Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens

Größe: px
Ab Seite anzeigen:

Download "Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens"

Transkript

1 Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg

2 Allgemeine Problemstellung Eingabe System Ausgabe System soll lernen, die richtigen Entscheidungen für seine Ausgaben zu treffen. Beispiele: Schach-Agent Eingabe: Zustandsbeschreibung Ausgabe: nächste Aktion Fortbewegungsmittel-Erkennung Eingabe: Sensorwerte Ausgabe: Fortbewegungsmittel Zeitwert-Schätzung Eingabe: Angaben zum Auto (Alter, km,... ) Ausgabe: geschätzter Preis 2 / 10

3 Allgemeine Problemstellung Eingabe System Ausgabe System soll lernen, die richtigen Entscheidungen für seine Ausgaben zu treffen. Beispiele: Schach-Agent Eingabe: Zustandsbeschreibung Ausgabe: nächste Aktion Fortbewegungsmittel-Erkennung Eingabe: Sensorwerte Ausgabe: Fortbewegungsmittel Zeitwert-Schätzung Eingabe: Angaben zum Auto (Alter, km,... ) Ausgabe: geschätzter Preis 2 / 10

4 Arten des maschinellen Lernens Was ist die richtige Entscheidung? Überwachtes (supervised) Lernen Lernen aus Beispielen Lehrer gibt Beispiele mit bekannter Lösung vor Unüberwachtes (unsupervised) Lernen Lernen durch Entdecken Betrachte Beispiele (Lösung unbekannt) und lerne etwas daraus Verstärkendes (reinforcement) Lernen Lernen aus Erfahrung Lösung bleibt unbekannt, aber: indirekte Bewertung der Entscheidungen im Nachhinein anhand Erfolg/Mißerfolg 3 / 10

5 Arten des maschinellen Lernens Was ist die richtige Entscheidung? Überwachtes (supervised) Lernen Lernen aus Beispielen Lehrer gibt Beispiele mit bekannter Lösung vor Unüberwachtes (unsupervised) Lernen Lernen durch Entdecken Betrachte Beispiele (Lösung unbekannt) und lerne etwas daraus Verstärkendes (reinforcement) Lernen Lernen aus Erfahrung Lösung bleibt unbekannt, aber: indirekte Bewertung der Entscheidungen im Nachhinein anhand Erfolg/Mißerfolg 3 / 10

6 Arten des maschinellen Lernens Was ist die richtige Entscheidung? Überwachtes (supervised) Lernen Lernen aus Beispielen Lehrer gibt Beispiele mit bekannter Lösung vor Unüberwachtes (unsupervised) Lernen Lernen durch Entdecken Betrachte Beispiele (Lösung unbekannt) und lerne etwas daraus Verstärkendes (reinforcement) Lernen Lernen aus Erfahrung Lösung bleibt unbekannt, aber: indirekte Bewertung der Entscheidungen im Nachhinein anhand Erfolg/Mißerfolg 3 / 10

7 Arten des maschinellen Lernens Was ist die richtige Entscheidung? Überwachtes (supervised) Lernen Lernen aus Beispielen Lehrer gibt Beispiele mit bekannter Lösung vor Unüberwachtes (unsupervised) Lernen Lernen durch Entdecken Betrachte Beispiele (Lösung unbekannt) und lerne etwas daraus Verstärkendes (reinforcement) Lernen Lernen aus Erfahrung Lösung bleibt unbekannt, aber: indirekte Bewertung der Entscheidungen im Nachhinein anhand Erfolg/Mißerfolg 3 / 10

8 Eingabe (Endliche) Menge an Attribut-Wert-Paaren Diese beschreiben i.d.r. Objekt/Situation Merkmale (z.b. Farbe, Größe, Gewicht) können verschiedene Ausprägungen haben endlich viele verschiedene Ausprägungen (nominal) (z.b. Farbe = rot, grün, blau, gelb, orange) unendlich viele verschiedene Ausprägungen (numerisch) (z.b. Größe = Größenabgabe in cm) 4 / 10

9 Eingabe Annahmen: Nur potentiell für die Entscheidung relevante Attribute (Selektion) keine Rohwerte, sondern möglichst informativ aufbereitet (Interpretation/Abstraktion) Diese Auswahl und Vorverarbeitung der Merkmale wird oft durch den Menschen vorgegeben kann aber auch als separates Lernproblem formuliert werden 5 / 10

10 Ausgabe Trainingsbeispiele gelerntes Modell (Funktion 0.5*x+1) numerisch Funktionenlernen AUSGABE EINGABE Klasse_1 Klasse_2 nominal Klassifikation EINGABE EINGABE 1 6 / 10

11 Wie wird gelernt? Generalisierung Wann war das Lernen erfolgreich? Lernen optimiert hinsichtlich der gelernten Beispiele Maßgeblich: Erfolgreiche Behandlung künftiger (ungesehener) Eingaben Evaluierung nötig Generalisierungsfähigkeit: Lernen der Zusammenhänge statt Auswendiglernen 7 / 10

