Naive Bayes. Naive Bayes

Größe: px
Ab Seite anzeigen:

Download "Naive Bayes. Naive Bayes"

Transkript

1 Naive Bayes Ein einfacher Klassifikator Wolfgang Konen Fachhochschule Köln November 007 W. Konen DMC WS007 Seite - 1 informatikö Inhalt Naive Bayes Der Ansatz Beispiel Wetterdaten Bayes sche Regel Das Problem der Häufigkeit 0 Fehlende Werte Numerische Werte Diskussion W. Konen DMC WS007 Seite - informatikö

2 Der Ansatz für f r Naive Bayes Naive Bayes benutzt alle Attribute Zwei Annahmen über Attribute: Alle gleich wichtig Statistisch unabhängig (in Bezug auf Klassenwert) D. h. Kenntnis des Wertes eines Attributs sagt nichts über den Wert eines anderen Attributs (wenn die Klasse bekannt ist) Unabhängigkeitsannahme stimmt nie! Aber dieses Verfahren funktioniert gut in der Praxis Kann auch gut mit fehlenden Werten umgehen W. Konen DMC WS007 Seite - 3 informatikö Beispiel Wetterdaten Aktivierung: Was enthält sie? Häufigkeitstabelle: W. Konen DMC WS007 Seite - 4 informatikö

3 Beispiel Wetterdaten Ein neuer Tag: Likelihood für beide Klassen: Für yes : /9 x 3/9 x 3/9 x 6/9 x 9/14 = Für no : 3/5 x 1/5 x 4/5 x 3/5 x 5/14 = Umwandlung in Wahrscheinlichkeiten durch Normalisierung: Pr( yes ) = / ( ) = 0.05 = 0.5% Pr( no ) =0.006 / ( ) = = 79.5% W. Konen DMC WS007 Seite - 5 informatikö Bayes sche sche Regel Wahrscheinlichkeit des Ereignisses H, wenn die Evidenz E gegeben ist : Pr( H E) Pr(E H)Pr(H) Pr(E) Apriori-Wahrscheinlichkeit von H : Pr(H) Wahrscheinlichkeit eines Ereignisses, bevor die Evidenz bekannt ist Aposteriori-Wahrscheinlichkeit von H : Wahrscheinlichkeit eines Ereignisses, nachdem die Evidenz bekannt ist Pr(H E) Aktivierung: Was besagt sie? Thomas Bayes, , England W. Konen DMC WS007 Seite - 6 informatikö

4 Naive Bayes für f r die Klassifikation Lernen von Klassifikationen: Was ist die Wahrscheinlichkeit einer Klasse, wenn die Instanz gegeben ist? Evidenz E = Instanz = Input-Variablen Ereignis H = Klassenwert der Instanz = Soll-Output Naive Annahme: Evidenz kann aufgeteilt werden auf die Attribute, die unabhängig voneinander sind Pr( H E) Pr(E H) Pr(E H)... Pr(E Pr(E) H) 1 n Pr(H) W. Konen DMC WS007 Seite - 7 informatikö Wetterdaten-Beispiel W. Konen DMC WS007 Seite - 8 informatikö

5 Was tun mit Pr(E)? Die Wahrscheinlichkeit Pr(E) ist allen Faktoren gemeinsam, sie ist aber i.d.r. unbekannt. Wir brauchen sie auch überhaupt nicht, wenn wir erst die Zähler ausrechnen, dann die Summe aller Resultatwahrscheinlichkeiten (Zähler) auf 1 normieren: Pr(" yes" E) Pr("no" E) 1 W. Konen DMC WS007 Seite - 9 informatikö Das Problem der Häufigkeit H 0 Was tun, wenn ein Attributwert nicht mit jedem Klassenwert vorkommt? (z. B. Outlook=overcast für die Klasse no ) Wahrscheinlichkeit ergibt sich zu 0! Aposteriori Wahrscheinlichkeit ergibt sich ebenfalls zu 0! (Egal, wie groß die anderen Wahrscheinlichkeiten sind!) Pr(Overcast "no" ) 0 Bayes Pr("no" Overcast) 0 W. Konen DMC WS007 Seite - 10 informatikö

