Unser Sonnensystem. Prof. Dr. Christina Birkenhake. 8. März

Größe: px
Ab Seite anzeigen:

Download "Unser Sonnensystem. Prof. Dr. Christina Birkenhake. 8. März"

Transkript

1 Unser Sonnensystem Prof. Dr. Christina Birkenhake 8. März 2010

2 Heliozentrisches Weltbild des Kopernikus Ellipsen überspringen

3 Ellipsen und Planetenbahnen F 1 F 2

4 Ellipsen und Planetenbahnen

5 Bahn von Jupiter

6 Bestimmung des Erdradius nach Eratosthenes α Alexandria Syene α M

7 Ekliptik Herbst Sommer Winter Frühling

8 Berechnung der Erdneigung oder des Breitengrades I Winter Horizont α Sonnenstrahlen M φ ε Äquator Erde

9 Berechnung der Erdneigung oder des Breitengrades II Sommer Horizont Sonnenstrahlen α Äquator φ M Erde ε

10 Koordinatensystem auf der Erde

11 Koordinatensystem auf der Erde Vereinbarung: Erde = Kugel

12 Koordinatensystem auf der Erde Vereinbarung: Erde = Kugel Erdachse = Rotationsachse

13 Koordinatensystem auf der Erde Vereinbarung: Erde = Kugel Erdachse = Rotationsachse Pole, Äquator

14 Koordinatensystem auf der Erde Vereinbarung: Erde = Kugel Erdachse = Rotationsachse Pole, Äquator Großkreise durch die Pole Meridiane

15 Koordinatensystem auf der Erde Vereinbarung: Erde = Kugel Erdachse = Rotationsachse Pole, Äquator Großkreise durch die Pole Meridiane Parallelkreise zum Äquator Breitenkreise

16 Koordinaten eines Punktes auf der Erde

17 Koordinaten eines Punktes auf der Erde Erde mit Polen und Äquator

18 Koordinaten eines Punktes auf der Erde P Erde mit Polen und Äquator Ein Ort P auf der Erde

19 Koordinaten eines Punktes auf der Erde P Erde mit Polen und Äquator Ein Ort P auf der Erde Breitengrad durch P

20 Koordinaten eines Punktes auf der Erde P Erde mit Polen und Äquator Ein Ort P auf der Erde Breitengrad durch P Längengrad durch P

21 Koordinaten eines Punktes auf der Erde P ϕ Erde mit Polen und Äquator Ein Ort P auf der Erde Breitengrad durch P Längengrad durch P ϕ Breite von P

22 Koordinaten eines Punktes auf der Erde G P ϕ Erde mit Polen und Äquator Ein Ort P auf der Erde Breitengrad durch P Längengrad durch P ϕ Breite von P G: Greenwich/London

23 Koordinaten eines Punktes auf der Erde G P ϕ Erde mit Polen und Äquator Ein Ort P auf der Erde Breitengrad durch P Längengrad durch P ϕ Breite von P G: Greenwich/London Nullmeridian

24 Koordinaten eines Punktes auf der Erde G λ P ϕ Erde mit Polen und Äquator Ein Ort P auf der Erde Breitengrad durch P Längengrad durch P ϕ Breite von P G: Greenwich/London Nullmeridian λ Länge von P

25 Koordinaten eines Punktes auf der Erde G λ P ϕ Erde mit Polen und Äquator Ein Ort P auf der Erde Breitengrad durch P Längengrad durch P ϕ Breite von P G: Greenwich/London Nullmeridian λ Länge von P (ϕ, λ) Koordinaten von P

26 Erdkoordinaten in der Praxis Breite ϕ und Länge λ werden in Grad angegeben: 0,..., 360

27 Erdkoordinaten in der Praxis Breite ϕ und Länge λ werden in Grad angegeben: 0,..., 360 z.b. Nürnberg, FAKS: , 19 N , 48 O

28 Erdkoordinaten in der Praxis Breite ϕ und Länge λ werden in Grad angegeben: 0,..., 360 z.b. Nürnberg, FAKS: , 19 N , 48 O G P ϕ ϕ = , 19 nördliche Breite

29 Erdkoordinaten in der Praxis Breite ϕ und Länge λ werden in Grad angegeben: 0,..., 360 z.b. Nürnberg, FAKS: , 19 N , 48 O G λ P ϕ ϕ = , 19 nördliche Breite λ = , 48 östliche Länge

30 Längengrad in Stunden, Minuten und Sekunden Erddrehung: 360 in 24 h

31 Längengrad in Stunden, Minuten und Sekunden Erddrehung: 360 in 24 h Längengraddifferenzen werden oft im Zeitmaß angegeben:

32 Längengrad in Stunden, Minuten und Sekunden Erddrehung: 360 in 24 h Längengraddifferenzen werden oft im Zeitmaß angegeben: Gradmaß Zeitmaß h λ Grad 1 15 λ Zeitmaß λ Grad 15 λ Zeitmaß

33 Längengrad in Stunden, Minuten und Sekunden Erddrehung: 360 in 24 h Längengraddifferenzen werden oft im Zeitmaß angegeben: Gradmaß Zeitmaß h λ Grad 1 15 λ Zeitmaß λ Grad 15 λ Zeitmaß λ Görlitz-Nbg,B7 = 15 λ B7 = = min 41, 33 s

34 Längengrad in Stunden, Minuten und Sekunden Erddrehung: 360 in 24 h Längengraddifferenzen werden oft im Zeitmaß angegeben: Gradmaß Zeitmaß h λ Grad 1 15 λ Zeitmaß λ Grad 15 λ Zeitmaß λ Görlitz-Nbg,B7 = 15 λ B7 = = min 41, 33 s Bei uns steht die Sonne 15 min 41, 33 s später im Zenit als in Görlitz. Ortszeit!

35 Die Himmelskugel Von der Erde aus sehen wir Sterne. Äquatorsystem

36 Die Himmelskugel Von der Erde aus sehen wir Sterne. Himmelsgewölbe: Hohlkugel Äquatorsystem

37 Die Himmelskugel Von der Erde aus sehen wir Sterne. Himmelsgewölbe: Hohlkugel Himmelskugel Äquatorsystem

38 Die Himmelskugel Von der Erde aus sehen wir Sterne. Himmelsgewölbe: Hohlkugel Himmelskugel Wie auf der Erde: Positionen von Sternen durch Kugelkoordinaten. Äquatorsystem

39 Die Himmelskugel Von der Erde aus sehen wir Sterne. Himmelsgewölbe: Hohlkugel Himmelskugel Wie auf der Erde: Positionen von Sternen durch Kugelkoordinaten. Dazu wählt man: Äquatorsystem

40 Die Himmelskugel Von der Erde aus sehen wir Sterne. Himmelsgewölbe: Hohlkugel Himmelskugel Wie auf der Erde: Positionen von Sternen durch Kugelkoordinaten. Dazu wählt man: Pole bzw. Achse Äquator. Äquatorsystem

41 Die Himmelskugel Von der Erde aus sehen wir Sterne. Himmelsgewölbe: Hohlkugel Himmelskugel Wie auf der Erde: Positionen von Sternen durch Kugelkoordinaten. Dazu wählt man: Pole bzw. Achse Äquator. Nullmeridian Äquatorsystem

42 Äquatorsystem Ekliptikebene

43 Äquatorsystem Achse = Erdachse (Pfeil zeigt Richtung Polarstern) Ekliptikebene

44 Äquatorsystem Achse = Erdachse (Pfeil zeigt Richtung Polarstern) Nullmeridian? Ekliptikebene

45 Äquatorsystem Achse = Erdachse (Pfeil zeigt Richtung Polarstern) Nullmeridian? Problem: Erdrotation Ekliptikebene

46 Ekliptikebene Erdbahn um Sonne Ekliptik

47 Ekliptikebene Erdbahn um Sonne Ebene Ekliptikebene Ekliptik

48 Ekliptikebene Erdbahn um Sonne Ebene Ekliptikebene Erdachse zur Ekliptikebene geneigt Ekliptik

49 Ekliptikebene Erdbahn um Sonne Ebene Ekliptikebene Erdachse zur Ekliptikebene geneigt Winkel ε = 23, 44 ε Ekliptik

50 Ekliptik Schnittkreis Ekliptikebene mit Himmelskugel: Ekliptik Jahreszeiten

51 Ekliptik Schnittkreis Ekliptikebene mit Himmelskugel: Ekliptik Auf Himmelskugel: Bahn der Sonne Jahreszeiten

52 Ekliptik Schnittkreis Ekliptikebene mit Himmelskugel: Ekliptik Auf Himmelskugel: Bahn der Sonne Ekliptik und Himmelsäquator: 2 Schnittpunkte Jahreszeiten