12 8 / 10 KISEM WS 2013/14 Wie wird gelernt? Überwachtes Lernen Vorgehen beim überwachten Lernen: 1. Lernphase Beispiele Trainieren (Trainingsdaten) eines Modells 2. Evaluierung Zusätzliche Beispiele Testen (Testdaten) des Modells Wichtig: Strikte Trennung von Trainings- und Testdaten (z.b. Aufteilung 80/20), um unabhängige Evaluierung zu gewährleisten Generalisierungsfähigkeit: Erfolgsrate auf Testdaten ähnlich hoch wie auf Trainingsdaten

13 9 / 10 KISEM WS 2013/14 Wie wird gelernt? Erweiterung Meta-Lernen (Lernen des richtigen Modells/Lernverfahrens): 1. Lernphase Beispiele Trainieren unter- (Trainingsdaten) schiedlicher Modelle mit unterschiedlichen Lernverfahren 2. Auswahl Zusätzliche Beispiele Auswahl des (Entwicklungs- besten Modells Testdaten) 3. Evaluierung Weitere zusätzliche Testen des Beispiele (Testdaten) gewählten Modells Wichtig auch hier: Strikte Trennung der 3 Daten-Teilmengen

14 Wie wird gelernt? Bekannte Modelle Funktionenlernen: Regression Neuronale Netze Klassifikation: fallbasiert (z.b. Nearest-Neighbor) Ähnlichkeit zu Prototypen regelbasiert (z.b. Entscheidungsbäume) stochastisch (z.b. Bayes, Naive Bayes) funktional (z.b. Neuronale Netze) Unüberwachtes Klassenlernen: k-means-clustering EM-Clustering 10 / 10

Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens

Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 17.04.2015 Entscheidungsprobleme beim Textmining

Mehr

Seminar Text- und Datamining Datamining-Grundlagen

Seminar Text- und Datamining Datamining-Grundlagen Seminar Text- und Datamining Datamining-Grundlagen Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 23.05.2013 Gliederung 1 Klassifikationsprobleme 2 Evaluation

Mehr

Seminar Künstliche Intelligenz Wintersemester 2014/15

Seminar Künstliche Intelligenz Wintersemester 2014/15 Seminar Wintersemester 2014/15 Martin Hacker Richard Schaller Department Informatik FAU Erlangen-Nürnberg 8.10.2014 Vorstellung Über die Dozenten Institution Lehrstuhl für 2 / 7 2 / 7 KISEM WS 2014/15

Mehr

Maschinelles Lernen I Einführung. Uwe Reichel IPS, LMU München 22. April 2008

Maschinelles Lernen I Einführung. Uwe Reichel IPS, LMU München 22. April 2008 Maschinelles Lernen I Einführung Uwe Reichel IPS, LMU München reichelu@phonetik.uni-muenchen.de 22. April 2008 Inhalt Einführung Lernen Maschinelle Lernverfahren im Überblick Phonetische Anwendungsbeispiele

Mehr

1. Lernen von Konzepten

1. Lernen von Konzepten 1. Lernen von Konzepten Definition des Lernens 1. Lernen von Konzepten Lernziele: Definitionen des maschinellen Lernens kennen, Klassifikationen des maschinellen Lernens kennen, Das Prinzip des induktiven

Mehr

Inhalt. 4.1 Motivation. 4.2 Evaluation. 4.3 Logistische Regression. 4.4 k-nächste Nachbarn. 4.5 Naïve Bayes. 4.6 Entscheidungsbäume

Inhalt. 4.1 Motivation. 4.2 Evaluation. 4.3 Logistische Regression. 4.4 k-nächste Nachbarn. 4.5 Naïve Bayes. 4.6 Entscheidungsbäume 4. Klassifikation Inhalt 4.1 Motivation 4.2 Evaluation 4.3 Logistische Regression 4.4 k-nächste Nachbarn 4.5 Naïve Bayes 4.6 Entscheidungsbäume 4.7 Support Vector Machines 4.8 Neuronale Netze 4.9 Ensemble-Methoden

Mehr

Einführung in das Maschinelle Lernen I

Einführung in das Maschinelle Lernen I Einführung in das Maschinelle Lernen I Vorlesung Computerlinguistische Techniken Alexander Koller 26. Januar 2015 Maschinelles Lernen Maschinelles Lernen (Machine Learning): äußerst aktiver und für CL

Mehr

Vorlesung Digitale Bildverarbeitung Sommersemester 2013

Vorlesung Digitale Bildverarbeitung Sommersemester 2013 Vorlesung Digitale Bildverarbeitung Sommersemester 2013 Sebastian Houben (Marc Schlipsing) Institut für Neuroinformatik Inhalt Crash-Course in Machine Learning Klassifikationsverfahren Grundsätzliches

Mehr

Maschinelles Lernen II

Maschinelles Lernen II Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen II Niels Landwehr Organisation Vorlesung/Übung 4 SWS. Ort: 3.01.2.31. Termin: Vorlesung: Dienstag, 10:00-11:30.