6 Das Problem der Häufigkeit H 0 Abhilfe: Addiere (kleinen) Wert zu den Häufigkeiten in Zähler und Nenner von Pr(E H): (z. B. Outlook=overcast für die Klasse no ) 3 / 3 5 "Sunny" sog. Laplace-Schätzer 0 / 3 5 "Overcast" / 3 5 "Rainy" Ergebnis: Wahrscheinlichkeiten können nie 0 werden! (außerdem: die Wahrscheinlichkeitsschätzungen werden stabilisiert) W. Konen DMC WS007 Seite - 11 informatikö Umgang mit fehlenden Werte Training: Instanz wird bei der Häufigkeitszählung für die Attributwert-Klassenkombination nicht berücksichtigt Klassifikation: Attribut wird bei der Berechnung ausgelassen Beispiel: W. Konen DMC WS007 Seite - 1 informatikö

7 Numerische Werte bei Naive Bayes Übliche Annahme: Attributwerte sind normalverteilt (innerhalb jeder Klasse) Die Dichtefunktion für die Normalverteilung enthält zwei Parameter: Mittelwert 1 n n x i i1 Standardabweichung 1 n 1 n i1 (x i ) W el h c e?p A kti v ie run lo t? g : Dichtefunktion f(x) 1 e (x) W. Konen DMC WS007 Seite - 13 informatikö Anwendung auf die Wetterdaten Beispiel für Dichtewert: f(temperature 66 yes) 1 e 6. (6673) W. Konen DMC WS007 Seite - 14 informatikö

8 Klassifikation bei numerischem Input Ein neuer Tag: W. Konen DMC WS007 Seite - 15 informatikö Naive Bayes: Diskussion Naiver Bayes funktioniert überraschend gut (selbst wenn die Unabhängigkeitsannahme klar verletzt ist) Warum? Weil die Klassifikation keine exakten Wahrscheinlichkeitsschätzungen benötigt, solange die maximale Wahrscheinlichkeit der korrekten Klasse zugewiesen wird Allerdings: Hinzufügen zu vieler redundanter Attribute führt zu Problemen (z. B. identische Attribute) Außerdem: viele numerische Attribute sind nicht normalverteilt ( kernel density-schätzer) Fazit: Naive Bayes eignet sich als Plain-Vanilla - Standardverfahren der Klassifikation ( Wieviel besser als andere Standard-Klassifikationsverfahren ist mein Verfahren? ) W. Konen DMC WS007 Seite - 16 informatikö

9 Aufgabe: Naive Bayes in R Schreiben Sie in R zwei Funktionen naivebayes <- function(respvar, d, laplace=1) predict.naivebayes <- function(res.nb,newdata=d) die das Modell Naive-Bayes implementieren. 1. Version: numerische Input-Variablen, keine MV s. Version: numerische oder nominale Inputs 3. Version: auch MV s (missing values) erlaubt Hinweis: ( x nlev)-matrix mit Zeilen- und Spaltennamen: pmat <- matrix(0,nrow=,ncol=nlev, dimnames= list(c("mean","sig"),levels(d[,respvar]))) W. Konen DMC WS007 Seite - 17 informatikö

Kapitel ML:IV (Fortsetzung)

Kapitel ML:IV (Fortsetzung) Kapitel ML:IV (Fortsetzung) IV. Statistische Lernverfahren Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen ML:IV-18 Statistical Learning c STEIN 2005-2011 Satz 3 (Bayes)

Mehr

Folien zu Data Mining von I. H. Witten und E. Frank. übersetzt von N. Fuhr

Folien zu Data Mining von I. H. Witten und E. Frank. übersetzt von N. Fuhr Folien zu Data Mining von I. H. Witten und E. Frank übersetzt von N. Fuhr Von Naivem Bayes zu Bayes'schen Netzwerken Naiver Bayes Annahme: Attribute bedingt unabhängig bei gegebener Klasse Stimmt in der

Mehr

7.11. Naïve Bayes, Entscheidungsbäume

7.11. Naïve Bayes, Entscheidungsbäume Vorlesungsplan 17.10. Einleitung 4.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 1.11. Lineare Modelle,

Mehr

Maschinelles Lernen: Symbolische Ansätze. Wintersemester 2013/2014 Musterlösung für das 7. Übungsblatt

Maschinelles Lernen: Symbolische Ansätze. Wintersemester 2013/2014 Musterlösung für das 7. Übungsblatt Maschinelles Lernen: Symbolische Ansätze Wintersemester 2013/2014 Musterlösung für das 7. Übungsblatt 1 Aufgabe 1 Nearest Neighbour Gegeben sei folgende Beispielmenge: Day Outlook Temperature Humidity