53 Jahreszeiten Polarstern Frühlingspunkt Astronav.

54 Jahreszeiten Polarstern Frühlingspunkt Astronav.

55 Frühlingspunkt und Äquatorsystem Sonnenposition am Horizontalsystem

56 Frühlingspunkt und Äquatorsystem Sonnenposition am Frühlingspunkt Υ Horizontalsystem

57 Frühlingspunkt und Äquatorsystem Sonnenposition am Frühlingspunkt Υ Nullmeridian des Äquatorsystems Horizontalsystem

58 Frühlingspunkt und Äquatorsystem S Sonnenposition am Frühlingspunkt Υ Nullmeridian des Äquatorsystems Koordinaten eines Sternes S: Horizontalsystem

59 Frühlingspunkt und Äquatorsystem S Sonnenposition am Frühlingspunkt Υ Nullmeridian des Äquatorsystems Koordinaten eines Sternes S: Meridian durch S Horizontalsystem

60 Frühlingspunkt und Äquatorsystem S δ Sonnenposition am Frühlingspunkt Υ Nullmeridian des Äquatorsystems Koordinaten eines Sternes S: Meridian durch S δ Deklination Horizontalsystem

61 Frühlingspunkt und Äquatorsystem p S δ Sonnenposition am Frühlingspunkt Υ Nullmeridian des Äquatorsystems Koordinaten eines Sternes S: Meridian durch S δ Deklination p = 90 δ Poldistanz Horizontalsystem

62 Frühlingspunkt und Äquatorsystem α p S δ Sonnenposition am Frühlingspunkt Υ Nullmeridian des Äquatorsystems Koordinaten eines Sternes S: Meridian durch S δ Deklination p = 90 δ Poldistanz α Rektazension Horizontalsystem

63 Frühlingspunkt und Äquatorsystem α p S δ Sonnenposition am Frühlingspunkt Υ Nullmeridian des Äquatorsystems Koordinaten eines Sternes S: Meridian durch S δ Deklination p = 90 δ Poldistanz α Rektazension (δ, α) Sternkoordinaten von S im Äquatorsystem Diese Daten stehen in Astronomischen bzw. Nautischen Jahrbüchern Horizontalsystem

64 Horizontalsystem Erde Zeitmessung

65 Horizontalsystem Erde mit Standort Zeitmessung

66 Horizontalsystem Erde mit Standort Himmelskugel Zeitmessung

67 Horizontalsystem Z Erde mit Standort Himmelskugel Z Zenit Zeitmessung

68 Horizontalsystem Z Erde mit Standort Himmelskugel Z Zenit Horizont Zeitmessung

69 Horizontalsystem Z Pn Erde mit Standort Himmelskugel Z Zenit Horizont Pn nördlicher Himmelspol Zeitmessung

70 Horizontalsystem Z Pn Erde mit Standort Himmelskugel Z Zenit Horizont Pn nördlicher Himmelspol Himmelsmeridian Zeitmessung

71 Horizontalsystem Z S Pn Erde mit Standort Himmelskugel Z Zenit Horizont Pn nördlicher Himmelspol Himmelsmeridian S Stern Zeitmessung

72 Horizontalsystem Z S Pn Erde mit Standort Himmelskugel Z Zenit Horizont Pn nördlicher Himmelspol Himmelsmeridian S Stern Meridian von S Zeitmessung

73 Horizontalsystem Z S h Pn Erde mit Standort Himmelskugel Z Zenit Horizont Pn nördlicher Himmelspol Himmelsmeridian S Stern Meridian von S h Höhe Zeitmessung

74 Horizontalsystem Z z S h Pn Erde mit Standort Himmelskugel Z Zenit Horizont Pn nördlicher Himmelspol Himmelsmeridian S Stern Meridian von S h Höhe z Zenitdistanz Zeitmessung

75 Horizontalsystem Z z Pn S h a Erde mit Standort Himmelskugel Z Zenit Horizont Pn nördlicher Himmelspol Himmelsmeridian S Stern Meridian von S h Höhe z Zenitdistanz a Azimut Zeitmessung

76 Horizontalsystem Z z Pn S h a Erde mit Standort Himmelskugel Z Zenit Horizont Pn nördlicher Himmelspol Himmelsmeridian S Stern Meridian von S h Höhe z Zenitdistanz a Azimut (h,a) Sternkoordinaten von S im Horizontalsystem Zeitmessung

77 Zeitmessung

78 Zeitmessung Sonnentag = ein Umlauf der (wahren) Sonne

79 Zeitmessung Sonnentag = ein Umlauf der (wahren) Sonne 12h = obere Kulmination (Höchststand) der Sonne

80 Zeitmessung Sonnentag = ein Umlauf der (wahren) Sonne 12h = obere Kulmination (Höchststand) der Sonne WOZ λ (wahre Ortszeit), konstant auf Meridian λ

81 Zeitmessung Sonnentag = ein Umlauf der (wahren) Sonne 12h = obere Kulmination (Höchststand) der Sonne WOZ λ (wahre Ortszeit), konstant auf Meridian λ Problem keine gleichmäßige Kreisbewegung der Sonne

82 Zeitmessung Sonnentag = ein Umlauf der (wahren) Sonne 12h = obere Kulmination (Höchststand) der Sonne WOZ λ (wahre Ortszeit), konstant auf Meridian λ Problem keine gleichmäßige Kreisbewegung der Sonne MOZ λ Ortszeit der mittleren Sonne

83 Zeitmessung Sonnentag = ein Umlauf der (wahren) Sonne 12h = obere Kulmination (Höchststand) der Sonne WOZ λ (wahre Ortszeit), konstant auf Meridian λ Problem Unterschied keine gleichmäßige Kreisbewegung der Sonne MOZ λ Ortszeit der mittleren Sonne WOZ MOZ 16 min

84 Zeitmessung Sonnentag = ein Umlauf der (wahren) Sonne 12h = obere Kulmination (Höchststand) der Sonne WOZ λ (wahre Ortszeit), konstant auf Meridian λ Problem keine gleichmäßige Kreisbewegung der Sonne MOZ λ Ortszeit der mittleren Sonne Unterschied WOZ MOZ 16 min Zeitgleichung WOZ MOZ = z Analemma

85 Zeitmessung Sonnentag = ein Umlauf der (wahren) Sonne 12h = obere Kulmination (Höchststand) der Sonne WOZ λ (wahre Ortszeit), konstant auf Meridian λ Problem keine gleichmäßige Kreisbewegung der Sonne MOZ λ Ortszeit der mittleren Sonne Unterschied WOZ MOZ 16 min Zeitgleichung WOZ MOZ = z Analemma z = 9 min 55 s

86 Zeitmessung Sonnentag = ein Umlauf der (wahren) Sonne 12h = obere Kulmination (Höchststand) der Sonne WOZ λ (wahre Ortszeit), konstant auf Meridian λ Problem keine gleichmäßige Kreisbewegung der Sonne MOZ λ Ortszeit der mittleren Sonne Unterschied WOZ MOZ 16 min Zeitgleichung WOZ MOZ = z Analemma z = 9 min 55 s 24 Zeitzonen Breite = = 15

87 Zeitmessung Sonnentag = ein Umlauf der (wahren) Sonne 12h = obere Kulmination (Höchststand) der Sonne WOZ λ (wahre Ortszeit), konstant auf Meridian λ Problem keine gleichmäßige Kreisbewegung der Sonne MOZ λ Ortszeit der mittleren Sonne Unterschied WOZ MOZ 16 min Zeitgleichung WOZ MOZ = z Analemma z = 9 min 55 s 24 Zeitzonen Breite = = 15 UT = MOZ 0 Ortszeit von Greenwich