Mehr

Entscheidungsbäume. Minh-Khanh Do Erlangen,

Entscheidungsbäume. Minh-Khanh Do Erlangen, Entscheidungsbäume Minh-Khanh Do Erlangen, 11.07.2013 Übersicht Allgemeines Konzept Konstruktion Attributwahl Probleme Random forest E-Mail Filter Erlangen, 11.07.2013 Minh-Khanh Do Entscheidungsbäume

Mehr

Data Mining - Wiederholung

Data Mining - Wiederholung Data Mining - Wiederholung Norbert Fuhr 18. Januar 2006 Problemstellungen Problemstellungen Daten vs. Information Def. Data Mining Arten von strukturellen Beschreibungen Regeln (Klassifikation, Assoziations-)

Mehr

Mustererkennung und Klassifikation

Mustererkennung und Klassifikation Mustererkennung und Klassifikation WS 2007/2008 Fakultät Informatik Technische Informatik Prof. Dr. Matthias Franz mfranz@htwg-konstanz.de www-home.htwg-konstanz.de/~mfranz/heim.html Grundlagen Überblick

Mehr

DOKUMENTENKLASSIFIKATION MIT MACHINE LEARNING

DOKUMENTENKLASSIFIKATION MIT MACHINE LEARNING DOKUMENTENKLASSIFIKATION MIT MACHINE LEARNING Andreas Nadolski Softwareentwickler andreas.nadolski@enpit.de Twitter: @enpit Blogs: enpit.de/blog medium.com/enpit-developer-blog 05.10.2018, DOAG Big Data

Mehr

Seminar MAMMAMIA WS 2012/13 Literaturrecherche

Seminar MAMMAMIA WS 2012/13 Literaturrecherche Seminar MAMMAMIA WS 2012/13 Literaturrecherche Richard Schaller Martin Hacker Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 15.11.2012 Gliederung 1 Wie finde ich relevante Literatur?

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Deep Learning (II) Nico Piatkowski und Uwe Ligges Informatik Künstliche Intelligenz 25.07.2017 1 von 14 Überblick Faltungsnetze Dropout Autoencoder Generative Adversarial

Mehr

Einführung. Einführung in die Methoden der Künstlichen Intelligenz. Maschinelles Lernen. Lernen und Agenten. Beispiele

Einführung. Einführung in die Methoden der Künstlichen Intelligenz. Maschinelles Lernen. Lernen und Agenten. Beispiele Einführung Einführung in die Methoden der Künstlichen Intelligenz Maschinelles Lernen Dr. David Sabel WS 2012/13 Direkte Programmierung eines intelligenten Agenten nicht möglich (bisher) Daher benötigt:

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB. Überwachtes Lernen: Entscheidungsbäume

INTELLIGENTE DATENANALYSE IN MATLAB. Überwachtes Lernen: Entscheidungsbäume INTELLIGENTE DATENANALYSE IN MATLAB Überwachtes Lernen: Entscheidungsbäume Literatur Stuart Russell und Peter Norvig: Artificial Intelligence. Andrew W. Moore: http://www.autonlab.org/tutorials. 2 Überblick

Mehr

Mathematische Grundlagen III

Mathematische Grundlagen III Mathematische Grundlagen III Maschinelles Lernen III: Clustering Vera Demberg Universität des Saarlandes 7. Juli 202 Vera Demberg (UdS) Mathe III 7. Juli 202 / 35 Clustering vs. Klassifikation In den letzten

Mehr

Einführung i.d. Wissensverarbeitung

Einführung i.d. Wissensverarbeitung Einführung in die Wissensverarbeitung 2 VO 708.560 + 1 UE 442.072 SS 2012 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at Institut für Grundlagen der

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen Unüberwachtes

Mehr

Maschinelles Lernen. Moderne Methoden der KI: Maschinelles Lernen. Definitionen: Was ist Lernen? Definitionen: Was ist Lernen? 1.

Maschinelles Lernen. Moderne Methoden der KI: Maschinelles Lernen. Definitionen: Was ist Lernen? Definitionen: Was ist Lernen? 1. Moderne Methoden der KI: Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung Sommer-Semester 2007 1. Einführung: Definitionen Grundbegriffe Lernsysteme Lernen: Grundbegriffe Lernsysteme Konzept-Lernen Entscheidungsbäume

Mehr

Gefühl*** vorher / nachher. Situation* Essen (was und wie viel?) Ess- Motiv** Tag Datum Frühstück Zeit: Allgemeines Befinden

Gefühl*** vorher / nachher. Situation* Essen (was und wie viel?) Ess- Motiv** Tag Datum Frühstück Zeit: Allgemeines Befinden Name: Größe: cm Gewicht: kg Alter: Jahre Situation* Essen Ess- Situation* Essen Ess- Situation* Essen Ess- Situation* Essen Ess- Situation* Essen Ess- Situation* Essen Ess- Situation* Essen Ess- Situation*

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Überwachtes Lernen: Entscheidungsbäume Literatur Stuart Russell und Peter Norvig: Artificial i Intelligence. Andrew W. Moore: http://www.autonlab.org/tutorials. 2 Überblick

Mehr

Reinforcement Learning

Reinforcement Learning Reinforcement Learning 1. Allgemein Reinforcement Learning 2. Neuronales Netz als Bewertungsfunktion 3. Neuronales Netz als Reinforcement Learning Nils-Olaf Bösch 1 Allgemein Reinforcement Learning Unterschied

Mehr

Diskriminatives syntaktisches Reranking für SMT

Diskriminatives syntaktisches Reranking für SMT Diskriminatives syntaktisches Reranking für SMT Fortgeschrittene Themen der statistischen maschinellen Übersetzung Janina Nikolic 2 Agenda Problem: Ranking des SMT Systems Lösung: Reranking-Modell Nutzung