Mehr

Statistische Modellierung. Vorlesungsplan. Bayesche Regel. Wahrscheinlichkeiten für Wetterdaten

Statistische Modellierung. Vorlesungsplan. Bayesche Regel. Wahrscheinlichkeiten für Wetterdaten Vorlesungsplan 7.0. Einleitung 4.0. Ein- und Ausgabe.0. Reformationstag, Einfache Regeln 7.. Naïve Bayes, Entscheidungsbäume 4.. Entscheidungsregeln, Assoziationsregeln.. Lineare Modelle, Instanzbasiertes

Mehr

Vortragsthema. Thema: Klassifikation. Klassifikation. OS Data Mining SS10 Madeleine Weiand 1

Vortragsthema. Thema: Klassifikation. Klassifikation. OS Data Mining SS10 Madeleine Weiand 1 Vortragsthema Klassifikation OS Data Mining SS0 Madeleine Weiand Agenda Agenda I III Begriff Klassifikation Abgrenzung Anforderungen Anwendungsgebiete Dimensionsreduktion Umsetzung in Software Vergleich

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Maschinelles Lernen: Symbolische Ansätze Wintersemester 2008/2009 Musterlösung für das 7. Übungsblatt Aufgabe 1: Evaluierung und Kosten Gegeben sei ein Datensatz mit 300 Beispielen, davon 2 /3 positiv

Mehr

Data Mining und Maschinelles Lernen Lösungsvorschlag für das 7. Übungsblatt

Data Mining und Maschinelles Lernen Lösungsvorschlag für das 7. Übungsblatt Data Mining und Maschinelles Lernen Lösungsvorschlag für das 7. Übungsblatt Knowledge Engineering Group Data Mining und Maschinelles Lernen Lösungsvorschlag 7. Übungsblatt 1 Aufgabe 1a) Auffüllen von Attributen

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 5: Naive Bayes + IBL (V.

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 10: Naive Bayes (V. 1.0)

Mehr

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

Bayes sche Klassifikatoren. Uwe Reichel IPS, LMU München 16. Juli 2008

Bayes sche Klassifikatoren. Uwe Reichel IPS, LMU München 16. Juli 2008 Bayes sche Klassifikatoren Uwe Reichel IPS, LMU München reichelu@phonetik.uni-muenchen.de 16. Juli 2008 Inhalt Einleitung Grundlagen der Wahrscheinlichkeitsrechnung Noisy-Channel-Modell Bayes sche Klassifikation

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Dominik Faas Stochastik Wintersemester 00/0 Klausur vom 09.06.0 Aufgabe (++4=9 Punkte) Bei einer Umfrage wurden n Personen befragt, an wievielen Tagen

Mehr

Modellierung. Entscheidungsbäume, ume, Boosting, Metalerner, Random Forest. Wolfgang Konen Fachhochschule Köln Oktober 2007.

Modellierung. Entscheidungsbäume, ume, Boosting, Metalerner, Random Forest. Wolfgang Konen Fachhochschule Köln Oktober 2007. Modellierung Entscheidungsbäume, ume, Boosting, Metalerner, Random Forest Wolfgang Konen Fachhochschule Köln Oktober 2007 W. Konen DMC WS2007 Seite - 1 W. Konen DMC WS2007 Seite - 2 Inhalt Typen der Modellierung

Mehr

Dokument Klassifikation. Thomas Uhrig: Data-Mining SS10

Dokument Klassifikation. Thomas Uhrig: Data-Mining SS10 Agenda: 1: Klassifizierung allgemein 2: der naive Bayes-Klassifizierer 3: Beispiel 4: Probleme 5: Fazit 6: Quellen 1: Klassifizierung allgemein: 1: Klassifizierung allgemein: - Einordnung von Objekten

Mehr

Naive Bayes für Regressionsprobleme

Naive Bayes für Regressionsprobleme Naive Bayes für Regressionsprobleme Vorhersage numerischer Werte mit dem Naive Bayes Algorithmus Nils Knappmeier Fachgebiet Knowledge Engineering Fachbereich Informatik Technische Universität Darmstadt