88 Zeitmessung Sonnentag = ein Umlauf der (wahren) Sonne 12h = obere Kulmination (Höchststand) der Sonne WOZ λ (wahre Ortszeit), konstant auf Meridian λ Problem keine gleichmäßige Kreisbewegung der Sonne MOZ λ Ortszeit der mittleren Sonne Unterschied WOZ MOZ 16 min Zeitgleichung WOZ MOZ = z Analemma z = 9 min 55 s 24 Zeitzonen Breite = = 15 UT = MOZ 0 Ortszeit von Greenwich MEZ = UT 1 h = MOZ 15 Ortszeit von Görlitz

89 Zeitmessung Sonnentag = ein Umlauf der (wahren) Sonne 12h = obere Kulmination (Höchststand) der Sonne WOZ λ (wahre Ortszeit), konstant auf Meridian λ Problem keine gleichmäßige Kreisbewegung der Sonne MOZ λ Ortszeit der mittleren Sonne Unterschied WOZ MOZ 16 min Zeitgleichung WOZ MOZ = z Analemma z = 9 min 55 s 24 Zeitzonen Breite = = 15 UT = MOZ 0 Ortszeit von Greenwich MEZ = UT 1 h = MOZ 15 Ortszeit von Görlitz Allgemein: λ = (UT MOZ λ ) 15

90 Zeitmessung Sonnentag = ein Umlauf der (wahren) Sonne 12h = obere Kulmination (Höchststand) der Sonne WOZ λ (wahre Ortszeit), konstant auf Meridian λ Problem keine gleichmäßige Kreisbewegung der Sonne MOZ λ Ortszeit der mittleren Sonne Unterschied WOZ MOZ 16 min Zeitgleichung WOZ MOZ = z Analemma z = 9 min 55 s 24 Zeitzonen Breite = = 15 UT = MOZ 0 Ortszeit von Greenwich MEZ = UT 1 h = MOZ 15 Ortszeit von Görlitz Allgemein: λ = (UT MOZ λ ) 15 λ Görlitz λ B7 = = 15 min 41, 33 s

91 Zeitmessung Sonnentag = ein Umlauf der (wahren) Sonne 12h = obere Kulmination (Höchststand) der Sonne WOZ λ (wahre Ortszeit), konstant auf Meridian λ Problem keine gleichmäßige Kreisbewegung der Sonne MOZ λ Ortszeit der mittleren Sonne Unterschied WOZ MOZ 16 min Zeitgleichung WOZ MOZ = z Analemma z = 9 min 55 s 24 Zeitzonen Breite = = 15 UT = MOZ 0 Ortszeit von Greenwich MEZ = UT 1 h = MOZ 15 Ortszeit von Görlitz Allgemein: λ = (UT MOZ λ ) 15 λ Görlitz λ B7 = = 15 min 41, 33 s WOZ B7 = MOZ B7 + z = MEZ + 15 min 41, 33 s + z Sternzeit Beispiel

92 Beispiel Wann steht heute, am , an der Pilotystraße die Sonne im Zenit?

93 Beispiel Wann steht heute, am , an der Pilotystraße die Sonne im Zenit? WOZ B7, = 12 h

94 Beispiel Wann steht heute, am , an der Pilotystraße die Sonne im Zenit? WOZ B7, = 12 h Formel: WOZ B7 = MEZ + 15 min 41, 33 s + z

95 Beispiel Wann steht heute, am , an der Pilotystraße die Sonne im Zenit? WOZ B7, = 12 h Formel: WOZ B7 = MEZ + 15 min 41, 33 s + z MEZ = WOZ 15 min 41, 33 s z = 12 h 15 min 41, 33 s 9 min 55 s = 11 h 34 min 23, 67 s

96 Sternzeit mittlerer Sonnentag Zeitraum zwischen 2 oberen Kulminationen der mittleren Sonne

97 Sternzeit mittlerer Sonnentag Sterntag Zeitraum zwischen 2 oberen Kulminationen der mittleren Sonne Zeitraum zwischen 2 oberen Kulminationen des Frühlingspunktes

98 Sternzeit mittlerer Sonnentag Sterntag Zeitraum zwischen 2 oberen Kulminationen der mittleren Sonne Zeitraum zwischen 2 oberen Kulminationen des Frühlingspunktes eine Umdrehung der Erde 1 Sonnenjahr = 365, 25 So.Tage = (365, ) Sterntage

99 Sternzeit mittlerer Sonnentag Sterntag Zeitraum zwischen 2 oberen Kulminationen der mittleren Sonne Zeitraum zwischen 2 oberen Kulminationen des Frühlingspunktes eine Umdrehung der Erde 1 Sonnenjahr = 365, 25 So.Tage = (365, ) Sterntage 1So.Tag 1 Sterntag + 4 min

100 Sternzeit and der Pilotystraße am um 11 h (MEZ) ϑ B7,11 h, = ϑ 0 + λ Zeit + 11 h = 19, = 19 h 29 min 21, 97 s 24 h 23 h + 56 min

101 Analemma über dem Tempel von Delphi an 38 Tagen zwischen dem 2.2. und jeweils 8 h OEZ Zeitmessung

102 Hyperbel Gleichung: x 2 a 2 y 2 b 2 = 1

103 Hyperbel Gleichung: x 2 a 2 y 2 b 2 = 1 Brennpunktgl.: PF 1 PF 2 = 2a

104 Hyperbel Gleichung: x 2 a 2 y 2 b 2 = 1 Brennpunktgl.: PF 1 PF 2 = 2a Anwendung: Loran=long range navigation GPS=global positioning system

105 Die Rotationskörper der Hyperbel einschaliges Hyperboloid zweischaliges Hyperboloid

106 Loran Schiff mit unbekannter Position P empfängt Signale S 1, S 2 von zwei Sendern F 1, F 1 F 2 F 1

107 Loran Schiff mit unbekannter Position P empfängt Signale S 1, S 2 von zwei Sendern F 1, F 1 Auf Schiff nicht bekannt: T i = Zeit des Signals S i von F i P F 2 F 1

108 Loran Schiff mit unbekannter Position P empfängt Signale S 1, S 2 von zwei Sendern F 1, F 1 F 2 Auf Schiff nicht bekannt: T i = Zeit des Signals S i von F i P Auf Schiff bekannt: Signal S i trifft zur Uhrzeit t i bei P an F 1

109 Loran Schiff mit unbekannter Position P empfängt Signale S 1, S 2 von zwei Sendern F 1, F 1 F 2 F 1 Auf Schiff nicht bekannt: T i = Zeit des Signals S i von F i P Auf Schiff bekannt: Signal S i trifft zur Uhrzeit t i bei P an t = t 2 t 1 = T 2 T 1

110 Loran Schiff mit unbekannter Position P empfängt Signale S 1, S 2 von zwei Sendern F 1, F 1 F 2 F 1 Auf Schiff nicht bekannt: T i = Zeit des Signals S i von F i P Auf Schiff bekannt: Signal S i trifft zur Uhrzeit t i bei P an t = t 2 t 1 = T 2 T 1 v T i = F i P (Geschw. Zeit = Weg)

111 Loran Schiff mit unbekannter Position P empfängt Signale S 1, S 2 von zwei Sendern F 1, F 1 F 2 F 1 P Auf Schiff nicht bekannt: T i = Zeit des Signals S i von F i P Auf Schiff bekannt: Signal S i trifft zur Uhrzeit t i bei P an t = t 2 t 1 = T 2 T 1 v T i = F i P (Geschw. Zeit = Weg) F 2 P F 1 P = v (T 2 T 1 ) = v t

112 Loran Schiff mit unbekannter Position P empfängt Signale S 1, S 2 von zwei Sendern F 1, F 1 F 2 F 1 P Auf Schiff nicht bekannt: T i = Zeit des Signals S i von F i P Auf Schiff bekannt: Signal S i trifft zur Uhrzeit t i bei P an t = t 2 t 1 = T 2 T 1 v T i = F i P (Geschw. Zeit = Weg) F 2 P F 1 P = v (T 2 T 1 ) = v t Schiff auf Hyperbel mit Brennpkten F i und a = v t 2

113 Loran Schiff mit unbekannter Position P empfängt Signale S 1, S 2 von zwei Sendern F 1, F 1 F 2 F 1 P Auf Schiff nicht bekannt: T i = Zeit des Signals S i von F i P Auf Schiff bekannt: Signal S i trifft zur Uhrzeit t i bei P an t = t 2 t 1 = T 2 T 1 v T i = F i P (Geschw. Zeit = Weg) F 2 P F 1 P = v (T 2 T 1 ) = v t Schiff auf Hyperbel mit Brennpkten F i und a = v t 2 Zur Ortsbestimmung mehrere Signale bzw. Hyperbeln nötig

114 Global Positioning System GPS Satelliten als Sender:

115 Global Positioning System GPS Satelliten als Sender: Position liegt auf einem Rotationshyperboloid

116 Global Positioning System GPS Satelliten als Sender: Position liegt auf einem Rotationshyperboloid 8 Sender nötig für exakte Positionierung

Navigation oder Wo bin ich?