Mehr

Moderne Methoden der KI: Maschinelles Lernen

Moderne Methoden der KI: Maschinelles Lernen Moderne Methoden der KI: Maschinelles Lernen Prof. Dr.Hans-Dieter Burkhard Vorlesung Sommer-Semester 2008 Konzept-Lernen Konzept-Lernen Lernen als Suche Inductive Bias Konzept-Lernen: Problemstellung Ausgangspunkt:

Mehr

Machine Learning & Künstliche Intelligenz

Machine Learning & Künstliche Intelligenz Dr. med. Christina Czeschik Serapion www.serapion.de Machine Learning & Künstliche Intelligenz Eine kurze Einführung Künstliche Intelligenz intelligent nutzen Essen, 08.06.2018 Künstliche Intelligenz Turing-Test

Mehr

Einführung in die Methoden der Künstlichen Intelligenz. Maschinelles Lernen

Einführung in die Methoden der Künstlichen Intelligenz. Maschinelles Lernen Einführung in die Methoden der Künstlichen Intelligenz Maschinelles Lernen Dr. David Sabel WS 2012/13 Stand der Folien: 14. Februar 2013 Einführung Direkte Programmierung eines intelligenten Agenten nicht

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Hypothesenbewertung Christoph Sawade/Niels Landwehr Dominik Lahmann Tobias Scheffer Überblick Hypothesenbewertung, Risikoschätzung

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB. Zusammenfassung

INTELLIGENTE DATENANALYSE IN MATLAB. Zusammenfassung INTELLIGENTE DATENANALYSE IN MATLAB Zusammenfassung Überwachtes Lernen Gegeben: Trainingsdaten mit bekannten Zielattributen (gelabelte Daten). Eingabe: Instanz (Objekt, Beispiel, Datenpunkt, Merkmalsvektor)

Mehr

Maschinelles Lernen. mit und. Effizienz steigern in Massenprozessen. Jan Schinnerling. eworld 2019 Maschinelles Lernen

Maschinelles Lernen. mit und. Effizienz steigern in Massenprozessen. Jan Schinnerling. eworld 2019 Maschinelles Lernen Maschinelles Lernen mit und Effizienz steigern in Massenprozessen Jan Schinnerling eworld 2019 Maschinelles Lernen Was ist maschinelles Lernen? 2 Grundidee: einem System durch Beispieldaten eine Fähigkeit

Mehr

Learning to Optimize Mobile Robot Navigation Based on HTN Plans

Learning to Optimize Mobile Robot Navigation Based on HTN Plans Learning to Optimize Mobile Robot Navigation Based on HTN Plans lernen Betreuer: Freek Stulp Hauptseminar Intelligente Autonome Systeme (WiSe 2004/05) Forschungs- und Lehreinheit Informatik IX 8. Dezember

Mehr

Semestralklausur zur Vorlesung. Web Mining. Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7.

Semestralklausur zur Vorlesung. Web Mining. Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7. Semestralklausur zur Vorlesung Web Mining Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7. 2004 Name: Vorname: Matrikelnummer: Fachrichtung: Punkte: (1).... (2)....

Mehr

Artificial Intelligence. Was ist das? Was kann das?

Artificial Intelligence. Was ist das? Was kann das? Artificial Intelligence Was ist das? Was kann das? Olaf Erichsen Tech-Day Hamburg 13. Juni 2017 Sehen wir hier bereits Künstliche Intelligenz (AI)? Quelle: www.irobot.com 2017 Hierarchie der Buzzwords

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Modellevaluierung. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Modellevaluierung. Niels Landwehr Universität Potsdam Institut für Informatik ehrstuhl Maschinelles ernen Modellevaluierung Niels andwehr ernen und Vorhersage Klassifikation, Regression: ernproblem Eingabe: Trainingsdaten Ausgabe: Modell

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Semestralklausur zur Vorlesung Maschinelles Lernen: Symbolische Ansätze Prof. J. Fürnkranz / Dr. G. Grieser Technische Universität Darmstadt Wintersemester 2005/06 Termin: 23. 2. 2006 Name: Vorname: Matrikelnummer:

Mehr

Data Mining und Maschinelles Lernen Lösungsvorschlag für das 1. Übungsblatt

Data Mining und Maschinelles Lernen Lösungsvorschlag für das 1. Übungsblatt Data Mining und Maschinelles Lernen Lösungsvorschlag für das 1. Übungsblatt Knowledge Engineering Group Data Mining und Maschinelles Lernen Lösungsvorschlag 1. Übungsblatt 1 1. Anwendungsszenario Überlegen

Mehr

Einführung i.d. Wissensverarbeitung

Einführung i.d. Wissensverarbeitung Einführung in die Wissensverarbeitung 2 VO 708.560 + 1 UE 442.072 SS 2013 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at Institut für Grundlagen der

Mehr

Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern

Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern Chahine Abid Bachelor Arbeit Betreuer: Prof. Johannes Fürnkranz Frederik Janssen 28. November 2013 Fachbereich Informatik Fachgebiet Knowledge

Mehr

Semiüberwachte Paarweise Klassifikation

Semiüberwachte Paarweise Klassifikation Semiüberwachte Paarweise Klassifikation Andriy Nadolskyy Bachelor-Thesis Betreuer: Prof. Dr. Johannes Fürnkranz Dr. Eneldo Loza Mencía 1 Überblick Motivation Grundbegriffe Einleitung Übersicht der Verfahren