Mehr

Wahrscheinlichkeitsrechnung und Statistik. 8. Vorlesung

Wahrscheinlichkeitsrechnung und Statistik. 8. Vorlesung Wahrscheinlichkeitsrechnung und Statistik 8. Vorlesung - 208 ) Monte Carlo Methode für numerische Integration Sei g : [0, ] R stetige Funktion; man möchte numerisch approximieren mit Hilfe von Zufallszahlen:

Mehr

Mathematische Grundlagen III

Mathematische Grundlagen III Mathematische Grundlagen III Maschinelles Lernen II: Klassifikation mit Entscheidungsbäumen Vera Demberg Universität des Saarlandes 12. Juli 2012 Vera Demberg (UdS) Mathe III 12. Juli 2012 1 / 38 Einleitung

Mehr

10.5 Maximum-Likelihood Klassifikation (I)

10.5 Maximum-Likelihood Klassifikation (I) Klassifikation (I) Idee Für die Klassifikation sind wir interessiert an den bedingten Wahrscheinlichkeiten p(c i (x,y) D(x,y)). y Wenn man diese bedingten Wahrscheinlichkeiten kennt, dann ordnet man einem

Mehr

Clustering. Ausarbeitung von Michael Speckner. Proseminar Data Mining

Clustering. Ausarbeitung von Michael Speckner. Proseminar Data Mining Clustering Ausarbeitung von Michael Speckner Proseminar Data Mining Einleitung Das Clustering wird verwendet, wenn man keine Klassen vorhersagen kann, aber die Instanzen in natürliche Gruppen einteilen

Mehr

Pairwise Naive Bayes Classifier

Pairwise Naive Bayes Classifier Pairwise Naive Bayes Classifier Jan-Nikolas Sulzmann 1 1 nik.sulzmann@gmx.de Fachbereich Knowledge Engineering Technische Universität Darmstadt Gliederung 1 Ziel dieser Arbeit 2 Naive Bayes Klassifizierer

Mehr

Data Mining und Maschinelles Lernen Wintersemester 2015/2016 Lösungsvorschlag für das 12. Übungsblatt

Data Mining und Maschinelles Lernen Wintersemester 2015/2016 Lösungsvorschlag für das 12. Übungsblatt Data Mining und Maschinelles Lernen Wintersemester 2015/2016 Lösungsvorschlag für das 12. Übungsblatt 9. Februar 2016 1 Aufgabe 1: RelieF (1) Gegeben sind folgende 12 Beispiele der Wetter-Daten: ID outlook

Mehr

1. Grundbegri e der Stochastik

1. Grundbegri e der Stochastik Wiederholung von Grundwissen der Stochastik. Grundbegri e der Stochastik Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt

Mehr

Data Mining. I. H. Witten and E. Frank. übersetzt von N. Fuhr

Data Mining. I. H. Witten and E. Frank. übersetzt von N. Fuhr Data Mining I. H. Witten and E. Frank übersetzt von N. Fuhr 2 4 Algorithmen Die grundlegenden Methoden Das Einfachste zuerst: 1R Berücksichtigung aller Attribute: Der Naive Bayes sche Ansatz Entscheidungsbäume:

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Klassifikationsverfahren haben viele Anwendungen. Binäres Klassifikationsverfahren auch zur Klassifikation in mehr als zwei Klassen verwendbar

Klassifikationsverfahren haben viele Anwendungen. Binäres Klassifikationsverfahren auch zur Klassifikation in mehr als zwei Klassen verwendbar Rückblick Klassifikationsverfahren haben viele Anwendungen Binäres Klassifikationsverfahren auch zur Klassifikation in mehr als zwei Klassen verwendbar Konfusionsmatrix stellt Vorhersagen und Daten gegenüber

Mehr

Data Mining. I. H. Witten and E. Frank

Data Mining. I. H. Witten and E. Frank Data Mining I. H. Witten and E. Frank 4 Algorithmen Die grundlegenden Methoden Das Einfachste zuerst: 1R Berücksichtigung aller Attribute: Der Naive Bayes sche Ansatz Entscheidungsbäume: ID3 Abdeckungsalgorithmen:

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 11. Vorlesung Jochen Köhler 10.05.011 1 Inhalt der heutigen Vorlesung Zusammenfassung Parameterschätzung Übersicht über Schätzung und Modellbildung Modellevaluation

