisatorisches Termine Donnerstags: 30.04.2015 nicht

Mehr

Formale Systeme Hilbert-Kalku l Prof. Dr. Peter H. Schmitt

Formale Systeme Hilbert-Kalku l Prof. Dr. Peter H. Schmitt Formale Systeme Hilbert-Kalku l Prof. Dr. Peter H. Schmitt KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK KIT Universita t des Landes Baden-Wu rttemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch Formale der Informatik 1 Kapitel 15 Folgerbarkeit, Äquivalenzen und Normalformen Frank Heitmann heitmann@informatik.uni-hamburg.de 8. Juni 2015 Syntax Definition (Syntax der Aussagenlogik) Mit AS AL sei

Mehr

Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung

Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung Universität Koblenz-Landau FB 4 Informatik Prof. Dr. Viorica Sofronie-Stokkermans 23.07.2012 Dipl.-Inform. Markus Bender Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung

Mehr

Logische Äquivalenz. Definition Beispiel 2.23

Logische Äquivalenz. Definition Beispiel 2.23 Logische Äquivalenz Definition 2.22 Zwei aussagenlogische Formeln α, β A heißen logisch äquivalent, falls für jede Belegung I von α und β gilt: Schreibweise: α β. Beispiel 2.23 Aus Folgerung 2.6 ergibt

Mehr

Aussagenlogik: Syntax von Aussagen

Aussagenlogik: Syntax von Aussagen Aussagenlogik: Syntax von Aussagen A ::= X (A A) (A A) ( A) (A A) (A A) 0 1 Prioritätsreihenfolge :,,,,. A B: Konjunktion (Verundung). A B: Disjunktion (Veroderung). A B: Implikation. A B: Äquivalenz.

Mehr

Logik Vorlesung 3: Äquivalenz und Normalformen

Logik Vorlesung 3: Äquivalenz und Normalformen Logik Vorlesung 3: Äquivalenz und Normalformen Andreas Maletti 7. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

Resolution (Idee) Aus der Herleitung der leeren Disjunktion (= leere Klausel) folgt Unerfüllbarkeit.

Resolution (Idee) Aus der Herleitung der leeren Disjunktion (= leere Klausel) folgt Unerfüllbarkeit. Resolution (Idee) (F A) (F A) (F A) (F A) (F F ) Aus der Herleitung der leeren Disjunktion (= leere Klausel) folgt Unerfüllbarkeit. Zwei Fragen: Kann man aus einer unerfüllbaren Formel immer die leere

Mehr

1. Zwischentest Formale Systeme Fakultät für Informatik WS 2009/2010

1. Zwischentest Formale Systeme Fakultät für Informatik WS 2009/2010 1. Zwischentest Formale Systeme Fakultät für Informatik WS 2009/2010 Prof. Dr. Bernhard Beckert 10. Dezember 2009 Vorname: Matrikel-Nr.: Bitte geben Sie auf jedem benutzten Blatt rechts oben Ihren Namen

Mehr

Der Hilbert-Kalkül für die Aussagenlogik (Notizen zur Vorlesung Logik im Wintersemester 2003/04 an der Universität Stuttgart)

Der Hilbert-Kalkül für die Aussagenlogik (Notizen zur Vorlesung Logik im Wintersemester 2003/04 an der Universität Stuttgart) Der Hilbert-Kalkül für die Aussagenlogik (Notizen zur Vorlesung Logik im Wintersemester 2003/04 an der Universität Stuttgart) Javier Esparza und Barbara König 4. Dezember 2003 Für eine gegebene aussagenlogische

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reduktion. Komplexitätsklassen.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reduktion. Komplexitätsklassen. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Teil 3: Logik 1 Aussagenlogik Einleitung Eigenschaften Äquivalenz Folgerung Normalformen 2 Prädikatenlogik Wenn eine Karte

Mehr

Einige Grundlagen der Komplexitätstheorie

Einige Grundlagen der Komplexitätstheorie Deterministische Polynomialzeit Einige Grundlagen der Komplexitätstheorie Ziel: NP-Vollständigkeit als ressourcenbeschränktes Analagon zur RE-Vollständigkeit. Komplexitätstheorie untersucht den Ressourcenbedarf

Mehr

Klausur Formale Systeme Fakultät für Informatik SS Prof. Dr. Bernhard Beckert. 3. August Die Bearbeitungszeit beträgt 60 Minuten.