Mehr

Kapitel 10. Maschinelles Lernen Lineare Regression. Welche Gerade? Problemstellung. Th. Jahn. Sommersemester 2017

Kapitel 10. Maschinelles Lernen Lineare Regression. Welche Gerade? Problemstellung. Th. Jahn. Sommersemester 2017 10.1 Sommersemester 2017 Problemstellung Welche Gerade? Gegeben sind folgende Messungen: Masse (kg) 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Kraft (N) 1.6 2.2 3.2 3.0 4.9 5.7 7.1 7.3 8.1 Annahme: Es gibt eine Funktion

Mehr

Künstliche neuronale Netze

Künstliche neuronale Netze Künstliche neuronale Netze Sibylle Schwarz Westsächsische Hochschule Zwickau Dr. Friedrichs-Ring 2a, RII 263 http://wwwstud.fh-zwickau.de/~sibsc/ sibylle.schwarz@fh-zwickau.de SS 2011 1 Softcomputing Einsatz

Mehr

Konzepte der AI: Maschinelles Lernen

Konzepte der AI: Maschinelles Lernen Konzepte der AI: Maschinelles Lernen Nysret Musliu, Wolfgang Slany Abteilung für Datenbanken und Artificial Intelligence Institut für Informationssysteme, TU-Wien Übersicht Was ist Lernen? Wozu maschinelles

Mehr

Website. Vorlesung Statistisches Lernen. Dozenten. Termine. Einheit 1: Einführung

Website. Vorlesung Statistisches Lernen. Dozenten. Termine. Einheit 1: Einführung Website Vorlesung Statistisches Lernen Einheit 1: Einführung Dr. rer. nat. Christine Pausch Institut für Medizinische Informatik, Statistik und Epidemiologie Universität Leipzig (Aktuelle) Informationen

Mehr

Vorlesung Statistisches Lernen

Vorlesung Statistisches Lernen Vorlesung Statistisches Lernen Einheit 1: Einführung Dr. rer. nat. Christine Pausch Institut für Medizinische Informatik, Statistik und Epidemiologie Universität Leipzig WS 2014/2015 1 / 20 Organisatorisches

Mehr

Bachelorarbeit Erkennung von Fließtext in PDF-Dokumenten

Bachelorarbeit Erkennung von Fließtext in PDF-Dokumenten Bachelorarbeit Erkennung von Fließtext in PDF-Dokumenten 16.08.2016 David Spisla Albert Ludwigs Universität Freiburg Technische Fakultät Institut für Informatik Gliederung Motivation Schwierigkeiten bei

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Maschinelles Lernen: Symbolische Ansätze Wintersemester 2009/2010 Musterlösung für das 1. Übungsblatt Aufgabe 1: Anwendungsszenario Überlegen Sie sich ein neues Szenario des klassifizierenden Lernens (kein

Mehr

Grundlagen Neuronaler Netze

Grundlagen Neuronaler Netze Grundlagen Neuronaler Netze Neuronen, Aktivierung, Output, Netzstruktur, Lernziele, Training, Grundstruktur Der Begriff neuronales Netz(-werk) steht immer für künstliche neuronale Netzwerke, wenn nicht

Mehr

Neuronale Netze Aufgaben 3

Neuronale Netze Aufgaben 3 Neuronale Netze Aufgaben 3 martin.loesch@kit.edu (0721) 608 45944 MLNN IN FLOOD3 2 Multi Layer Neural Network (MLNN) Netzaufbau: mehrere versteckte (innere) Schichten Lernverfahren: Backpropagation-Algorithmus

Mehr

Entwicklung einer Anwendung zur Erkennung von Täuschungsversuchen

Entwicklung einer Anwendung zur Erkennung von Täuschungsversuchen Entwicklung einer Anwendung zur Erkennung von Täuschungsversuchen Theoretische Ausarbeitung Miriam Friedrich Matr.-Nr.: 3062857 1. Prüfer: Prof. Dr. rer. nat. Alexander Voß 2. Prüfer: Bastian Küppers,

Mehr

Künstliche Neuronale Netze

Künstliche Neuronale Netze Fakultät Informatik, Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Künstliche Neuronale Netze Hauptseminar Martin Knöfel Dresden, 16.11.2017 Gliederung

Mehr

Motivation. Klassifikationsverfahren sagen ein abhängiges nominales Merkmal anhand einem oder mehrerer unabhängiger metrischer Merkmale voraus

Motivation. Klassifikationsverfahren sagen ein abhängiges nominales Merkmal anhand einem oder mehrerer unabhängiger metrischer Merkmale voraus 3. Klassifikation Motivation Klassifikationsverfahren sagen ein abhängiges nominales Merkmal anhand einem oder mehrerer unabhängiger metrischer Merkmale voraus Beispiel: Bestimme die Herkunft eines Autos

Mehr

Modellierung. Entscheidungsbäume, ume, Boosting, Metalerner, Random Forest. Wolfgang Konen Fachhochschule Köln Oktober 2007.