Navigation oder Wo bin ich? Navigation oder Wo bin ich? Prof. Dr. Christina Birkenhake christina@birkenhake.net http://christina.birkenhake.net 7. Juli 2008 Teil I Ursprünge der Navigation Ein altes Problem Wo bin ich? Ein altes

Mehr

Beobachtungen am Himmel. Manuel Erdin Gymnasium Liestal, 2010

Beobachtungen am Himmel. Manuel Erdin Gymnasium Liestal, 2010 Beobachtungen am Himmel Manuel Erdin Gymnasium Liestal, 2010 Grundsätze Alle am Himmel beobachtbaren Objekte befinden sich auf der Innenseite einer Kugel. Wir als Beobachter sind in Ruhe. Die Himmelskugel

Mehr

Extrasolare Planeten und ihre Zentralsterne

Extrasolare Planeten und ihre Zentralsterne Extrasolare Planeten und ihre Zentralsterne Nachtrag Organisatorisches Da schlussendlich eine individuelle Benotung erfolgen muss, soll am Ende eine etwa einstündige Klausur über den Stoff der Vorlesung

Mehr

3. Koordinatensysteme, Zeit und Kalender

3. Koordinatensysteme, Zeit und Kalender 3.1 Erdumlaufbahn steininger@astro.univie.ac.at Folie 1 Ellipsen: a, b sind die großen, bzw. kleinen Halbachsen Exzentrizität e = f/a A = Aphel P = Perihel Folie 2 III.1 Exzentrizität der Erdumlaufbahn

Mehr

3. Koordinatensysteme, Zeit und Kalender

3. Koordinatensysteme, Zeit und Kalender 3.1 Erdumlaufbahn steininger@astro.univie.ac.at Folie 1 Ellipsen: a, b sind die großen, bzw. kleinen Halbachsen Exzentrizität e = f/a A = Aphel P = Perihel Folie 2 Exzentrizität der Erdumlaufbahn = 0,0167

Mehr

SIS Vortragsreihe. Astronomische Koordinatensysteme

SIS Vortragsreihe. Astronomische Koordinatensysteme SIS Vortragsreihe Astronomische Koordinatensysteme Das Himmelsgewölbe Zur Vereinfachung stellen wir uns das Himmelsgewölbe als hohle Kugel vor. Die Fix-Sterne sind an dieser Kugel befestigt oder einfach

Mehr

Astronomische Koordinatensysteme

Astronomische Koordinatensysteme Übung für LA Physik Astronomische Koordinatensysteme Sergei A.Klioner Lohrmann-Observatorium, Technische Universität Dresden Kartesische und sphärische Koordinaten Kartesisches Koordinatensystem und sphärische

Mehr

Projekt der Klasse 4l MN Frühlingssemester 2008

Projekt der Klasse 4l MN Frühlingssemester 2008 Projekt der Klasse 4l MN Frühlingssemester 2008 Alexander Mikos Cedric Bergande Dario Goglio Konrad Marthaler Marc Inhelder Olivier Kastenhofer Stefan Kettner Leitung: Jan-Peter Trepp Seite 2 von 13 Inhaltsverzeichnis

Mehr

Astronomie. Vorlesung HS 2015 (16. Sept. 16. Dez. 2015) ETH Zürich, Mi 10-12, ETH HG E5,

Astronomie. Vorlesung HS 2015 (16. Sept. 16. Dez. 2015) ETH Zürich, Mi 10-12, ETH HG E5, Astronomie Prof. Dr. H.M. Schmid, Institut für Astronomie, ETH Zürich Prof. Dr. W. Schmutz, Physikalisch-Meteorolgisches Observatorium, World Radiation Center, Davos Vorlesung HS 2015 (16. Sept. 16. Dez.

Mehr

Sphärische Astronomie

Sphärische Astronomie Sphärische Astronomie 2 Inhaltsverzeichnis 2.1 Koordinatensysteme... 6 2.2 Die Zeit... 12 2.3 Sternpositionen... 18 2.4 Orts- und Zeitbestimmung... 29 2.5 Aufgaben... 32 Zur Untersuchung der Verteilung

Mehr

Astronomie. Wich7ge Folien (=Skript) zur Vorlesung: Vorlesung HS 2016 (21. Sept. 21. Dez. 2016) ETH Zürich, Mi 10-12, CAB G61,

Astronomie. Wich7ge Folien (=Skript) zur Vorlesung: Vorlesung HS 2016 (21. Sept. 21. Dez. 2016) ETH Zürich, Mi 10-12, CAB G61, Astronomie Prof. Dr. H.M. Schmid, Ins7tut für Astronomie, ETH Zürich Prof. Dr. W. Schmutz, Physikalisch-Meteorolgisches Observatorium, World Radia7on Center, Davos Vorlesung HS 2016 (21. Sept. 21. Dez.

Mehr

Einführung in die Astronomie & Astrophysik 2. Kapitel: Klassische Astronomie Orientierung am Himmel

Einführung in die Astronomie & Astrophysik 2. Kapitel: Klassische Astronomie Orientierung am Himmel Einführung in die Astronomie & Astrophysik 2. Kapitel: Klassische Astronomie Orientierung am Himmel Wilhelm Kley & Andrea Santangelo Institut für Astronomie & Astrophysik Kepler Center for Astro and Particle

Mehr

Projekt. Sonnenuhr. R.Schorpp. Version

Projekt. Sonnenuhr. R.Schorpp. Version Projekt Sonnenuhr Version 1. - 1-12.1.9 1 INHALTVERZEICHNIS 1 Inhaltverzeichnis...2 1.1 Versionsverwaltung...2 2 Thema...3 2.1 Pflichtenheft...3 3 Astronomische Hintergründe...4 3.1 Nummer des Tages im

Mehr

Grüß Gott zum öffentlichen Vortrag des THEMA:

Grüß Gott zum öffentlichen Vortrag des THEMA: Grüß Gott zum öffentlichen Vortrag des AiC* am Tag der Astronomie Astronomie im Chiemgau ev. * http://www.astronomie-im-chiemgau.de/ THEMA: THEMA: Über astronomische Zeitrechnung oder Warum am Himmel die

Mehr

Einführung in die sphärische Astronomie

Einführung in die sphärische Astronomie Einführung in die sphärische Astronomie Die scheinbare Himmelskugel Ing. Karl Vlasich Burgenländische Amateurastronomen Oktober 2000 Punkte und Linien an der Himmelskugel Der jeweils beobachtbare, über

Mehr

Zeitmessung und Orientierung am Himmel

Zeitmessung und Orientierung am Himmel Astronomie im Chiemgau e.v. www.astronomie-im-chiemgau.de Vortragsreihe Einführung in die Astronomie der VHS Haag i. Obb., Traunreut und Trostberg Zeitmessung und Orientierung am Himmel Sonnenzeit, Sternzeit,

Mehr

Orientierung am Himmel

Orientierung am Himmel Astronomie im Chiemgau e.v. www.astronomie-im-chiemgau.de Vortragsreihe Einführung in die Astronomie der VHS Haag i. Obb., Traunreut und Trostberg Orientierung am Himmel Himmelspole, Himmelsäquator und

Mehr

Gewußt...? Kap. 1: Sonnenstand. ... wieviel Handspannen die Sonne im Winter mittags über dem Horizont steht?