Klausur Formale Systeme Fakultät für Informatik SS Prof. Dr. Bernhard Beckert. 3. August Die Bearbeitungszeit beträgt 60 Minuten. Name: Vorname: Klausur Formale Systeme Fakultät für Informatik Matrikel-Nr.: SS 2017 Prof. Dr. Bernhard Beckert 3. August 2017 Die Bearbeitungszeit beträgt 60 Minuten. A1 (14) A2 (6) A3 (6) A4 (8) A5 (11)

Mehr

4. Logik und ihre Bedeutung für WBS

4. Logik und ihre Bedeutung für WBS 4. Logik und ihre Bedeutung für WBS WBS verwenden formale Sprache L um Wissen zu repräsentieren Grundidee: Problemlösen = Folgern aus in L dargestelltem Wissen Folgern = implizites Wissen explizit machen

Mehr

Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.8 Aussagenlogik Der Sequenzen-Kalkül 99. Sequenzen

Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.8 Aussagenlogik Der Sequenzen-Kalkül 99. Sequenzen Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.8 Aussagenlogik Der Sequenzen-Kalkül 99 Sequenzen Zum Abschluss des Kapitels über Aussagenlogik behandeln wir noch Gentzens Sequenzenkalkül.

Mehr

Was bisher geschah: klassische Aussagenlogik

Was bisher geschah: klassische Aussagenlogik Was bisher geschah: klassische Aussagenlogik Syntax Symbole und Struktur Junktoren: t, f,,,,, aussagenlogische Formeln AL(P) induktive Definition: IA Atome (Aussagenvariablen) p, q, r,... P IS zusammengesetzte

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 11. Prädikatenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Negationsnormalform Definition: Negationsnormalform

Mehr

Klausur Formale Systeme Fakultät für Informatik 2. Klausur zum WS 2010/2011

Klausur Formale Systeme Fakultät für Informatik 2. Klausur zum WS 2010/2011 Fakultät für Informatik 2. Klausur zum WS 2010/2011 Prof. Dr. Bernhard Beckert 08. April 2011 Vorname: Matrikel-Nr.: Platz: Klausur-ID: **Platz** **Id** Die Bearbeitungszeit beträgt 60 Minuten. A1 (17)

Mehr

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise:

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise: Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 4.9 Prädikatenlogik Resolution 207 Beispiel Bsp.: Betrachte Schlussweise in: 1 Wenn es regnet, dann wird die Straße nass. R N 2 Es regnet. R

Mehr

Deduktion in der Aussagenlogik. Semantische Folgerungsbeziehung. Zusammenhang zwischen semantischer und syntaktischer Folgerung

Deduktion in der Aussagenlogik. Semantische Folgerungsbeziehung. Zusammenhang zwischen semantischer und syntaktischer Folgerung Deduktion in der Aussagenlogik Menge von Ausdrücken der Aussagenlogik beschreibt einen bestimmten Sachverhalt, eine "Theorie" des Anwendungsbereiches Was folgt logisch aus dieser Theorie? Deduktion: aus

Mehr

Einiges zu Resolutionen anhand der Aufgaben 6 und 7

Einiges zu Resolutionen anhand der Aufgaben 6 und 7 Einiges zu Resolutionen anhand der Aufgaben 6 und 7 Es gibt eine Fülle von verschiedenen Resolutionen. Die bis jetzt behandelten möchte ich hier noch ein Mal kurz erläutern. Ferner möchte ich noch auf