Modellierung. Entscheidungsbäume, ume, Boosting, Metalerner, Random Forest. Wolfgang Konen Fachhochschule Köln Oktober 2007. Modellierung Entscheidungsbäume, ume, Boosting, Metalerner, Random Forest Wolfgang Konen Fachhochschule Köln Oktober 2007 W. Konen DMC WS2007 Seite - 1 W. Konen DMC WS2007 Seite - 2 Inhalt Typen der Modellierung

Mehr

Data Mining - Wiederholung

Data Mining - Wiederholung Data Mining - Wiederholung Norbert Fuhr 9. Juni 2008 Problemstellungen Problemstellungen Daten vs. Information Def. Data Mining Arten von strukturellen Beschreibungen Regeln (Klassifikation, Assoziations-)

Mehr

Modellierung mit künstlicher Intelligenz

Modellierung mit künstlicher Intelligenz Samuel Kost kosts@mailbox.tu-freiberg.de Institut für Numerische Mathematik und Optimierung Modellierung mit künstlicher Intelligenz Ein Überblick über existierende Methoden des maschinellen Lernens 13.

Mehr

Übersicht. Definition Daten Problemklassen Fehlerfunktionen

Übersicht. Definition Daten Problemklassen Fehlerfunktionen Übersicht 1 Maschinelle Lernverfahren Definition Daten Problemklassen Fehlerfunktionen 2 Entwickeln von maschinellen Lernverfahren Aufteilung der Daten Underfitting und Overfitting Erkennen Regularisierung

Mehr

1 Einleitung. 2 Clustering

1 Einleitung. 2 Clustering Lernende Vektorquantisierung (LVQ) und K-Means-Clustering David Bouchain Proseminar Neuronale Netze Kurs-Nr.: CS4400 ISI WS 2004/05 david@bouchain.de 1 Einleitung Im Folgenden soll zum einen ein Überblick

Mehr

Kapitel 4: Data Mining

Kapitel 4: Data Mining LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2017 Kapitel 4: Data Mining Vorlesung:

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Aufgaben der letzten Stunde Übersicht Neuronale Netze Motivation Perzeptron Multilayer

Mehr

Klassifikation im Bereich Musik

Klassifikation im Bereich Musik Klassifikation im Bereich Musik Michael Günnewig 30. Mai 2006 Michael Günnewig 1 30. Mai 2006 Inhaltsverzeichnis 1 Was ist eine Klassifikation? 3 1.1 Arten und Aufbau von Klassifikationen.................

Mehr

Data Mining und maschinelles Lernen

Data Mining und maschinelles Lernen Data Mining und maschinelles Lernen Einführung und Anwendung mit WEKA Caren Brinckmann 16. August 2000 http://www.coli.uni-sb.de/~cabr/vortraege/ml.pdf http://www.cs.waikato.ac.nz/ml/weka/ Inhalt Einführung:

Mehr

Neuronale Netze in der Phonetik: Grundlagen. Pfitzinger, Reichel IPSK, LMU München {hpt 24.

Neuronale Netze in der Phonetik: Grundlagen. Pfitzinger, Reichel IPSK, LMU München {hpt 24. Neuronale Netze in der Phonetik: Grundlagen Pfitzinger, Reichel IPSK, LMU München {hpt reichelu}@phonetik.uni-muenchen.de 24. Mai 2006 Inhalt Einführung Maschinelles Lernen Lernparadigmen Maschinelles

Mehr

Übersicht. Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 1

Übersicht. Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 1 Übersicht I Künstliche Intelligenz II Problemlösen III Wissen und Schlußfolgern IV Logisch Handeln V Unsicheres Wissen und Schließen VI Lernen 18. Lernen aus Beobachtungen 19. Wissen beim Lernen 20. Statistische

Mehr

Ridge Regression und Kernalized Support Vector Machines : Einführung und Vergleich an einem Anwendungsbeispiel

Ridge Regression und Kernalized Support Vector Machines : Einführung und Vergleich an einem Anwendungsbeispiel Ridge Regression und Kernalized Support Vector Machines : Einführung und Vergleich an einem Anwendungsbeispiel Dr. Dominik Grimm Probelehrveranstaltung Fakultät für Informatik und Mathematik Hochschule

Mehr

Validation Model Selection Kreuz-Validierung Handlungsanweisungen. Validation. Oktober, von 20 Validation

Validation Model Selection Kreuz-Validierung Handlungsanweisungen. Validation. Oktober, von 20 Validation Validation Oktober, 2013 1 von 20 Validation Lernziele Konzepte des maschinellen Lernens Validierungsdaten Model Selection Kreuz-Validierung (Cross Validation) 2 von 20 Validation Outline 1 Validation

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Vorlesung Wissensentdeckung Klassifikation und Regression: nächste Nachbarn Katharina Morik, Uwe Ligges 14.05.2013 1 von 24 Gliederung Funktionsapproximation 1 Funktionsapproximation Likelihood 2 Kreuzvalidierung

Mehr

Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell

Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell Dept. Informatik 8 (Künstliche Intelligenz) Friedrich-Alexander-Universität Erlangen-Nürnberg (Informatik 8) Klassifikation von Texten Teil

Mehr

Seminar Künstliche Intelligenz Wintersemester 2013/14

Seminar Künstliche Intelligenz Wintersemester 2013/14 Seminar Künstliche Intelligenz Wintersemester 2013/14 Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 31.10.2013 2 / 13 Überblick Teilgebiete der KI Problemlösen,

Mehr

Vorlesung. Data und Web Mining. Kurzinformation zur. Univ.-Prof. Dr. Ralph Bergmann. Lehrstuhl für Wirtschaftsinformatik II