Gewußt...? Kap. 1: Sonnenstand. ... wieviel Handspannen die Sonne im Winter mittags über dem Horizont steht? Gewußt...? In diesem Dokument sind einige Besonderheiten im jahreszeitlichen und örtlichen Verlauf der Sonne zusammengestellt und aufgrund der astronomischen Zusammenhänge erklärt. Die entsprechenden Daten,

Mehr

Kleines Klassen-Planetarium

Kleines Klassen-Planetarium Kleines Klassen-Planetarium Prof. Dr. Christina Birkenhake http://www.thuisbrunn65.de/ 23. März 2015 Unser Sonnensystem Sonne Merkur Venus Erde Mars Jupiter Saturn Uranus Neptun Seit 24. Aug. 2006 ist

Mehr

Zum Prüfungsteil Astronomische Grundkenntnisse in den schriftlichen Prüfungen zum Sporthochseeschiffer

Zum Prüfungsteil Astronomische Grundkenntnisse in den schriftlichen Prüfungen zum Sporthochseeschiffer Zum Prüfungsteil Astronomische Grundkenntnisse in den schriftlichen Prüfungen zum Sporthochseeschiffer Segelschule Well Sailing Gaußstraße 15 22765 Hamburg www.well-sailing.de Tel +49 40 43189070 info@well-sailing.de

Mehr

ASV Astroseminar 2003

ASV Astroseminar 2003 Astronavigation nicht für Prüfungen (C-Schein, SHS) sondern zum Vergnügen. Nichts auswendig lernen, sondern Hintergründe verstehen Nur Verfahren, die auf Sportbooten anwendbar sind Keine HO-Tafeln heutzutage

Mehr

Die Regiomontanus-Sonnenuhr

Die Regiomontanus-Sonnenuhr Die Regiomontanus-Sonnenuhr Von Günther Zivny Die Regiomontanus-Sonnenuhr gehört zur Gruppe der Höhensonnenuhren. Die Sonnenhöhe, also der Winkel zwischen Horizont und Sonne, ändert sich im aufe des Tages.

Mehr

ASTRONOMISCHE NAVIGATION

ASTRONOMISCHE NAVIGATION ASTRONOMISCHE NAVIGATION Zur Ortsbestimmung durch Gestirnsbeobachtung in der Seefahrt Wolfgang Steiner FH OÖ, Fakultät für Technik und Umweltwissenschaften Die Koordinaten eines Punktes B auf der Erdoberfläche:

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Astrophysik und astronomische Beobachtungen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Astrophysik und astronomische Beobachtungen Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kopiervorlagen Astrophysik und astronomische Beobachtungen Das komplette Material finden Sie hier: School-Scout.de Inhaltsverzeichnis

Mehr

Wissenswertes über die Zeitgleichung

Wissenswertes über die Zeitgleichung Wissenswertes über die Zeitgleichung Wechsel von Helligkeit und Dunkelheit prägte von alters her in unseren Breiten den kürzestesten natürlichen Zeitrhythmus: den Tagesrhythmus Verantwortlich dafür: die

Mehr

1 AE = km = 149, km.

1 AE = km = 149, km. 1. Astronomische Entfernungsangaben Astronomische Einheit (AE) Die große Halbachse der Erdbahn um die Sonne = mittlere Entfernung Erde - Sonne, beträgt 149 597 892 ± 5 km. Sie wird als Astronomische Einheit

Mehr

1.3 Die Erde als Plattform astronomischer Beobachtungen

1.3 Die Erde als Plattform astronomischer Beobachtungen 1.3 Die Erde als Plattform astronomischer Beobachtungen 1.3.1 Koordinatensysteme Koordinatensysteme in der Astronomie sind verknüpft mit der Kugelgestalt der Erde und den kombinierten Bewegungen die sie

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.25 2017/07/13 11:11:42 hk Exp $ 5 Sphärische Trigonometrie 5.3 Geographische Koordinaten N N b γ a P α c β P 2 P 1 λ ϕ ϕ2 Längengrad λ und Breitengrad ϕ Abstand auf Großkreis Wir betrachten

Mehr

Erläuterungen zur Funktionsweise der Sonnenuhr

Erläuterungen zur Funktionsweise der Sonnenuhr Erläuterungen zur Funktionsweise der Sonnenuhr Hans Huber 28. November 2016 Lieber Besucher, nehmen Sie sich bitte fünf Minuten Zeit. Vielleicht verändert dies Ihre Sicht auf die Zeit und unser damit verbundenes

Mehr

I. PHYSISCHE GEOGRAPHIE

I. PHYSISCHE GEOGRAPHIE I. PHYSISCHE GEOGRAPHIE 1. Unsere kosmische Umgebung 1. Ordne die Wissenschaftler den wissenschaftlichen Ergebnissen zu! Schreibe die Großbuchstaben an die entsprechende Stelle nach den wissenschaftlichen

Mehr

Weltzeit UT1 (früher GMT) Mittlere Ortszeit (MOZ) Zonenzeit (ZZ) Wahre Ortszeit (Wann stehen Sonne oder Mond am höchsten Punkt?)

Weltzeit UT1 (früher GMT) Mittlere Ortszeit (MOZ) Zonenzeit (ZZ) Wahre Ortszeit (Wann stehen Sonne oder Mond am höchsten Punkt?) Astronavigation: Einführung Die Zeit: Weltzeit UT1 (früher GMT) Mittlere Ortszeit (MOZ) Zonenzeit (ZZ) Wahre Ortszeit (Wann stehen Sonne oder Mond am höchsten Punkt?) Koordinatensysteme: Erde Gestirne

Mehr

Klassenarbeit - Die Erde

Klassenarbeit - Die Erde Klassenarbeit - Die Erde Erdrotation; Gradnetz; Erdbahn; Jahreszeiten; Oberflächenformen; Vegetationsgebiete 5. Klasse / Geografie Aufgabe 1 Erläutere die Erdrotation und den damit entstehenden Effekt.

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.8 2015/07/09 15:09:47 hk Exp $ 5 Sphärische Trigonometrie 5.3 Geographische Koordinaten b γ a P α c β P 2 P 1 λ ϕ ϕ2 Längengrad λ und Breitengrad ϕ Abstand auf Großkreis Wir betrachten

Mehr

Astronomische Uhr am Ulmer Rathaus

Astronomische Uhr am Ulmer Rathaus Kurzanleitung http://astrouhr.telebus.de/ Die Zeiger Sonnenzeiger Handzeiger Mondzeiger mit Mondkugel Zifferblatt 12 Stunden Skala Sichtbaren Himmel Wendekreis des Krebses Tag und Nachtgleiche Wendekreis

Mehr

Astronomische Ortsbestimmung mit dem Sextanten

Astronomische Ortsbestimmung mit dem Sextanten Astronomische Ortsbestimmung mit dem Sextanten Der Sextant Die einfachste Art seine Position zu bestimmen ist die Mittagsmethode. Dabei wird die Sonnenhöhe zur Mittagszeit gemessen. Sie hat den Vorteil,

Mehr

Didaktik der Astronomie. Orientierung am Himmel II Veränderungen

Didaktik der Astronomie. Orientierung am Himmel II Veränderungen Didaktik der Astronomie Orientierung am Himmel II Veränderungen Bezugssysteme Horizontsystem (fest) Äquatorsystem (bewegt) > Erdrotation: Tag; Tägliche Änderung Ekliptiksystem (bewegt) > Sonnenumlauf:

Mehr

Dienstag, der 23. Oktober 2007

Dienstag, der 23. Oktober 2007 Sphärische Astronomie Constanze Rödig - croedig@physik.uni-wuerzburg.de Universität Würzburg Dienstag, der 23. Oktober 2007 Inhaltsübersicht 1 Einleitung: Geschichtliches 2 Die Koordinatensysteme Alt Az

Mehr

Klassenarbeit - Die Erde

Klassenarbeit - Die Erde Klassenarbeit - Die Erde 5. Klasse / Geografie Erdrotation; Erdbahn; Kontinente; Gradnetz; Karten; Polartag Aufgabe 1 Wie nennt man a) die Drehung der Erde um sich selbst und b) wie ihre Drehung um die

Mehr

Einführung in die Astronomie und Astrophysik I

Einführung in die Astronomie und Astrophysik I Einführung in die Astronomie und Astrophysik I Teil 2 Jochen Liske Hamburger Sternwarte jochen.liske@uni-hamburg.de Themen Einstieg: Was ist Astrophysik? Koordinatensysteme Astronomische Zeitrechnung Sonnensystem

