Gleitkommaarithmetik. Erhöhen der Genauigkeit. Grundlagen der Rechnerarchitektur Logik und Arithmetik 124

Größe: px
Ab Seite anzeigen:

Download "Gleitkommaarithmetik. Erhöhen der Genauigkeit. Grundlagen der Rechnerarchitektur Logik und Arithmetik 124"

Transkript

1 Gleitkommaarithmetik Erhöhen der Genauigkeit Grundlagen der Rechnerarchitektur Logik und Arithmetik 124

2 Guard Bit, Round Bit und Sticky Bit Bei der Darstellung der Addition und Multiplikation haben wir vereinfacht die beim Mantissen Alignment rechst heraus geschobenen Bits einfach abgeschnitten. Zum Beispiel: Mantissen Alignment um 5 Stellen Mantisse In Wirklichkeit (z.b. IEEE 754 Spezifikation) wird zur Steigerung der Genauigkeit etwas geschickter vorgegangen. Obiges Beispiel: Mantisse Rechenoperationen finden auf dieser erweiterten Mantisse statt. Grundlagen der Rechnerarchitektur Logik und Arithmetik 125

3 Quiz Wir betrachten 8 Bit Mantissen. Es seien die folgenden beiden binären Zahlen zu addieren. 1, * , * 2 2 Wie sehen Mantisse, Guard Bit, Round Bit und Sticky Bit nach dem Mantissen Alignment aus? 1, * 2 6 1, * Bit Mantisse 8 Bit Mantisse Grundlagen der Rechnerarchitektur Logik und Arithmetik 126

4 IEEE 754 Rounding Modes + / Round toward + Round toward Round toward 0 Round to nearest Synonym Ergebnis Beispiel 21,7 Beispiel 21,7 Ceil Floor Truncate Mantisse M G R S Kleinster Wert nicht kleiner als M Größter Wert nicht größer als M Genau M Wert, der am nächsten zu M liegt Grundlagen der Rechnerarchitektur Logik und Arithmetik 127

5 IEEE Rounding Modes: Round to Nearest Mantisse G R S Eingabe Form bei Tie Rundung Ergebnis M Mantisse 000 Same M = Mantisse Mantisse 001 Down M = Mantisse Mantisse 010 Down M = Mantisse Mantisse 011 Down M = Mantisse Mantisse Down M = Mantisse (Tie) Up M = Mantisse + 1 Mantisse 101 Up M = Mantisse + 1 Mantisse 110 Up M = Mantisse + 1 Mantisse 111 Up M = Mantisse + 1 Grundlagen der Rechnerarchitektur Logik und Arithmetik 128

6 Quiz Was ist das Rundungsergebnis bei Round to Nearest für folgende Instanzen von 8 Bit Mantisse Guard Round Sticky? A.) B.) C.) GRS Mantisse Richtung 001 Down 010 Down 011 Down Down...1 Up 101 Up 110 Up 111 Up Übersicht zu Round to Nearest Grundlagen der Rechnerarchitektur Logik und Arithmetik 129

7 Beispiel für die Genauigkeitssteigerung Wir betrachten 8 Bit Mantissen. Zu addieren sei: 1, * 2 6 (dezimal = 99,0000) + 1, * 2 2 (dezimal = 5,8125) (Summe dezimal = 104,8125) Das Mantissen Alignment und GRS Bits kennen wir schon, also: Rechnung: Mantisse GRS Mantisse Rundung: ohne Ergebnis: 1, * 2 6 1, * 2 6 Dezimal : 105,0 104,5 Also hat man mit GRS Bits und Rundung einen Abstand von 105,0 104,8125 = 0,1875. Ohne GRS Bits und Rundung ist der Abstand 104, ,5 = 0,3125. Grundlagen der Rechnerarchitektur Logik und Arithmetik 130

8 Denormalized Numbers Kleinste mit IEEE754 Single Precision darstellbare normalized Zahl > 0: 1, * Der Exponent 127 ist für die 0 reserviert; die Fraction ist dabei 0:., * Warum die Fraction für Exponent 127 nicht sinnvoll nutzen? Eine Denormalized Number der Form., * bedeutet: 0, * Somit, kleinste mit IEEE754 Single Precision darstellbare Zahl > 0: 0, * = 1,0 * Grundlagen der Rechnerarchitektur Logik und Arithmetik 131

9 Quiz Was ist mit denormalized Numbers bei IEEE 754 Double Precision die kleinste darstellbare Zahl > 0? Erinnerung: IEEE 754 Double Precision: Fraction: 52 Bits Exponent Bias: 1023 Grundlagen der Rechnerarchitektur Logik und Arithmetik 132