Vorlesung. Data und Web Mining. Kurzinformation zur. Univ.-Prof. Dr. Ralph Bergmann.  Lehrstuhl für Wirtschaftsinformatik II Kurzinformation zur Vorlesung Data und Web Mining Univ.-Prof. Dr. Ralph Bergmann www.wi2.uni-trier.de - I - 1 - Die Ausgangssituation (1) Unternehmen und Organisationen haben enorme Datenmengen angesammelt

Mehr

Reinforcement learning

Reinforcement learning Reinforcement learning Erfolgsgeschichten... Quelle: twitter.com/ai memes Q-Learning als Art von Reinforcement learning Paul Kahlmeyer February 5, 2019 1 Einführung 2 Q-Learning Begriffe Algorithmus 3

Mehr

Sie können Ihre Übungsblätter vorne in den Abgabe -Karton legen

Sie können Ihre Übungsblätter vorne in den Abgabe -Karton legen Sie können Ihre Übungsblätter vorne in den Abgabe -Karton legen 1 22.06.16 Kognitive Systeme Übung 2 22.06.2016 Klassifikation und Spracherkennung Matthias Sperber, Thai Son Nguyen KIT, Institute for Anthropomatics

Mehr

Polynomiale Regression lässt sich mittels einer Transformation der Merkmale auf multiple lineare Regression zurückführen

Polynomiale Regression lässt sich mittels einer Transformation der Merkmale auf multiple lineare Regression zurückführen Rückblick Polynomiale Regression lässt sich mittels einer Transformation der Merkmale auf multiple lineare Regression zurückführen Ridge Regression vermeidet Überanpassung, indem einfachere Modelle mit

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 10: Naive Bayes (V. 1.0)

Mehr

Teil VIII. Weiterführende Veranstaltungen im FG Wissensverarbeitung

Teil VIII. Weiterführende Veranstaltungen im FG Wissensverarbeitung Teil VIII Weiterführende Veranstaltungen im FG Wissensverarbeitung Überblick 1 Zusammenfassung AlgoDS 2 Datenbanken 3 Internet-Suchmaschinen 4 Knowledge Discovery 5 Künstliche Intelligenz 6 Seminare &

Mehr

Inhalt. 6.1 Motivation. 6.2 Klassifikation. 6.3 Clusteranalyse. 6.4 Asszoziationsanalyse. Datenbanken & Informationssysteme / Kapitel 6: Data Mining

Inhalt. 6.1 Motivation. 6.2 Klassifikation. 6.3 Clusteranalyse. 6.4 Asszoziationsanalyse. Datenbanken & Informationssysteme / Kapitel 6: Data Mining 6. Data Mining Inhalt 6.1 Motivation 6.2 Klassifikation 6.3 Clusteranalyse 6.4 Asszoziationsanalyse 2 6.1 Motivation Data Mining and Knowledge Discovery zielt darauf ab, verwertbare Erkenntnisse (actionable

Mehr

Modelle, Daten, Lernprobleme

Modelle, Daten, Lernprobleme Universität Potsdam Institut für Informatik Lehrstuhl Modelle, Daten, Lernprobleme Tobias Scheffer Überblick Arten von Lernproblemen: Überwachtes Lernen (Klassifikation, Regression, ordinale Regression,

Mehr

Intelligente Algorithmen Einführung in die Technologie

Intelligente Algorithmen Einführung in die Technologie Intelligente Algorithmen Einführung in die Technologie Dr. KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Natürlich sprachliche

Mehr

Pairwise Naive Bayes Classifier

Pairwise Naive Bayes Classifier Pairwise Naive Bayes Classifier Jan-Nikolas Sulzmann 1 1 nik.sulzmann@gmx.de Fachbereich Knowledge Engineering Technische Universität Darmstadt Gliederung 1 Ziel dieser Arbeit 2 Naive Bayes Klassifizierer

Mehr

Fallbasiertes Schließen (Case-based Reasoning, CBR) CBR-Zyklus nach Aamodt und Plaza 1994:

Fallbasiertes Schließen (Case-based Reasoning, CBR) CBR-Zyklus nach Aamodt und Plaza 1994: Fallbasiertes Schließen (Case-based Reasoning, CBR) CBR-Zyklus nach Aamodt und Plaza 1994: 1 Retrieve the most similar case 2 Reuse the solution and other information of the case 3 Revise the proposed

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 5: Naive Bayes + IBL (V.

Mehr

Reinforcement Learning

Reinforcement Learning Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Reinforcement Learning Uwe Dick Inhalt Problemstellungen Beispiele Markov Decision Processes Planen vollständige MDPs Lernen unbekannte

Mehr

Projekt Maschinelles Lernen WS 06/07

Projekt Maschinelles Lernen WS 06/07 Projekt Maschinelles Lernen WS 06/07 1. Auswahl der Daten 2. Evaluierung 3. Noise und Pruning 4. Regel-Lernen 5. ROC-Kurven 6. Pre-Processing 7. Entdecken von Assoziationsregeln 8. Ensemble-Lernen 9. Wettbewerb

Mehr

Klassifikationsverfahren haben viele Anwendungen. Binäres Klassifikationsverfahren auch zur Klassifikation in mehr als zwei Klassen verwendbar