Mehr

Klassifikation von Daten Einleitung

Klassifikation von Daten Einleitung Klassifikation von Daten Einleitung Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Klassifikation von Daten Einleitung

Mehr

Mustererkennung. Bayes-Klassifikator. R. Neubecker, WS 2016 / Bayes-Klassifikator

Mustererkennung. Bayes-Klassifikator. R. Neubecker, WS 2016 / Bayes-Klassifikator Mustererkennung Bayes-Klassifikator R. Neubecker, WS 2016 / 2017 Bayes-Klassifikator 2 Kontext Ziel: Optimaler Klassifikator ( = minimaler Klassifikationsfehler), basierend auf Wahrscheinlichkeitsverteilungen

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive

Mehr

Boole sches Retrieval als frühes, aber immer noch verbreitetes IR-Modell mit zahlreichen Erweiterungen

Boole sches Retrieval als frühes, aber immer noch verbreitetes IR-Modell mit zahlreichen Erweiterungen Rückblick Boole sches Retrieval als frühes, aber immer noch verbreitetes IR-Modell mit zahlreichen Erweiterungen Vektorraummodell stellt Anfrage und Dokumente als Vektoren in gemeinsamen Vektorraum dar

Mehr

Kapitel VI. Wahrscheinlichkeitsbegriff. Wahrscheinlichkeitsbegriff. LF: VI Bayesian Learning c STEIN

Kapitel VI. Wahrscheinlichkeitsbegriff. Wahrscheinlichkeitsbegriff. LF: VI Bayesian Learning c STEIN Kapitel VI VI. Bayes sches Lernen Maximum-a-Posteriori-Hypothesen 1 Definition 18 (Zufallsexperiment, Zufallsbeobachtung) Ein Zufallsexperiment ist ein im Prinzip beliebig oft wiederholbarer Vorgang mit

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/39 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Gesetz der großen Zahl, Zentraler Grenzwertsatz Schließende Statistik: Grundlagen Prof. Dr. Achim Klenke http://www.aklenke.de 9. Vorlesung: 16.06.2017

Mehr

Wahrscheinlichkeitstheorie 2

Wahrscheinlichkeitstheorie 2 Wahrscheinlichkeitstheorie 2 Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 19.05.2011 Caroline Sporleder Wahrscheinlichkeitstheorie 2 (1) Wiederholung (1):

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Die tatsächlichen Breiten und Höhen der Säulen und damit der Flächeninhalt bleiben unverändert:

Die tatsächlichen Breiten und Höhen der Säulen und damit der Flächeninhalt bleiben unverändert: Flächeninhalte als Wahrscheinlichkeiten Eine Zufallsvariable X kann die Werte, 2, 3, 4, 5 oder 6 annehmen. Die zugehörigen Wahrscheinlichkeiten sind rechts in einem Stabdiagramm dargestellt. k 2 3 4 5

Mehr

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung Heute Die Binomialverteilung Poissonverteilung Approximation der Binomialverteilung durch die Normalverteilung Arbeiten mit Wahrscheinlichkeitsverteilungen Die Binomialverteilung Man werfe eine Münze n

Mehr

Einführung in das Maschinelle Lernen I

Einführung in das Maschinelle Lernen I Einführung in das Maschinelle Lernen I Vorlesung Computerlinguistische Techniken Alexander Koller 26. Januar 2015 Maschinelles Lernen Maschinelles Lernen (Machine Learning): äußerst aktiver und für CL

Mehr

Die tatsächlichen Breiten und Höhen der Säulen und damit der Flächeninhalt bleiben unverändert:

Die tatsächlichen Breiten und Höhen der Säulen und damit der Flächeninhalt bleiben unverändert: Flächeninhalte als Wahrscheinlichkeiten Eine Zufallsvariable X kann die Werte,, 3, 4, 5 oder 6 annehmen. Die zugehörigen Wahrscheinlichkeiten sind rechts in einem Stabdiagramm dargestellt. k 3 4 5 6 P

Mehr

Statistik für Bachelorund Masterstudenten

Statistik für Bachelorund Masterstudenten Walter Zucchini Andreas Schlegel Oleg Nenadic Stefan Sperlich Statistik für Bachelorund Masterstudenten Eine Einführung für Wirtschaftsund Sozialwissenschaftler 4y Springer 1 Der Zufall in unserer Welt

Mehr

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung

Mehr

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002)