10 Webseiten Tipp zum Üben users tima.imag.fr/cis/guyot/cours/oparithm/english/flottan.htm Floating point numbers format Rounding to the nearest Addition and subtraction Grundlagen der Rechnerarchitektur Logik und Arithmetik 133

11 Zusammenfassung und Literatur Grundlagen der Rechnerarchitektur Logik und Arithmetik 134

12 Zusammenfassung Rechnerarithmetik endlich und stimmt damit nicht exakt mit Arithmetik über reellen Zahlen überein Häufig Approximation realer Zahlen Assoziativgesetzt gilt z.b. nicht Hat Konsequenz auf paralleles rechnen Beschränkter Zahlenbereich Overflow, Underflow Wichtigste Entwicklung über die Jahre Zweierkomplement und IEEE 754 In jedem modernen Computer so Grundlagen der Rechnerarchitektur Logik und Arithmetik 135

13 Quiz Annahme es gäbe ein 16 Bit IEEE 754 Floating Point Format mit 5 Bits für den Exponenten. Welcher Zahlenbereich wird durch dieses Format abgedeckt? A: * 2 0 bis * 2 31, 0 B: +/ * 2 14 bis +/ * / 0, +/ 1, NaN C: +/ * 2 14 bis +/ * 2 15, +/ 0, +/ 1, NaN D: +/ * 2 15 bis +/ * 2 14, +/ 0, +/ 1, NaN Grundlagen der Rechnerarchitektur Logik und Arithmetik 136

14 Literatur [PattersonHennessy2012] David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, Signed and Unsigned Numbers 2.6 Logical Operations 3.1 Introduction 3.2 Addition and Subtraction 3.3 Multiplication 3.4 Division 3.5 Floating Point 3.6 Parallelism and Computer Arithmetic: Associativity Grundlagen der Rechnerarchitektur Logik und Arithmetik 137

IEEE 754 Encoding. Wie stellt man im IEEE 754 Format eigentlich die 0 dar!? Double Precision (Bias=1023)

IEEE 754 Encoding. Wie stellt man im IEEE 754 Format eigentlich die 0 dar!? Double Precision (Bias=1023) IEEE 754 Encoding Wie stellt man im IEEE 754 Format eigentlich die 0 dar!? ( 1) S * (1 + Fraction) * 2 (Exponent Bias) Single Precision (Bias=127) Double Precision (Bias=1023) Dargestelltes Objekt Exponent

Mehr

N Bit Darstellung von Gleitkommazahlen

N Bit Darstellung von Gleitkommazahlen N Bit Darstellung von Gleitkommazahlen Normalisierte, wissenschaftliche Darstellung zur Basis 2. Beispiel: Allgemein: Sign and Magnitude Darstellung für beispielsweise 32 Bits: (s=0 für + und s=1 für )

Mehr

Wertebereiche, Overflow und Underflow

Wertebereiche, Overflow und Underflow Wertebereiche, Overflow und Underflow s exponent fraction 1 Bit 8 Bits 23 Bits Kleinste darstellbare nicht negative Zahl annähernd 2,0 * 10 38 Größte darstellbare Zahl annähernd 2,0 * 10 38 Was, wenn die

Mehr

Das Verfahren in Hardware

Das Verfahren in Hardware Das Verfahren in Hardware Links Shift 8 Bit Multiplikand Demonstration mit 1001 * 0110 = 110110 2.Links Shift 8 Bit ALU Rechts Shift 4 Bit Multiplikator 3.Rechts Shift 8 Bit Produkt 1. Produkt = Produkt

Mehr

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator

Mehr

Der Zahlenformatstandard IEEE 754

Der Zahlenformatstandard IEEE 754 Der Zahlenformatstandard IEEE 754 Single Precision Double Precision Insgesamt 32 Bits s exponent fraction 1 Bit 8 Bits 23 Bits Insgesamt 64 Bits s exponent fraction 1 Bit 11 Bits 52 Bits Bit Aufteilungen

Mehr

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik Grundlagen der Rechnerarchitektur Binäre Logik und Arithmetik Übersicht Logische Operationen Addition, Subtraktion und negative Zahlen Logische Bausteine Darstellung von Algorithmen Multiplikation Division

Mehr

Binäre Gleitkommazahlen

Binäre Gleitkommazahlen Binäre Gleitkommazahlen Was ist die wissenschaftliche, normalisierte Darstellung der binären Gleitkommazahl zur dezimalen Gleitkommazahl 0,625? Grundlagen der Rechnerarchitektur Logik und Arithmetik 72