Mehr

T E M P U S M U N D I H A N D B U C H

T E M P U S M U N D I H A N D B U C H TEMPUS MUNDI H A N D B U C H Zeitgleichungstafel Weltkarte Diopter (Sonne) Südmarke Zeitring Äquatorplatte Breitengradskala Bodenplatte Drehteller Wasserwaage Nivellierschraube Bild 1: TEMPUS MUNDI [2]

Mehr

Koordinatensysteme, Satellitenbahnen und Zeitmessungen

Koordinatensysteme, Satellitenbahnen und Zeitmessungen Koordinatensysteme, Satellitenbahnen und Zeitmessungen Dr. Thomas Schwotzer 10. April 2012 1 Kugelkoordinaten Die meisten von Ihnen werden mit kartesischen Koordinaten arbeiten. Diese gehen von einem n-dimensionalen

Mehr

Ausgabe 1 1. Mai Inhalt. MONDO - Zeit der Welt...[05] Aufstellung und Justierung...[08] Bedienung und Ablesen...[13] [03]

Ausgabe 1 1. Mai Inhalt. MONDO - Zeit der Welt...[05] Aufstellung und Justierung...[08] Bedienung und Ablesen...[13] [03] MONDO - Handbuch [02] Ausgabe 1 1. Mai 2004 Inhalt MONDO - Zeit der Welt.........[05] Aufstellung und Justierung......[08] Bedienung und Ablesen........[13] [03] BILD 1: MONDO [04] MONDO Zeit der Welt

Mehr

Die Sonnenscheibe von Frauenfeld

Die Sonnenscheibe von Frauenfeld Die Sonnenscheibe von Frauenfeld Kurzversion 1.00 vom 24. Januar 2009 / M. Gubler Was leistet die Sonnenscheibe? Mithilfe dieses Instrumentes kann der Benutzer für jeden Ort auf der Welt und für jeden

Mehr

Sphärische Trigonometrie

Sphärische Trigonometrie Spezialgebiet in Mathematik Sphärische Trigonometrie Von Christoph Saulder Inhalt Inhalt... 2 Historischer Hintergrund... 3 Grundlagen... 3 Großkreise... 3 Kugelzweiecke... 4 Kleinkreise... 4 Begriffe...

Mehr

Einführung in die Astronomie und Astrophysik I

Einführung in die Astronomie und Astrophysik I Einführung in die Astronomie und Astrophysik I Teil 2 Jochen Liske Fachbereich Physik Hamburger Sternwarte jochen.liske@uni-hamburg.de Themen Einstieg: Was ist Astrophysik? Koordinatensysteme Astronomische

Mehr

Station Trigonometrie des Fußballs - 3. Teil -

Station Trigonometrie des Fußballs - 3. Teil - Station Trigonometrie des Fußballs - 3. Teil - Aufgabenblätter Liebe Schülerinnen und Schüler! In dieser Laborstation werdet ihr die Formeln der Trigonometrie nicht nur anwenden, sondern auch damit spielen

Mehr

Der Sonne auf der Spur: Unser globaler "Sonnenstand-Anzeiger"

Der Sonne auf der Spur: Unser globaler Sonnenstand-Anzeiger Der Sonne auf der Spur: Unser globaler "Sonnenstand-Anzeiger" Ingo Mennerich, März 2018 Wo und wann steht die Sonne wie hoch und wo am Himmel? Wie hängt die Tages-/Nachtlänge mit dem Standort und der Jahreszeit

Mehr

x 1 x 2 a) Erläutern Sie den prinzipiellen Weg, wie man den Standort der Person aus den gegebenen Daten berechnen kann.

x 1 x 2 a) Erläutern Sie den prinzipiellen Weg, wie man den Standort der Person aus den gegebenen Daten berechnen kann. Lineare Algebra / Analytische Geometrie Leistungskurs Aufgabe 5: GPS Eine Person bestimmt ihre Position auf der Erdoberfläche mit Hilfe eines GPS-Gerätes. Dieser Vorgang soll in dieser Aufgabe prinzipiell

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.17 016/07/1 16:3:40 hk Exp $ 5 Sphärische Trigonometrie 5.5 Geographische Koordinaten Wir beschäftigen uns gerade mit der Berechnung des Weges zwischen zwei in geographischen Koordinaten

Mehr

Eine Sonnenuhr für den Hausgebrauch

Eine Sonnenuhr für den Hausgebrauch Eine Sonnenuhr für den Hausgebrauch von F.Ostermann, Liebigstraße 13, 50859 Köln, e-mail: Ostermann-fritz@t-online.de Im Sommer 2007 sah ich auf dem Sonnenuhrenweg in Röttingen eine Polaruhr (Abb.1). Abb.1

Mehr

Drehbare Himmelskarte Zu jeder Stunde wissen, wo die Sterne stehen Michael Feiler, Stephan Schurig Anleitung

Drehbare Himmelskarte Zu jeder Stunde wissen, wo die Sterne stehen Michael Feiler, Stephan Schurig Anleitung Drehbare Himmelskarte Zu jeder Stunde wissen, wo die Sterne stehen Michael Feiler, Stephan Schurig Anleitung 20. 1 2008 Aufbau der Sternkarte Das drehbare Deckblatt Geononius: erlaubt die genaue Einstellung

Mehr

Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung

Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung Udo Backhaus 14. Dezember 2004 1 Prinzip Die Messung der Astronomischen Einheit durch Kontaktzeitmessungen beim Venustransit

Mehr

Astronomie mit einer Sonnenuhr

Astronomie mit einer Sonnenuhr Astronomie mit einer Sonnenuhr Udo Backhaus, H Joachim Schlichting, Universität Osnabrück (aus: W Kuhn (Hrsg): Vorträge der Tagung der DPG 987 in Berlin, S 99) Einleitung Im Anschluss an den vorhergehenden

Mehr

Orientierung am (Nacht-)Himmel

Orientierung am (Nacht-)Himmel Orientierung am (Nacht-)Himmel Um Ordnung und Struktur in das Wirrwarr der vielen Sterne zu bekommen, wurden sie zu bestimmten Mustern, den Sternbildern zusammen gefasst. Ein Sternbild ist eine Gruppe

Mehr

3. Übung Astronomie Positionsbestimmung mit Hilfe des Standlinienverfahrens. Andreas Maus

3. Übung Astronomie Positionsbestimmung mit Hilfe des Standlinienverfahrens. Andreas Maus 3. Übung Astronomie Positionsbestimmung mit Hilfe des Standlinienverfahrens Andreas Maus 23. Juni 1999 Aufgabe: Es sind die Koordinaten (Länge λ und Breite φ) des Beobachtungsstandortes durch Messung von

Mehr

Jahreszeiten Gymnasien für Erwachsene - Haller 1

Jahreszeiten Gymnasien für Erwachsene - Haller 1 Jahreszeiten 30.11.2007 Gymnasien für Erwachsene - Haller 1 Kinderlieder "Es war eine Mutter. Die hatte vier Kinder: den Frühling, den Sommer, den Herbst und den Winter." "Der Frühling bringt Blumen, der

Mehr

Inhalt [1] CIELO - Himmlische Zeiten...[3] Zeitmessung mit der Sonne...[3] Zeitzonen...[4]

Inhalt [1] CIELO - Himmlische Zeiten...[3] Zeitmessung mit der Sonne...[3] Zeitzonen...[4] CIELO HANDBUCH Inhalt CIELO - Himmlische Zeiten..................[3] Zeitmessung mit der Sonne..............[3] Zeitzonen...........................[4] Einstellen und Ablesen der Sonnenuhr.........[5]

Mehr

Einführung in die Astronomie

Einführung in die Astronomie Einführung in die Astronomie Teil 1 Peter H. Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg part1.tex Einführung in die Astronomie Peter H. Hauschildt 21/10/2014

Mehr

Grundlagen und Bau einer Analemmatischen Sonnenuhr

Grundlagen und Bau einer Analemmatischen Sonnenuhr Grundlagen und Bau einer Analemmatischen Sonnenuhr Alexander Köhler 25. Januar 2006 Inhaltsverzeichnis 1 Einleitung 3 2 Astronomische Grundlagen 4 2.1 Die Himmelskugel............................... 4

Mehr

Unterrichtsprojekte Natur und Technik. Der Globus auf dem Schulhof, der begreifbar macht, warum es Sommer und Winter gibt