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002) 6. Bayes-Klassifikation (Schukat-Talamazzini 2002) (Böhm 2003) (Klawonn 2004) Der Satz von Bayes: Beweis: Klassifikation mittels des Satzes von Bayes (Klawonn 2004) Allgemeine Definition: Davon zu unterscheiden

Mehr

Clustering. Herbert Stoyan Stefan Mandl. 18. Dezember 2003

Clustering. Herbert Stoyan Stefan Mandl. 18. Dezember 2003 Clustering Herbert Stoyan Stefan Mandl 18. Dezember 2003 Einleitung Clustering ist eine wichtige nicht-überwachte Lernmethode Andwenungen Marketing: Finde Gruppen von Kunden mit gleichem Kaufverhalten,

Mehr

Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L

Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L Inhalt Grundlagen aus der Wahrscheinlichkeitsrechnung Hypothesenwahl Optimale Bayes Klassifikator Naiver Bayes Klassifikator

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/52 Biostatistik, Sommer 2017 Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 02.06.2017 2/52 Inhalt 1 Wahrscheinlichkeit Bayes sche Formel 2 Diskrete Stetige 3/52 Wahrscheinlichkeit Bayes

Mehr

1. Grundbegri e. T n i=1 A i = A 1 \ A 2 \ : : : \ A n alle A i treten ein. na = A das zu A komplementäre Ereignis; tritt ein, wenn A nicht eintritt.

1. Grundbegri e. T n i=1 A i = A 1 \ A 2 \ : : : \ A n alle A i treten ein. na = A das zu A komplementäre Ereignis; tritt ein, wenn A nicht eintritt. . Grundbegri e Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt ein, wenn ein! A eintritt. ist auch das sichere Ereignis,

Mehr

Überblick. Überblick. Bayessche Entscheidungsregel. A-posteriori-Wahrscheinlichkeit (Beispiel) Wiederholung: Bayes-Klassifikator

Überblick. Überblick. Bayessche Entscheidungsregel. A-posteriori-Wahrscheinlichkeit (Beispiel) Wiederholung: Bayes-Klassifikator Überblick Grundlagen Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes-Klassifikator

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Maschinelles Lernen: Symbolische Ansätze Musterlösung für das 6. Übungsblatt Aufgabe 1 Gegeben sei eine Beispielmenge mit folgenden Eigenschaften: Jedes Beispiel ist durch 10 nominale Attribute A 1,...,

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Prof. Dr. Michael Havbro Faber 8.04.009 1 Inhalt der heutigen Vorlesung Zusammenfassung der letzten Vorlesung Übersicht über Schätzung und Modellbildung Modellevaluation

Mehr

SEMINAR KLASSIFIKATION & CLUSTERING STATISTISCHE GRUNDLAGEN. Stefan Langer WINTERSEMESTER 2014/15.

SEMINAR KLASSIFIKATION & CLUSTERING STATISTISCHE GRUNDLAGEN. Stefan Langer WINTERSEMESTER 2014/15. SEMINAR KLASSIFIKATION & CLUSTERING WINTERSEMESTER 2014/15 STATISTISCHE GRUNDLAGEN Stefan Langer stefan.langer@cis.uni-muenchen.de Frequenz & Häufigkeit: Übersicht Absolute Häufigkeit Relative Häufigkeit

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Maschinelles Lernen: Symbolische Ansätze Musterlösung für das 7. Übungsblatt Aufgabe 1 Gegeben sei folgende Beispielmenge: Day Outlook Temperature Humidity Wind PlayTennis D1? Hot High Weak No D2 Sunny

Mehr

Mathematica: u=5;s=1;plot[exp[-0.5((x-u)/s)^2],{x,0,10}] 76

Mathematica: u=5;s=1;plot[exp[-0.5((x-u)/s)^2],{x,0,10}] 76 4. Normalverteilung Gauß'sche Glockenkurve: P(a X b) = b 1 x 1 a e dx 1 0.8 0.6 0.4 0. 4 6 8 10 Mathematica: u=5;s=1;plot[exp[-0.5((x-u)/s)^],{x,0,10}] 76 Zentraler Grenzwertsatz: Es sei X 1, X,... eine

Mehr

Pareto optimale lineare Klassifikation

Pareto optimale lineare Klassifikation Seminar aus Maschinellem Lernen Pareto optimale lineare Klassifikation Vesselina Poulkova Betreuer: Eneldo Loza Mencía Gliederung 1. Einleitung 2. Pareto optimale lineare Klassifizierer 3. Generelle Voraussetzung

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Aufgaben. d) Seien X und Y Poissonverteilt mit Parameter µ, X, Y P(µ). 2. Dann ist die Summe auch Poissonverteilt mit (X + Y ) P(2µ).