Mehr

2.1.2 Gleitkommazahlen

2.1.2 Gleitkommazahlen .1. Gleitkommazahlen Überblick: Gleitkommazahlen Gleitkommadarstellung Arithmetische Operationen auf Gleitkommazahlen mit fester Anzahl von Mantissen- und Exponentenbits Insbesondere Rundungsproblematik:

Mehr

WH: Arithmetik: Floating Point

WH: Arithmetik: Floating Point WH: Arithmetik: Floating Point Elmar Langetepe University of Bonn Robuste Implementierungen Floating Point Arithmetik Bonn 06 1 Real RAM Robuste Implementierungen Floating Point Arithmetik Bonn 06 2 Real

Mehr

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik Grundlagen der Rechnerarchitektur Binäre Logik und Arithmetik Übersicht Logische Operationen Addition, Subtraktion und negative Zahlen Logische Bausteine Darstellung von Algorithmen Multiplikation Division

Mehr

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen Inhalt Motivation 2 Integer- und Festkomma-Arithmetik Zahlendarstellungen Algorithmen für Integer-Operationen Integer-Rechenwerke Rechnen bei eingeschränkter Präzision 3 Gleitkomma-Arithmetik Zahlendarstellungen

Mehr

Computerarithmetik (6a)

Computerarithmetik (6a) Computerarithmetik (6a) Weitere Nachteile: erfordert separates Subtrahierwerk erfordert zusätzliche Logik, um zu entscheiden, welches Vorzeichen das Ergebnis der Operation hat 2. Die Komplement - Darstellung

Mehr

Darstellung von negativen binären Zahlen

Darstellung von negativen binären Zahlen Darstellung von negativen binären Zahlen Beobachtung für eine beliebige Binärzahl B, z.b. B=110010: B + NOT(B) ---------------------------------------------- = B + NOT(B) 1 + (Carry) ----------------------------------------------

Mehr

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator

Mehr

, 2017S Übungstermin: Di.,

, 2017S Übungstermin: Di., VU Technische Grundlagen der Informatik Übung 1: Zahlendarstellungen, Numerik 183.579, 2017S Übungstermin: Di., 14.03.2017 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen

Mehr

Control Beispiel. Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Control

Control Beispiel. Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Control Control Beispiel Store R1 4 Bit Register R1 SUB 4 Bit Register R2 Store R2 R2 Bit 0 Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Eingabe R2 Bit 0 Zero 0 0 Ausgabe

Mehr

o feste Anzahl Vorkommastellen (z.b. 7) o feste Anzahl Nachkommastellen (z.b. 3) o Nachteil 1: o feste Anzahl signifikanter Stellen (10)

o feste Anzahl Vorkommastellen (z.b. 7) o feste Anzahl Nachkommastellen (z.b. 3) o Nachteil 1: o feste Anzahl signifikanter Stellen (10) Richtig Rechnen Typen float und double; systeme, Löcher im Wertebereich, IEEE Standard, Fliesskomma-Richtlinien // Program: fahrenheit.cpp // Convert temperatures from Celsius to Fahrenheit. std::cout

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen allgemeine Gleitkommazahl zur Basis r

Mehr

Computergestützte Mathematik zur Linearen Algebra

Computergestützte Mathematik zur Linearen Algebra Computergestützte Mathematik zur Linearen Algebra Pivotwahl und Gleitkommaarithmetik Achim Schädle 3. und 20. Dezember 208 Achim Schaedle (HHU) CompLinA 3. und 20. Dezember 208 Instabilitäten bei Gauß-Elimination

Mehr

1. Fliesskommazahlen

1. Fliesskommazahlen 1 1. Fliesskommazahlen Die Typen float und double; Fliesskommazahlensysteme; Löcher im Wertebereich; IEEE Standard; Grenzen der Fliesskommaarithmetik; Fliesskomma-Richtlinien; Harmonische Zahlen ,,Richtig

Mehr

IEEE Von Janette Kaspar und Alexander Linz

IEEE Von Janette Kaspar und Alexander Linz IEEE-754-2008 Von Janette Kaspar und Alexander Linz Die Entstehung von IEEE 754 Die IEEE Gesellschaft Geschichte von IEEE bis 1985 Erschaffung von IEEE-754-2008 Motivation Hauptziele IEEE 754-2008 2 Die

Mehr

Numerik. Festpunkt-Darstellung

Numerik. Festpunkt-Darstellung Numerik Ablauf: Festpunkt-Darstellung Gleitpunkt-Darstellung Runden Addition/Subtraktion Multiplikation Ausblick und Zusammenfassung Wolfgang Kastner, Institut für Rechnergestützte Automation, TU Wien