Unterrichtsprojekte Natur und Technik. Der Globus auf dem Schulhof, der begreifbar macht, warum es Sommer und Winter gibt Unterrichtsprojekte Natur und Technik Vinnhorster Weg 2 30419 Hannover Telefon: 0511-168-47665/7 Fax: 0511-168-47352 E-mail: schulbiologiezentrum@hannover-stadt.de Internet: www.schulbiologiezentrum-hannover.de

Mehr

Recap letzte Stunde. 1. Bedeutung der Astronomie in der An8ke 2. Änderung des Weltbildes im Laufe der Geschichte

Recap letzte Stunde. 1. Bedeutung der Astronomie in der An8ke 2. Änderung des Weltbildes im Laufe der Geschichte Recap letzte Stunde 1. Bedeutung der Astronomie in der An8ke 2. Änderung des Weltbildes im Laufe der Geschichte Geozentrisches Weltbild (Erde im MiFelpunkt) Heliozentrisches Weltbild (Sonne im MiFelpunkt)

Mehr

Der Flaschenglobus ein Freihandplanetarium Olaf Fischer Erfahrungen in der Arbeit mit dem Flaschenglobus belegen, dass die Grundlagen der sphärischen

Der Flaschenglobus ein Freihandplanetarium Olaf Fischer Erfahrungen in der Arbeit mit dem Flaschenglobus belegen, dass die Grundlagen der sphärischen Der Flaschenglobus ein Freihandplanetarium Olaf Fischer Erfahrungen in der Arbeit mit dem Flaschenglobus belegen, dass die Grundlagen der sphärischen Astronomie für Schüler durchaus kurzweilig und gut

Mehr

GPS - Anwendungen. im Zusammenhang mit satellitengestützter Ortung

GPS - Anwendungen. im Zusammenhang mit satellitengestützter Ortung im Zusammenhang mit satellitengestützter Ortung Gestalt der Erde und Darstellungsmöglichkeiten auf Karten : Die Erde hat annähernd Kugelform. Durch die Erdrotation entsteht eine Abplattung an den Polen

Mehr

ACHTUNG Eine oder mehrere Antworten können richtig sein!! 1. Welche der folgenden Möglichkeiten können zur Positionsbestimmung herangezogen werden?

ACHTUNG Eine oder mehrere Antworten können richtig sein!! 1. Welche der folgenden Möglichkeiten können zur Positionsbestimmung herangezogen werden? Name: F u N [ : m o b i l ] Q u i z 1 Datum: ACHTUNG Eine oder mehrere Antworten können richtig sein!! 1. Welche der folgenden Möglichkeiten können zur Positionsbestimmung herangezogen werden? a) F4 b)

Mehr

Die Ursachen des Unterschiedes von WOZ und MEZ

Die Ursachen des Unterschiedes von WOZ und MEZ Die Ursachen des Unterschiedes von WOZ und MEZ Wie man die Sonnenuhrzeit (WOZ) abliest und wie man mittels der Zeitkorrektur ZK aus ihr die Armbanduhrzeit (MEZ bzw. MESZ) umrechnet, ist in den Flyern hinreichend

Mehr

Astronomische Koordinaten und Orientierung am Sternenhimmel

Astronomische Koordinaten und Orientierung am Sternenhimmel Astronomie und Astrophysik Astronomische Koordinaten und Orientierung am Sternenhimmel von Andreas Schwarz Stand: 28.12.2017 1 0.0 Inhaltsverzeichnis 1.0 Einleitung...3 2.0 Astronomische Koordinaten...6

Mehr

Astronomie und Astrophysik II. SS 2005 a

Astronomie und Astrophysik II. SS 2005 a Astronomie und Astrophysik II SS 2005 a Christoph Berger / Frank Raupach RWTH-Aachen Physikalisches Institut Ib Email:frank.raupach@cern.ch Email:berger@physik.rwth-aachen.de July 7, 2005 a Institut Ib,

Mehr

Die Zeitgleichung. Joachim Gripp, Lindau bei Kiel

Die Zeitgleichung. Joachim Gripp, Lindau bei Kiel Die Zeitgleichung Joachim Gripp, Lindau bei Kiel Einleitung Den meisten Sonnenuhr- Freunden ist die Zeitgleichung gut bekannt. Sie ist als Unterschied zwischen der von einer Sonnenuhr angezeigten Sonnenzeit

Mehr

Berechnung der Zeitgleichung

Berechnung der Zeitgleichung Berechnung der Zeitgleichung Um eine Sonnenuhr berechnen zu können, muss man zu jedem Zeitpunkt den infallswinkel der Sonne relativ zur Äquatorebene (= Deklination δ) sowie den Winkel, um den sich die

Mehr

Ausgabe 1 1. Juli Inhalt. MAGELLAN - Entdecke die Zeit... [05] Aufstellen und Justieren... [08] Bedienen und Ablesen... [13] Wartung...

Ausgabe 1 1. Juli Inhalt. MAGELLAN - Entdecke die Zeit... [05] Aufstellen und Justieren... [08] Bedienen und Ablesen... [13] Wartung... MAGELLAN - Handbuch Ausgabe 1 1. Juli 2005 Inhalt MAGELLAN - Entdecke die Zeit... [05] Aufstellen und Justieren........ [08] Bedienen und Ablesen......... [13] Wartung................... [18] [] Bild

Mehr

Grundlagen der Astronomie und Astrophysik -Eine Gesamtdarstellung-

Grundlagen der Astronomie und Astrophysik -Eine Gesamtdarstellung- Astronomie und Astrophysik Grundlagen der Astronomie und Astrophysik -Eine Gesamtdarstellung- von Andreas Schwarz Stand: 28.02.2018 1 0 Vorwort Die Astronomie ist eine grundlegende Naturwissenschaft, welche

Mehr

Mein Sonnenuhren-Handbuch

Mein Sonnenuhren-Handbuch Mein Sonnenuhren-Handbuch Motivation Vom Arbeitskreis Sonnenuhren in der Deutschen Gesellschaft für Chronometrie (DGC) wurde das "Sonnenuhren-Handbuch" herausgegeben. "Mein Sonnenuhren-Handbuch" ist vorerst

Mehr

Die Entstehung der Jahreszeiten - dargestellt mit Geogebra 1

Die Entstehung der Jahreszeiten - dargestellt mit Geogebra 1 Jahreszeiten 1 Die Entstehung der Jahreszeiten - dargestellt mit Geogebra 1 Bevor die Entstehung der Jahreszeiten und die Umsetzung in der GeoGebra-Simulation beschrieben werden, sind hier zunächst noch

Mehr

Recap letzte Stunde. 1. Bedeutung der Astronomie in der An8ke 2. Änderung des Weltbildes im Laufe der Geschichte

Recap letzte Stunde. 1. Bedeutung der Astronomie in der An8ke 2. Änderung des Weltbildes im Laufe der Geschichte Recap letzte Stunde 1. Bedeutung der Astronomie in der An8ke 2. Änderung des Weltbildes im Laufe der Geschichte Geozentrisches Weltbild (Erde im MiFelpunkt) Heliozentrisches Weltbild (Sonne im MiFelpunkt)

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.4 2013/06/24 23:05:24 hk Exp hk $ 5 Sphärische Trigonometrie 5.2 Sphärische Dreiecksberechnung Wir behandeln gerade die Berechnung sphärischer Dreiecke und haben zu diesem Zweck bereits

Mehr

Schulbiologiezentrum Hannover

Schulbiologiezentrum Hannover Schulbiologiezentrum Hannover Vinnhorster Weg 2, 30419 Hannover Tel: 0511-168-47665/7 Fax: 0511-168-47352 Email : schulbiologiezentrum@hannover-stadt.de Unterrichtsprojekte Natur und Technik 19.35 Die

Mehr

Koordinatensysteme der Erde

Koordinatensysteme der Erde Koordinatensysteme der Erde Es gibt verschiedene Arten, die Position eines Punktes auf der Oberfläche einer Kugel (manchmal auch Sphäre genannt) darzustellen, jede hat ihre Vor-und Nachteile und ist für

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.18 216/7/15 18:27:28 hk Exp $ 5 Sphärische Trigonometrie 5.6 Berechnung der Tageslänge Wir beschäftigen uns gerade mit der Berechnung der Tageslänge. Wir betrachten momentan einen