Aufgaben. d) Seien X und Y Poissonverteilt mit Parameter µ, X, Y P(µ). 2. Dann ist die Summe auch Poissonverteilt mit (X + Y ) P(2µ). Aufgaben 1. Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete Frage 1 Punkt und pro falsche Antwort 1/2 Punkt Abzug. Minimal erhält man für die gesamte

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Semestralklausur zur Vorlesung Maschinelles Lernen: Symbolische Ansätze Prof. J. Fürnkranz / Dr. G. Grieser Technische Universität Darmstadt Wintersemester 2005/06 Termin: 23. 2. 2006 Name: Vorname: Matrikelnummer:

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Marcel Dettling. GdM 2: LinAlg & Statistik FS 2017 Woche 12. Winterthur, 17. Mai Institut für Datenanalyse und Prozessdesign

Marcel Dettling. GdM 2: LinAlg & Statistik FS 2017 Woche 12. Winterthur, 17. Mai Institut für Datenanalyse und Prozessdesign Marcel Dettling Institut für Datenanalyse und Prozessdesign Zürcher Hochschule für Angewandte Wissenschaften marcel.dettling@zhaw.ch http://stat.ethz.ch/~dettling Winterthur, 17. Mai 2017 1 Verteilung

Mehr

Aufgabe Punkte

Aufgabe Punkte Institut für Mathematik Freie Universität Berlin Carsten Hartmann, Stefanie Winkelmann Musterlösung für die Nachklausur zur Vorlesung Stochastik I im WiSe 20/202 Name: Matr.-Nr.: Studiengang: Mathematik

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. Juli 017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 14 Version: 8. Juli

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Statistik III. Walter Zucchini Fred Böker Andreas Stadie Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................

Mehr

Musterlösung der Klausur vom 29. Juli 2003

Musterlösung der Klausur vom 29. Juli 2003 Statistik für Bioinformatiker SoSe 2003 Rainer Spang Musterlösung der Klausur vom 29. Juli 2003 Aufgabe 1. 10 Definieren Sie die folgenden statistischen Begriffe in einem Satz oder in einer Formel: 1.

Mehr

Musterlösung zur Übungsklausur Statistik

Musterlösung zur Übungsklausur Statistik Musterlösung zur Übungsklausur Statistik WMS4A Oettinger 6/205 Aufgabe (a) Falsch: der Modus ist die am häufigsten auftretende Merkmalsausprägung in einer Stichprobe. (b) Richtig: ein ordinales Merkmal

Mehr

1 Grundlagen der Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsräume. Ein erster mathematischer Blick auf Zufallsexperimente...

1 Grundlagen der Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsräume. Ein erster mathematischer Blick auf Zufallsexperimente... Inhaltsverzeichnis 1 Grundlagen der Wahrscheinlichkeitsrechnung 1 1.1 Wahrscheinlichkeitsräume Ein erster mathematischer Blick auf Zufallsexperimente.......... 1 1.1.1 Wahrscheinlichkeit, Ergebnisraum,

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Wahrscheinlichkeitstheorie und Naive Bayes

Wahrscheinlichkeitstheorie und Naive Bayes Wahrscheinlichkeitstheorie und Naive Bayes Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 12.05.2011 Caroline Sporleder Naive Bayes (1) Elementare Wahrscheinlichkeitstheorie

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 2008/2009

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Wikipedia http://de.wikipedia.org/wiki/chi-quadrat-verteilung 1 von 7 6/18/2009 6:13 PM Chi-Quadrat-Verteilung aus Wikipedia, der freien Enzyklopädie Die Chi-Quadrat-Verteilung ist

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen Unüberwachtes

Mehr

7. Übung: Aufgabe 1. b), c), e) Aufgabe 2. a), c), e) Aufgabe 3. c), e) Aufgabe 4. Aufgabe 5. Aufgabe 6. Aufgabe 7. Aufgabe 8. Aufgabe 9.