Mehr

mit 0 z 0 b 1 und 0 ẑ b n 1 1. Nach Induktionsannahme besitzt ẑ eine Darstellung der Länge n 1 zur Basis b. Damit ist

mit 0 z 0 b 1 und 0 ẑ b n 1 1. Nach Induktionsannahme besitzt ẑ eine Darstellung der Länge n 1 zur Basis b. Damit ist mit 0 z 0 b 1 und 0 ẑ b n 1 1. Nach Induktionsannahme besitzt ẑ eine Darstellung ẑ = ẑ n 2 b n 2 + + ẑ 1 b 1 + ẑ 0 b 0 der Länge n 1 zur Basis b. Damit ist z = (ẑ n 2 b n 2 + + ẑ 1 b 1 + ẑ 0 b 0 ) b +

Mehr

o feste Anzahl Vorkommastellen (z.b. 7) o feste Anzahl Nachkommastellen (z.b. 3) o Nachteil 1: o feste Anzahl signifikanter Stellen (10)

o feste Anzahl Vorkommastellen (z.b. 7) o feste Anzahl Nachkommastellen (z.b. 3) o Nachteil 1: o feste Anzahl signifikanter Stellen (10) Richtig Rechnen Typen float und double; systeme, Löcher im Wertebereich, IEEE Standard, Fliesskomma-Richtlinien // Program: fahrenheit.cpp // Convert temperatures from Celsius to Fahrenheit. int main()

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 2007 8. Vorlesung Inhalt Gleitkomma-Darstellung Normalisierte Darstellung Denormalisierte Darstellung Rechnerarchitekturen Von Neumann-Architektur Harvard-Architektur Rechenwerk (ALU)

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: +/-/*

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: +/-/*

Mehr

Die Zahl ist: (z 2, z 1, z 0 ) (z ) : 7 = 0 Rest z 2

Die Zahl ist: (z 2, z 1, z 0 ) (z ) : 7 = 0 Rest z 2 Übungen zur Vorlesung Technische Informatik I, SS Hauck / Guenkova-Luy / Prager / Chen Übungsblatt 4 Rechnerarithmetik Aufgabe : a) Bestimmen Sie die Darstellung der Zahl 3 zur Basis 7. 3 = 7 (Sehen Sie

Mehr

, 2015S Übungstermin: Mi.,

, 2015S Übungstermin: Mi., VU Grundlagen digitaler Systeme Übung 1: Zahlendarstellungen, Numerik 183.580, 2015S Übungstermin: Mi., 18.03.2015 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen Hilfsmittel

Mehr

5 Zahlenformate und deren Grenzen

5 Zahlenformate und deren Grenzen 1 5 Zahlenformate und deren Grenzen 5.1 Erinnerung B-adische Zahlendarstellung Stellenwertsystem: Jede Ziffer hat ihren Wert, und die Stelle der Ziffer in der Zahl modifiziert den Wert. 745 = 7 100 + 4

Mehr

Motivation 31. Mai 2005

Motivation 31. Mai 2005 Motivation 31. Mai 25 Zuletzt behandelt: Zahlendarstellung und Rechnerarithmetik Festkommazahlen: Vorzeichen/Betrag-Darstellung Einerkomplement, Zweierkomplement Rückführung der Subtraktion auf die Addition

Mehr

bei Unterlauf wird stattdessen Hälfte des Divisors addiert Ersparnisse einer Addition bzw. Subtraktion

bei Unterlauf wird stattdessen Hälfte des Divisors addiert Ersparnisse einer Addition bzw. Subtraktion 6.2 Non-Restoring Division Restoring Division Divisor wird subtrahiert falls Unterlauf (Ergebnis negativ) Divisor wird wieder addiert im nächsten Durchlauf wird die Hälfte des Divisor subtrahiert (Linksshift

Mehr

Kapitel 5: Daten und Operationen

Kapitel 5: Daten und Operationen Kapitel 5: Daten und Operationen Felix Freiling Lehrstuhl für Praktische Informatik 1 Universität Mannheim Vorlesung Praktische Informatik I im Herbstsemester 2007 Folien nach einer Vorlage von H.-Peter

Mehr

Richtig Rechnen. // Program: fahrenheit.c // Convert temperatures from Celsius to Fahrenheit.