Klassifikationsverfahren haben viele Anwendungen. Binäres Klassifikationsverfahren auch zur Klassifikation in mehr als zwei Klassen verwendbar Rückblick Klassifikationsverfahren haben viele Anwendungen Binäres Klassifikationsverfahren auch zur Klassifikation in mehr als zwei Klassen verwendbar Konfusionsmatrix stellt Vorhersagen und Daten gegenüber

Mehr

Moderne Methoden der KI: Maschinelles Lernen

Moderne Methoden der KI: Maschinelles Lernen Moderne Methoden der KI: Maschinelles Lernen Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung Sommer-Semester 2009 1. Einführung: Definitionen Grundbegriffe Lernsysteme Maschinelles Lernen Lernen: Grundbegriffe

Mehr

Ringvorlesung interdisziplinäre, angewandte Mathematik: Maschinelles Lernen

Ringvorlesung interdisziplinäre, angewandte Mathematik: Maschinelles Lernen Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Ringvorlesung interdisziplinäre, angewandte Mathematik: Maschinelles Lernen Niels Landwehr, Paul Prasse, Termine VL Dienstag 12:15-13:45,

Mehr

Kapitel LF: I. Beispiele für Lernaufgaben. Beispiele für Lernaufgaben. LF: I Introduction c STEIN

Kapitel LF: I. Beispiele für Lernaufgaben. Beispiele für Lernaufgaben. LF: I Introduction c STEIN Kapitel LF: I I. Einführung in das Maschinelle Lernen Bemerkungen: Dieses Kapitel orientiert sich an dem Buch Machine Learning von Tom Mitchell. http://www.cs.cmu.edu/ tom/mlbook.html 1 Autoeinkaufsberater?

Mehr

Analytics Entscheidungsbäume

Analytics Entscheidungsbäume Analytics Entscheidungsbäume Professional IT Master Prof. Dr. Ingo Claßen Hochschule für Technik und Wirtschaft Berlin Regression Klassifikation Quellen Regression Beispiel Baseball-Gehälter Gehalt: gering

Mehr

Künstliche Intelligenz im Fahrzeug

Künstliche Intelligenz im Fahrzeug Künstliche Intelligenz im Fahrzeug Mittwoch, 20. September 2017 Stufen des automatisierten Fahrens Stufe 0 nur Fahrer Stufe 1 Assistiert Stufe 2 Teilautomatisiert Stufe 3 Hochautomatisiert Stufe 4 Vollautomatisiert

Mehr

Klassische Klassifikationsalgorithmen

Klassische Klassifikationsalgorithmen Klassische Klassifikationsalgorithmen Einführung in die Wissensverarbeitung 2 VO 708.560+ 1 UE 442.072 SS 2013 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at

Mehr

ML-Werkzeuge und ihre Anwendung

ML-Werkzeuge und ihre Anwendung Kleine Einführung: und ihre Anwendung martin.loesch@kit.edu (0721) 608 45944 Motivation Einsatz von maschinellem Lernen erfordert durchdachtes Vorgehen Programmieren grundlegender Verfahren aufwändig fehlerträchtig

Mehr

Klassifikation linear separierbarer Probleme

Klassifikation linear separierbarer Probleme Klassifikation linear separierbarer Probleme Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Klassifikation linear

Mehr

Modell Komplexität und Generalisierung

Modell Komplexität und Generalisierung Modell Komplexität und Generalisierung Christian Herta November, 2013 1 von 41 Christian Herta Bias-Variance Lernziele Konzepte des maschinellen Lernens Targetfunktion Overtting, Undertting Generalisierung

Mehr

Übersicht. Allgemeines Modell lernender Agenten. Lernende Agenten (1) Lernende Agenten (2)

Übersicht. Allgemeines Modell lernender Agenten. Lernende Agenten (1) Lernende Agenten (2) Übersicht Allgemeines Modell lernender Agenten I Künstliche Intelligenz II Problemlösen III Wissen und Schlußfolgern IV Logisch Handeln V Unsicheres Wissen und Schließen VI Lernen 18. Lernen aus Beobachtungen

Mehr

Entwicklung einer KI für Skat. Hauptseminar Erwin Lang

Entwicklung einer KI für Skat. Hauptseminar Erwin Lang Entwicklung einer KI für Skat Hauptseminar Erwin Lang Inhalt Skat Forschung Eigene Arbeit Risikoanalyse Skat Entwickelte sich Anfang des 19. Jahrhunderts Kartenspiel mit Blatt aus 32 Karten 3 Spieler Trick-taking

Mehr

3. Das Reinforcement Lernproblem

3. Das Reinforcement Lernproblem 3. Das Reinforcement Lernproblem 1. Agierender Agent in der Umgebung 2. Discounted Rewards 3. Markov Eigenschaft des Zustandssignals 4. Markov sche Entscheidung 5. Werte-Funktionen und Bellman sche Optimalität

Mehr

Einsatz von Reinforcement Learning in der Modellfahrzeugnavigation

Einsatz von Reinforcement Learning in der Modellfahrzeugnavigation Einsatz von Reinforcement Learning in der Modellfahrzeugnavigation von Manuel Trittel Informatik HAW Hamburg Vortrag im Rahmen der Veranstaltung AW1 im Masterstudiengang, 02.12.2008 der Anwendung Themeneinordnung

Mehr