7. Übung: Aufgabe 1. b), c), e) Aufgabe 2. a), c), e) Aufgabe 3. c), e) Aufgabe 4. Aufgabe 5. Aufgabe 6. Aufgabe 7. Aufgabe 8. Aufgabe 9. 7. Übung: Aufgabe 1 b), c), e) Aufgabe a), c), e) Aufgabe 3 c), e) Aufgabe 4 b) Aufgabe 5 a) Aufgabe 6 b) Aufgabe 7 e) Aufgabe 8 c) Aufgabe 9 a), c), e) Aufgabe 10 b), d) Aufgabe 11 a) Aufgabe 1 b) Aufgabe

Mehr

Statistik für Ingenieure und Naturwissenschaftler

Statistik für Ingenieure und Naturwissenschaftler Sheldon M. Ross Statistik für Ingenieure und Naturwissenschaftler 3. Auflage Aus dem Amerikanischen übersetzt von Carsten Heinisch ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spektrum Inhalt Vorwort zur dritten

Mehr

Statistische Methoden für Bauingenieure WS 2013/14. Literatur

Statistische Methoden für Bauingenieure WS 2013/14. Literatur Statistische Methoden für Bauingenieure WS 2013/14 Einheit 1: Einführung in die Wahrscheinlichkeitstheorie Univ.Prof. Dr. Christian Bucher Literatur C. Bucher: Computational analysis of randomness in structural

Mehr

Theorie-Teil: Aufgaben 1-3: 30 Punkte Programmier-Teil: Aufgaben 4-9: 60 Punkte

Theorie-Teil: Aufgaben 1-3: 30 Punkte Programmier-Teil: Aufgaben 4-9: 60 Punkte Hochschule RheinMain WS 2018/19 Prof. Dr. D. Lehmann Probe-Klausur zur Vorlesung Ökonometrie Theorie-Teil: Aufgaben 1-3: 30 Punkte Programmier-Teil: Aufgaben 4-9: 60 Punkte (die eigentliche Klausur wird

Mehr

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung 1.8 Kolmogorov-Smirnov-Test auf Normalverteilung Der Kolmogorov-Smirnov-Test ist einer der klassischen Tests zum Überprüfen von Verteilungsvoraussetzungen. Der Test vergleicht die Abweichungen der empirischen

Mehr

Bachelorprüfung: Statistik (1 Stunde)

Bachelorprüfung: Statistik (1 Stunde) Prof. H.R. Künsch D-BIOL, D-CHAB Winter 2010 Bachelorprüfung: Statistik (1 Stunde) Bemerkungen: Es sind alle mitgebrachten schriftlichen Hilfsmittel und der Taschenrechner erlaubt. Natels sind auszuschalten!

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Embrechts ETH Zürich Sommer 2015 Wahrscheinlichkeit und Statistik BSc D-INFK Name: Vorname: Stud. Nr.: Das Folgende bitte nicht ausfüllen! Aufg. Summe Kontr. Pkte.-Max. 1 10 2 10 3 10 4 10

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayes sches Lernen. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayes sches Lernen. Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayes sches Lernen Niels Landwehr Überblick Grundkonzepte des Bayes schen Lernens Wahrscheinlichstes Modell gegeben Daten Münzwürfe

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am 5..201 von 10:00 bis 11:00 Uhr Bearbeiten Sie zwei der drei folgenden Aufgaben! Sätze aus der Vorlesung und den Übungen dürfen Sie ohne

Mehr

Mathematische Grundlagen III

Mathematische Grundlagen III Mathematische Grundlagen III Maschinelles Lernen I: Klassifikation mit Naive Bayes Vera Demberg Universität des Saarlandes 7. Juli 2014 Vera Demberg (UdS) Mathe III 7. Juli 2014 1 / 39 Reminder to self:

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 11. Juli 016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Wahrscheinlichkeitsrechnung mathematische Statistik und statistische Qualitätskontrolle

Wahrscheinlichkeitsrechnung mathematische Statistik und statistische Qualitätskontrolle Wahrscheinlichkeitsrechnung mathematische Statistik und statistische Qualitätskontrolle von Dipl.-Math. Regina Storm Mit 66 Bildern Zweite, überarbeitete und erweiterte Auflage VEB FACHBUCHVERLAG LEIPZIG

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 7. Mai 2018 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 5 Version: 30. April

Mehr