Richtig Rechnen. // Program: fahrenheit.c // Convert temperatures from Celsius to Fahrenheit. Fliesskommazahlen Richtig Rechnen // Program: fahrenheit.c // Convert temperatures from Celsius to Fahrenheit. #include int main() { // Input std::cout

Mehr

Rundungsfehler-Problematik bei Gleitpunktzahlen

Rundungsfehler-Problematik bei Gleitpunktzahlen Rundungsfehler-Problematik bei Gleitpunktzahlen 1 Rechnerzahlen 2 Die Rundung 3 Fehlerverstärkung bei der Addition Rundungsfehler-Problematik 1 1. Rechnerzahlen allgemeine Zahlendarstellung zur Basis b

Mehr

02 - Numerik. Technische Grundlagen der Informatik

02 - Numerik. Technische Grundlagen der Informatik 02 - Numerik Technische Grundlagen der Informatik Automation Systems Group E183-1 Institute of Computer Aided Automation Vienna University of Technology email: tgi@auto.tuwien.ac.at Numerik Methoden zur

Mehr

2 Computerarithmetik 2.1 Gleitkommazahlen

2 Computerarithmetik 2.1 Gleitkommazahlen 2 Computerarithmetik 2.1 Gleitkommazahlen Mathematische Modelle beschreiben Phänomene quantitativ mittels unendlicher Systeme von Zahlen. Beispiele sind die rationalen Zahlen Q (abzählbar unendlich) sowie

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de http://www.miwilhelm.de Raum 2.202 Tel. 03943 / 659 338 FB

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de http://www.miwilhelm.de Raum 2.202 Tel. 03943 / 659 338 FB

Mehr

Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS

Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS Gleit komma zahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen wird eine große Dynamik benötigt: sowohl sehr kleine als auch sehr große Zahlen sollen einheitlich dargestellt

Mehr

Beispiele von Branch Delay Slot Schedules

Beispiele von Branch Delay Slot Schedules Beispiele von Branch Delay Slot Schedules Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 97 Weniger

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

Binäre Division. Binäre Division (Forts.)

Binäre Division. Binäre Division (Forts.) Binäre Division Umkehrung der Multiplikation: Berechnung von q = a/b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom Dividenden a subtrahiert:

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: IEEE Format Zahlenumwandlung

Mehr

, 2014W Übungstermin: Fr.,

, 2014W Übungstermin: Fr., VU Technische Grundlagen der Informatik Übung 1: Zahlendarstellungen, Numerik 183.579, 2014W Übungstermin: Fr., 17.10.2014 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen

Mehr

Computer-orientierte Mathematik

Computer-orientierte Mathematik Computer-orientierte Mathematik 3. Vorlesung - Christof Schuette 11.11.16 Memo: Rationale und reelle Zahlen Rationale Zahlen: Rationale Zahlen als Brüche ganzer Zahlen. q-adische Brüche, periodische q-adische

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: IEEE Format Zahlenumwandlung

Mehr

4. Zahlendarstellungen

4. Zahlendarstellungen 121 4. Zahlendarstellungen Wertebereich der Typen int, float und double Gemischte Ausdrücke und Konversionen; Löcher im Wertebereich; Fliesskommazahlensysteme; IEEE Standard; Grenzen der Fliesskommaarithmetik;

Mehr

4. Zahlendarstellungen

4. Zahlendarstellungen Bin are Zahlendarstellungen Binäre Darstellung ("Bits" aus {0, 1) 4. Zahlendarstellungen bn bn 1... b1 b0 entspricht der Zahl bn 2n + + b1 2 + b0 Wertebereich der Typen int, float und double Gemischte

Mehr

2.4 Codierung von Festkommazahlen c) Wie lässt sich im Zweier-Komplement ein Überlauf feststellen? neg. pos.

2.4 Codierung von Festkommazahlen c) Wie lässt sich im Zweier-Komplement ein Überlauf feststellen? neg. pos. 24 Codierung von Festkommazahlen 115 Aufgaben a) Codieren Sie für n 8 und r 0 die folgenden Zahlen binär im Zweier Komplement EC +10 : 00001010 11110101 Dezimal Binär 10 1111 0110 + 0 ch 1111011 0 20 00000000

Mehr

Fehler in numerischen Rechnungen

Fehler in numerischen Rechnungen Kapitel 1 Fehler in numerischen Rechnungen Analyse numerischer Rechnungen: - Welche möglichen Fehler? - Einfluss auf Endergebnis? - Nicht alles in der Comp.Phys./Numerical Analysis dreht sich um Fehler

Mehr

Technische Grundlagen der Informatik Test Minuten Gruppe A

Technische Grundlagen der Informatik Test Minuten Gruppe A Technische Grundlagen der Informatik Test 1 04.11.2016 90 Minuten Gruppe A Matrikelnr. Nachname Vorname Unterschrift Deckblatt sofort ausfüllen und unterschreiben! Bitte deutlich und nur mit Kugelschreiber