Mehr

Ergebnisse zu einigen Aufgaben im Beitrag

Ergebnisse zu einigen Aufgaben im Beitrag Ergebnisse zu einigen Aufgaben im Beitrag Der Pendelquadrant Wegweiser der Nautik Florian Bade und Anne Väth Es werden die Lösungen zu den Aufgaben gegeben, die unabhängig von den Messungen beantwortet

Mehr

T E R R A H a n d b u c h

T E R R A H a n d b u c h TERRA Handbuch Ausgabe 1 1. September 2007 Inhalt TERRA Licht und Schatten......[05] Aufstellen und Justieren.........[07] Bedienen und Ablesen..........[12] [03] zum Zenit zum Himmelspol (Polarstern)

Mehr

2) Trage im Erdmittelpunkt an der zum HN zeigenden Drehachse den Winkel der geographischen Breite ab, hier für Schwäbisch Gmünd = 49

2) Trage im Erdmittelpunkt an der zum HN zeigenden Drehachse den Winkel der geographischen Breite ab, hier für Schwäbisch Gmünd = 49 Bestimmung der Tageslänge und des Auf- und Untergangspunkts der Sonne zur Zeit der Sommersonnenwende mit Hilfe einer Konstruktion im Himmelskugelmodell. 1) Zeichne die Himmelskugel mit dem Mittelpunkt

Mehr

3. Grundprinzipien der Sonnengeometrie

3. Grundprinzipien der Sonnengeometrie 3. Grundprinzipien der Sonnengeometrie Petros Axaopoulos, TEI - Athens Greece Lernziele Nach dem Durcharbeiten dieses Kapitels wird der Leser in der Lage sein: die geometrische Struktur zwischen Sonne

Mehr

Astronavigation

Astronavigation Astronavigation 1. Lektion: Nordsternbreite Der Nordstern steht genau über dem Nordpol (stimmt nicht, ich weiß, aber die Differenz ignorieren wir zunächst mal). Mit einem Sextanten misst man den Winkel

Mehr

Zeit Definitionen. UT = Universal Time (Weltzeit)

Zeit Definitionen.  UT = Universal Time (Weltzeit) Zeit Definitionen UT = Universal Time (eltzeit) astronomische eltzeit entspricht mittlerer onnenzeit des Nullmeridian gezählt von Mitternacht. in Maß für den Drehwinkel der rde. 24 h eltzeit = 360 rddrehung

Mehr

Die maßgeschneiderte drehbare Sternkarte

Die maßgeschneiderte drehbare Sternkarte Die maßgeschneiderte drehbare Sternkarte Drehbare Sternkarten sind die am häufigsten gebrauchten Orientierungshilfen für Beobachtungen des Sternenhimmels. Einfache drehbare Sternkarten sind jedoch nur

Mehr

Ortsbestimmung anhand der Sonne

Ortsbestimmung anhand der Sonne Ortsbestimmung anhand der Sonne Mit Patrick Lenz, damals Schüler der 7. Klasse, nahm ich mit diesem Thema am von der ESA ausgeschriebenen österreichweiten Projekt Sea & Space 1998 teil. Mit diesem Projekt

Mehr

Beobachtungsort Antarktis

Beobachtungsort Antarktis Beobachtungsort Antarktis Verkehrte Welt der Sternhimmel für Beobachter auf der Südhalbkugel Beobachter auf der Südhalbkugel der Erde werden nicht nur mit einem fremdartigen Sternenhimmel, sondern auch

Mehr

Sonnenuhren. Jürgen Giesen Frankenkamp 12 a 59514 Welver. E-Mail: juergen@giesen.dinet.de Web: http://www.giesen.dinet.de

Sonnenuhren. Jürgen Giesen Frankenkamp 12 a 59514 Welver. E-Mail: juergen@giesen.dinet.de Web: http://www.giesen.dinet.de Sonnenuhren 1. Geschichtliches...1 2. Bahn der Erde um die Sonne...1 2.1 Kepler-Ellipse...1 2.2 Schiefe der Ekliptik...2 2.3 Präzessionsbewegung der Erde...3 3. Zeitrechnung...4 3.1 Das Kalenderjahr...4

Mehr

% 5. Sonnenzeit, Zeitgleichung.

% 5. Sonnenzeit, Zeitgleichung. 14 Sonnenzeit, Zeitgleichung. 5 5. Die Auswahl, ob Erg. log sin oder cos zu nehmen ist, dann die Entscheidung über den Quadranten nach Maassgabe der Vorzeichen von Zähler und Nenner, wird genau ebenso

Mehr

Wahlpflichtunterricht Informatik/Astronomie Koordinatensysteme

Wahlpflichtunterricht Informatik/Astronomie Koordinatensysteme Wahlpflichtunterricht Informatik/Astronomie 2006-09 Koordinatensysteme Eckart Modrow Max-Planck-Gymnasium Göttingen Koordinatensysteme eite 2 Inhalt: 1. Erdkoordinaten 2. Aufgaben 3. Die Bestimmung der

Mehr

Foster-Lambert-Sonnenuhr und analemmatische Sonnenuhr

Foster-Lambert-Sonnenuhr und analemmatische Sonnenuhr Foster-Lambert-Sonnenuhr und analemmatische Sonnenuhr Im Februar 20 wurde in diesem Blog die Bastelanleitung für eine polare Foster-Lambert- Sonnenuhr (auch rektilineare Sonnenuhr genannt) veröffentlicht,

Mehr

Wo finde ich die Planeten?

Wo finde ich die Planeten? Das Sonnensystem Wo finde ich die Planeten in einer Sternkarte? Tabellen mit Koordinatenangaben für alle Planeten Wo finde ich die Planeten? Ephemeridentabellen für alle Planeten bis ins Jahr 2030 Diese

Mehr

9 ANHANG 4: UMBRA DOCET. DER SCHATTEN LEHRT?

9 ANHANG 4: UMBRA DOCET. DER SCHATTEN LEHRT? 9 ANHANG 4: UMBRA DOCET. DER SCHATTEN LEHRT? 9.4 Iindividuelle Leistungen: Ein naturwissenschaftlich und v. a. mathematisch interessierter Schüler entdeckte schon bald nach Projektbeginn seine Vorliebe

Mehr

Etwas Theorie. weiter bewegt, muss sie sich von einem Mittag bis zum darauf folgenden um etwas mehr als 360 drehen - und dafür

Etwas Theorie. weiter bewegt, muss sie sich von einem Mittag bis zum darauf folgenden um etwas mehr als 360 drehen - und dafür Unterricht Der Sonnenlauf im Ver a es Jahres von Udo Backhaus Der Lauf der Sonne über den Himmel ist so regelmäßig, dass er - mit Sonnenuhren - benutzt wird, um die Zeit zu messen: Allerdings kann man

Mehr

Klassenarbeit - Die Erde

Klassenarbeit - Die Erde Klassenarbeit - Die Erde 5. Klasse / Geografie Gradnetz; Kontinente; Weltbilder; Sonnensystem; Ozeane; Karten Aufgabe 1 Ergänze den Text zum Gradnetz der Erde! Damit wir uns auf der Erde orientieren können,

Mehr

Beobachtungen am Himmel

Beobachtungen am Himmel Einführung in die Astronomie Beobachtungen am Himmel Die Sterne am Himmel können genau so wie die Orte auf der Erde auf einen Globus oder auf Karten übertragen werden. Auf der Himmelskugel, die wir quasi

Mehr

GK Physik 13 Astronomie

GK Physik 13 Astronomie GK Physik 13 Astronomie Richard Reindl 1998-2002 Die aktuellste Version des Skriptes findet man unter http://www.stbit.de Das Werk steht unter einer Creative Commons - Namensnennung - Nicht-kommerziell

Mehr

1. Übung Astronomie Ephemeridenberechnung. Andreas Maus

1. Übung Astronomie Ephemeridenberechnung. Andreas Maus 1. Übung Astronomie Ephemeridenberechnung Andreas Maus 25. Mai 1998 Aufgabe: Aus dem für Äquinox und Epoche J2000.0 gegebenen mittleren Örter (α 0, δ 0 ) eines Sterns und dessen Eigenbewegung (µ α, µ δ

Mehr