Mehr

Deduktion in der Aussagenlogik

Deduktion in der Aussagenlogik Deduktion in der Aussagenlogik Menge von Ausdrücken der Aussagenlogik beschreibt einen bestimmten Sachverhalt, eine "Theorie" des Anwendungsbereiches. Was folgt logisch aus dieser Theorie? Deduktion: aus

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 14 Aussagenlogik Syntax & Semantik. Motivation. Motivation

Motivation. Formale Grundlagen der Informatik 1 Kapitel 14 Aussagenlogik Syntax & Semantik. Motivation. Motivation Formale Grundlagen der Informatik 1 Kapitel 14 Aussagenlogik & Frank Heitmann heitmann@informatik.uni-hamburg.de Mit der Aussagenlogik lassen sich einfache Verknüpfungen zwischen (atomaren) Gebilden ausdrücken

Mehr

ÜBUNGSKLAUSUR Studienhalbjahr: 1. Semester. Modul: TINF1002 Dozent: Stephan Schulz. Zwei Texte, z.b. Vorlesungsskript, eigene Notizen

ÜBUNGSKLAUSUR Studienhalbjahr: 1. Semester. Modul: TINF1002 Dozent: Stephan Schulz. Zwei Texte, z.b. Vorlesungsskript, eigene Notizen Matrikelnummer: Fakultät Studiengang: Technik Angewandte Informatik Jahrgang / Kurs : 2016 / 16C&16ITA ÜBUNGSKLAUSUR Studienhalbjahr: 1. Semester Datum: 23/24. Februar 2017 Bearbeitungszeit: 90 Minuten

Mehr

Logische und funktionale Programmierung

Logische und funktionale Programmierung Logische und funktionale Programmierung Vorlesung 2 und 3: Resolution Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 3. November 2017 1/43 HERBRAND-STRUKTUR Sei

Mehr

Formale Systeme. LTL und Büchi-Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. LTL und Büchi-Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Formale Systeme. Das Erfu llbarkeitsproblem. Prof. Dr. Bernhard Beckert, WS 2017/2018

Formale Systeme. Das Erfu llbarkeitsproblem. Prof. Dr. Bernhard Beckert, WS 2017/2018 Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Das Erfu llbarkeitsproblem KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

Allgemeingültige Aussagen

Allgemeingültige Aussagen Allgemeingültige Aussagen Definition 19 Eine (aussagenlogische) Formel p heißt allgemeingültig (oder auch eine Tautologie), falls p unter jeder Belegung wahr ist. Eine (aussagenlogische) Formel p heißt

Mehr

1 Aussagenlogischer Kalkül

1 Aussagenlogischer Kalkül 1 Aussagenlogischer Kalkül Ein Kalkül in der Aussagenlogik soll die Wahrheit oder Algemeingültigkeit von Aussageformen allein auf syntaktischer Ebene zeigen. Die Wahrheit soll durch Umformung von Formeln

Mehr

Inferenzmethoden. Einheit 2. Verdichtung des logischen Schließens I Tableauxkalküle

Inferenzmethoden. Einheit 2. Verdichtung des logischen Schließens I Tableauxkalküle Inferenzmethoden Einheit 2 Verdichtung des logischen Schließens I Tableauxkalküle 1. Verdichtung als Entwicklungsprinzip 2. Tableauxbeweise 3. Korrektheit und Vollständigkeit 4. Zusammenhang zu Sequenzenkalkülen

Mehr

Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen

Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume & Dr. Sander Bruggink Barbara König Logik 1 (Motivation) Wir benötigen Algorithmen für Erfüllbarkeitstests,

Mehr

Theoretische Informatik und Logik Übungsblatt 4 (SS 2017) Lösungen

Theoretische Informatik und Logik Übungsblatt 4 (SS 2017) Lösungen Theoretische Informatik und Logik Übungsblatt 4 (SS 2017) en Aufgabe 4.1 Für jede der folge Formeln ist folges zu tun: Wenn die Formel gültig oder unerfüllbar ist, so beweisen Sie dies mit dem Tableau-Kalkül.

Mehr