Mehr

Arithmetik, Register und Speicherzugriff. Grundlagen der Rechnerarchitektur Assembler 9

Arithmetik, Register und Speicherzugriff. Grundlagen der Rechnerarchitektur Assembler 9 Arithmetik, Register und Speicherzugriff Grundlagen der Rechnerarchitektur Assembler 9 Arithmetik und Zuweisungen Einfache Arithmetik mit Zuweisung C Programm: a = b + c; d = a e; MIPS Instruktionen: Komplexere

Mehr

Grundlagen der Informatik I ATI / MB

Grundlagen der Informatik I ATI / MB Grundlagen der Informatik I ATI / MB Dipl.-Inf. Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de Raum 2.202 Tel. 03943 / 659 338 FB Automatisierung / Informatik: Grundlagen

Mehr

6.2 Kodierung von Zahlen

6.2 Kodierung von Zahlen 6.2 Kodierung von Zahlen Neue Begriffe é Festkommadarstellungen é Zahlendarstellung durch Betrag und Vorzeichen é Einer-/Zweierkomplement-Darstellung é Gleitkommadarstellung é IEEE-754 Format BB TI I 6.2/1

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: IEEE Format Zahlenumwandlung

Mehr

Zum Nachdenken. Wenn die Zahl (123) hat, was könnte dann (123,45) 10

Zum Nachdenken. Wenn die Zahl (123) hat, was könnte dann (123,45) 10 TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Zum Nachdenken Wenn die Zahl (123) 10 den Wert 1. 10 2 +2. 10 1 +3. 10 0 hat, was könnte dann (123,45) 10 bedeuten? Wenn Sie beliebige reelle Zahlenwerte

Mehr

1. Grundlegende Konzepte der Informatik

1. Grundlegende Konzepte der Informatik 1. Grundlegende Konzepte der Informatik Inhalt Algorithmen Darstellung von Algorithmen mit Programmablaufplänen Beispiele für Algorithmen Aussagenlogik Zahlensysteme Kodierung Peter Sobe 1 Zahlensysteme

Mehr

Informationsdarstellung 2.2

Informationsdarstellung 2.2 Beispiele für die Gleitkommadarstellung (mit Basis b = 2): 0,5 = 0,5 2 0-17,0 = - 0,53125 2 5 1,024 = 0,512 2 1-0,001 = - 0,512 2-9 3,141592... = 0,785398... 2 2 n = +/- m 2 e Codierung in m Codierung

Mehr

Dipl.-Ing. Halit Ünver Datenbanken/Künstliche Intelligenz FAW/n. Zahlensysteme

Dipl.-Ing. Halit Ünver Datenbanken/Künstliche Intelligenz FAW/n. Zahlensysteme Dipl.-Ing. Halit Ünver 7.. Datenbanken/Künstliche Intelligenz FAW/n Zahlensysteme Seite Zahlensysteme Dipl.-Ing. Halit Ünver 7.. Inhalt I. Informatik und Zahlen für Wirtschaftswissenschaftler? II. III.

Mehr

Rechnen in B. Ralf Dorn. 3. September Heinrich-Hertz-Gymnasium. R. Dorn (H 2 O) Informatik LK 3. September / 6

Rechnen in B. Ralf Dorn. 3. September Heinrich-Hertz-Gymnasium. R. Dorn (H 2 O) Informatik LK 3. September / 6 Rechnen in B Ralf Dorn 3. September 2018 R. Dorn (H 2 O) Informatik LK 3. September 2018 1 / 6 Festkommazahlen Wie werden Kommazahlen dargestellt? R. Dorn (H 2 O) Informatik LK 3. September 2018 2 / 6

Mehr

DuE-Tutorien 16 und 17

DuE-Tutorien 16 und 17 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Tutorienwoche 2 am 12.11.2010 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der

Mehr

Algorithmen & Programmierung. Reelle Zahlen in C (1) Darstellung reeller Zahlen

Algorithmen & Programmierung. Reelle Zahlen in C (1) Darstellung reeller Zahlen Algorithmen & Programmierung Reelle Zahlen in C (1) Darstellung reeller Zahlen Reelle Zahlen in C Datentyp für reelle Zahlen Eine Möglichkeit, Berechnungen mit reellen Zahlen in C durchzuführen, ist die

Mehr

RO-Tutorien 3 / 6 / 12

RO-Tutorien 3 / 6 / 12 RO-Tutorien 3 / 6 / 12 Tutorien zur Vorlesung Rechnerorganisation Christian A. Mandery WOCHE 3 AM 13./14.05.2013 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

3/4/2009. Schalter: Ein vs. Aus Lochkarten: Loch vs. Kein Loch Boolean/Wahrheitswerte: true vs. false

3/4/2009. Schalter: Ein vs. Aus Lochkarten: Loch vs. Kein Loch Boolean/Wahrheitswerte: true vs. false Ablauf Informatik I (D-MAVT) Übungsstunde 2, 4.3.2009 simonmayer@student.ethz.ch ETH Zürich Besprechung/Vertiefung der Vorlesung [26.2.2009] Vorbesprechung Übung 2 Variablen + Scopes Zahlensysteme Bits&Bytes

Mehr

Zwischenklausur Informatik, WS 2014/15

Zwischenklausur Informatik, WS 2014/15 Zwischenklausur Informatik, WS /5.. Zugelassene Hilfsmittel: außer Stift und Papier keine Hinweis: Geben Sie bei allen Berechnungen den vollständigen Rechenweg mit an! Alle Aufgaben/Fragen sind unmittelbar

Mehr

Grundzüge der Informatik Tutorium Gruppe 6

Grundzüge der Informatik Tutorium Gruppe 6 Grundzüge der Informatik Tutorium Gruppe 6 Inhalt Einführung Numerik Fest- und Termin 5 07.2.2006 Apfelthaler Kathrin Test-Beispiel e0225369@student.tuwien.ac.at Numerik Festpunkt-Darstellung Berechnung

Mehr

Technische Grundlagen der Informatik Test Minuten Gruppe A

Technische Grundlagen der Informatik Test Minuten Gruppe A Technische Grundlagen der Informatik Test 1 08.04.2016 90 Minuten Gruppe A Matrikelnr. Nachname Vorname Unterschrift Deckblatt sofort ausfüllen und unterschreiben! Bitte deutlich und nur mit Kugelschreiber

Mehr

Zahlenformate. SigProc-4-Zahlenformate 1

Zahlenformate. SigProc-4-Zahlenformate 1 Zahlenformate SigProc-4-Zahlenformate 1 Einfluss der Zahlendarstellung Auf Genauigkeit und Implementierungs- Aufwand (HW-Kosten) Einfache Formate einfach in HW zu implementieren aber begrenzter Zahlenbereich

Mehr

TI II: Computer Architecture Data Representation and Computer Arithmetic

TI II: Computer Architecture Data Representation and Computer Arithmetic Prof. Dr.-Ing. Jochen Schiller Computer Systems & Telematics 31 30 23 22 0 Sg Characteristic Mantissa TI II: Computer Architecture Data Representation and Computer Arithmetic Systems Representations Basic

Mehr

Rückblick. Addition in der b-adischen Darstellung wie gewohnt. Informatik 1 / Kapitel 2: Grundlagen

Rückblick. Addition in der b-adischen Darstellung wie gewohnt. Informatik 1 / Kapitel 2: Grundlagen Rückblick Addition in der b-adischen Darstellung wie gewohnt 5 0 C E + D 4 2 D = 44 Rückblick Multiplikation in der b-adischen Darstellung wie gewohnt 1 0 1 0 1 0 1 = 45 Rückblick Darstellung negativer

Mehr

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit Informationsmenge Maßeinheit: 1 Bit Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit 1 Byte Zusammenfassung von 8 Bit, kleinste Speichereinheit im Computer, liefert

Mehr

1. Vorzeichen und Betrag (engl. Sign-/Magnitude) 2. Stellenkomplement 3. Basiskomplement

1. Vorzeichen und Betrag (engl. Sign-/Magnitude) 2. Stellenkomplement 3. Basiskomplement 3 Darstellungsformen für Zahlen Informatik II SS 24 Dipl.-Inform. Michael Ebner. Vorzeichen und Betrag (engl. Sign-/Magnitude) 2. Stellenkomplement 3. Basiskomplement Warum 3 Darstellungsformen? Ziel:

Mehr

Mathematische Werkzeuge für Computergrafik 2016/17. Gleitkommzahlen

Mathematische Werkzeuge für Computergrafik 2016/17. Gleitkommzahlen Mathematische Werkzeuge für Computergrafik 2016/17 Gleitkommzahlen 1 Grundlagen 1 Da im Computer nur endliche Ressourcen zur Verfügung stehen, können reelle Zahlen in vielen Fällen nicht exakt dargestellt

Mehr

Computergrundlagen Zahlensysteme

Computergrundlagen Zahlensysteme Computergrundlagen Zahlensysteme Institut für Computerphysik Universität Stuttgart Wintersemester 2012/13 Wie rechnet ein Computer? Ein Mikroprozessor ist ein Netz von Transistoren, Widerständen und Kondensatoren

Mehr

Unter den endlich vielen Maschinenzahlen gibt es zwangsläufig eine größte und eine kleinste:

Unter den endlich vielen Maschinenzahlen gibt es zwangsläufig eine größte und eine kleinste: 1.1 Grundbegriffe und Gleitpunktarithmetik 11 Aufgaben 1.4 Bestimmen Sie alle dualen 3-stelligen Gleitpunktzahlen mit einstelligem Exponenten sowie ihren dezimalen Wert. Hinweis: Sie sollten 9 finden.

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung Grundlagen der Programmierung 5. Vorlesung 06.11.2018 1 Zahlendarstellungen 2 Speicherinhalte: Bits Hardware Spannung Ladung Magnetisierung Codierung 0V ungeladen unmagnetisiert 0 5V geladen magnetisiert

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

GTI ÜBUNG 4 BINÄR-, HEX- UND GLEITKOMMAZAHLEN-ARITHMETIK

GTI ÜBUNG 4 BINÄR-, HEX- UND GLEITKOMMAZAHLEN-ARITHMETIK 1 GTI ÜBUNG 4 BINÄR-, HEX- UND GLEITKOMMAZAHLEN-ARITHMETIK Aufgabe 1 Bin- und Hex Arithmetik 2 Führen Sie die folgenden Berechnungen im angegebenen Zahlensystem aus, ohne die Zahlen ins Dezimalsystem umzuwandeln:

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 017 Institut für Informatik Prof Dr Thomas Huckle Michael Obersteiner, Michael Rippl Numerisches Programmieren, Übungen Musterlösung 1 Übungsblatt: Zahlendarstellung,

Mehr

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f

Mehr

II. Grundlagen der Programmierung

II. Grundlagen der Programmierung II. Grundlagen der Programmierung II.1. Zahlenssteme und elementare Logik 1.1. Zahlenssteme 1.1.1. Ganze Zahlen Ganze Zahlen werden im Dezimalsstem als Folge von Ziffern 0, 1,..., 9 dargestellt, z.b. 123

Mehr

Darstellung rationaler und reeller Zahlen Vorlesung vom

Darstellung rationaler und reeller Zahlen Vorlesung vom Darstellung rationaler und reeller Zahlen Vorlesung vom 30.10.15 Rationale Zahlen: Rationale Zahlen als Brüche ganzer Zahlen. q-adische Brüche, periodische q-adische Brüche. Beispiele. Satz: Jede rationale

Mehr

Kapitel 5: Darstellung von Daten im Rechner

Kapitel 5: Darstellung von Daten im Rechner Kapitel 5: Darstellung von Daten im Rechner Kapitel 5 Darstellung von Daten im Rechner und Rechnerarithmetik Literatur: Oberschelp/Vossen, Kapitel 5 Kapitel 5: Darstellung von Daten im Rechner Seite Kapitel

Mehr

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Implementierung von Gleitkomma-Operationen

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Implementierung von Gleitkomma-Operationen Rechnerarithmetik Vorlesung im Sommersemester 2008 Eberhard Zehendner FSU Jena Thema: Implementierung von Gleitkomma-Operationen Eberhard Zehendner (FSU Jena) Rechnerarithmetik Gleitkomma-Operationen 1

Mehr

Zwischenklausur Informatik, WS 2016/17. Lösungen zu den Aufgaben

Zwischenklausur Informatik, WS 2016/17. Lösungen zu den Aufgaben Zwischenklausur Informatik, WS 206/7 4.2.206 Lösungen zu den Aufgaben. Gegeben sind folgende Dualzahlen in Zweierkomplementdarstellung. Geben Sie den jeweils zugehörigen Dezimalwert an! a) entspricht der

Mehr

Zahlen im Computer (Klasse 7 Aufbaukurs Informatik)

Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Die Bildauswahl erfolgte in Anlehnung an das Alter der Kinder Prof. J. Walter Bitte römische Zahlen im Geschichtsunterricht! Messsystem mit Mikrocontroller

Mehr

Rechnerstrukturen, Teil 1

Rechnerstrukturen, Teil 1 Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 18/19 Prof. Dr. Jian- Jia Chen Fakultät für Informatik Technische Universität Dortmund jian- jia.chen@cs.uni-.de http://ls12- www.cs.tu-.de 5. Rechnerarithmetik

Mehr

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

HaDePrak WS 05/ Versuch

HaDePrak WS 05/ Versuch HaDePrak WS 05/06 10. Versuch 1 Das IEEE-Format Das Ziel dieser letzten Übung ist es, ein Fließkommapaket für die DLXzu implementieren. Der Einfachheit halber vernachlässigen wir hier im Praktikum jeglichen

Mehr