9.1 Eine Gleichung mit einer Unbekannten exakt lösen x Beispiel 1: Die Gleichung x 2 = 4 lösen. solve( x / (x 2) = 4, x ); 8 3

Größe: px
Ab Seite anzeigen:

Download "9.1 Eine Gleichung mit einer Unbekannten exakt lösen x Beispiel 1: Die Gleichung x 2 = 4 lösen. solve( x / (x 2) = 4, x ); 8 3"

Transkript

1 MAPLE_Mini_09_V1-0.doc Gleichungen 9.1 Eine Gleichung mit einer Unbekannten exakt lösen x Beispiel 1: Die Gleichung x 2 = 4 lösen. solve( x / (x 2) = 4, x ); 8 3 Beispiel 2: Lösen Sie die Gleichung x 2 1 x + 1 gl := (x^2 1) / (x + 1) = 1; Die Lösung der Variablen lsg zuweisen. lsg := solve( gl, x ); lsg := 1 Die Lösung in die Gleichung einsetzen. x := lsg; x := 1 = 1; setzen Sie die Lösung ein. Beide Seiten der Gleichung gl mit x = 1 auswerten. gl; 1 = 1 # Die Gleichung stimmt. Beispiel 3: Eine Gleichung mit Formvariablen lösen Bemerkung: Sie können wiederum mit der Palette arbeiten, insbesondere mit der Common Symbol -Palette, um die nachfolgenden Winkelbezeichnungen usw. einzugeben. Lösen Sie die Gleichung A. sin( t + ) = b nach t auf. gl := A * sin( omega * t + delta) = b; gl := A sin( t + ) = b lsg := solve( gl, t ); lsg = arcsin( b A ) Die Lösung in die Gleichung einsetzen. Wir verwenden den Substitute-Befehl. subs( t = lsg, gl ); simplify(%); b = b # richtig Aufgabe 1: Wiederholen Sie die Überprüfung der ersten Beispiele mit dem Befehl subs.

2 MAPLE_Mini_09_V1-0.doc 9-2 Beispiel 4: Folgende Gleichung hat zwei Lösungen. Beide werden eingesetzt. Lösen Sie die Gleichung x2 5x + 6 = 0. gl := x^2 5*x + 6 = 0; gl := x2 5x + 6 = 0 lsg := solve( gl, x ); lsg := 2, 3 Maple hat zwei Lösungen gefunden. Der Variablen lsg ist die Folge der Zahlen 2, 3 zugewiesen. Die einzelnen Zahlen lauten lsg[1] und lsg[2]. Wir setzen die Lösungen nacheinander in die Gleichung ein. subs( x = lsg[ 1 ], gl ); 0 = 0 subs( x = lsg[ 2 ], gl ); 0 = 0 # Die Lösungen stimmen Aufgabe 2: Komplizierte Lösungen anzeigen. Bestimmen Sie : a) Die allgemeine Lösung der Gleichung x3 + 5ax2 + x = 1. Sie bekommen einen komplizierten Ausdruck b) Die Lösung für a = 1 Setzen Sie a := 1 und lösen Sie die Gleichung noch ein Mal. Das Resultat ist immer noch kompliziert. Mit evalf(%) können Sie das Resultat numerisch bestimmen. Aufgabe 3: Lösen Sie die Gleichung x 7 2x 6 4x 5 + x 3 + x 2 + 6x + 4 = 0. Zur Abwechslung mit einer Funktion f := x x^7 2*x^6 4*x^5 + x^3 + x^2 + 6*x + 4 lsg := solve(f(x)=0, x); lsg := wilder Ausdruck mit RootOf(_Z 7 Interpretation: RootOf heisst, Wurzel (Nullstelle) von... Die reellen numerischen Lösungen erhält man mit lsg := fsolve(f(x) = 0, x); lsg := , , Beispiel 5: Lösen Sie die Gleichung e x + sin( x ) = 0. gl := exp(x) + sin( x) = 0 ; gl := ex + sin( x ) = 0 lsg := solve(gl, x); lsg :=RootOf(_Z ln( sin(_z))) Maple hat keine Lösung gefunden (die Lösungen sind irrationale Zahlen). Wenn keine exakten Lösungen gefunden werden, sucht man numerische Lösungen mit dem oben angegebenen Befehl fsolve... (siehe auch Kap. 9.3).

3 MAPLE_Mini_09_V1-0.doc Eine Gleichung mit einer Unbekannten numerisch lösen Beispiel 6: Löse tan(sin(x)) 1 = 0 für x [0; 2 ] numerisch. Wir definieren eine Funktion, denn wir wollen auch zeichnen. f := x tan( sin(x) ) 1; Eine numerische Lösung erhalten wir wie wir vorhin schon gesehen haben mit fsolve (f = floating = Fliesskomma) fsolve( f(x) = 0, x); Maple gibt eine Lösung an. Wir skizzieren f(x) = tan(sin(x)) 1 plot(f(x), x= 0..2*Pi); An der Grafik sehen wir, dass in der Nähe von x 2.2 eine weitere Lösung existiert. Wir geben bei fsolve ein Intervall an. fsolve( f = 0, x, ); Zusammenfassung und Bemerkungen: 1) Der solve-befehl liefert - falls möglich - die exakten Lösungen der Gleichung. Je nach Gleichungstyp werden auch komplexe Lösungen gefunden. Diese erkennt man durch das Auftreten der imaginären Einheit I. Wenn das Lösen der Gleichung nur innerhalb der reellen Zahlen erfolgen soll, dann wird mit dem vorherigen Aufruf von with(realdomain) die Rechnung auf die reellen Zahlen beschränkt. 2) Mit dem solve-befehl kann man auch Ungleichungen lösen (ev. zuerst auch ploten, um eine Übersicht zu erhalten). 3) Falls eine exakte Lösung nicht explizit angegeben wird, besteht die Möglichkeit durch evalf(%) anschliessend das Ergebnis numerisch auszuwerten. Alternativ zu solve in Kombination mit evalf kann der fsolve-befehl verwendet werden, um numerisch eine Lösung zu bestimmen. 4) Sind die Nullstellen eines Polynoms n-ten Grades gesucht, so berechnet fsolve mit der Option complex [fsolve(gl, x, complex)] alle Nullstellen (reelle und komplexe) näherungsweise. 5) Enthält die Gleichung nicht polynomiale Terme, so ist nicht sichergestellt, dass alle Lösungen gefunden werden. In diesem Fall bleibt einem nichts anderes übrig als die Funktion zu plotten und in den Regionen, wo sich Lösungen befinden, gezielt zu suchen. Dazu verwendet man die Angabe zur Einschränkung des Lösungsintervalls [fsolve(gl, x, x=a..b].

4 MAPLE_Mini_09_V1-0.doc Eine Gleichung mit mehreren Unbekannten exakt lösen Eine Gleichung mit mehreren Unbekannten hat meist unendlich viele Lösungen. Beispiel 7: Gegeben sei die Gleichung y + ln(x 3) = 0 mit den Unbekannten x und y. Welche Zahlenpaare (x; y) erfüllen die Gleichung? Für x wählen wir eine beliebige Zahl im Definitionsbereich, d.h. x 3. Die Gleichung ist mit diesem x erfüllt, wenn wir y = ln(x 3) setzen. Die Lösungsmenge der Gleichung ist L = { (x; y) mit x 3; y = ln(x 3)} Wir lösen nun die Gleichung mit Maple: y + ln(x 3) = 0. gl := y + ln(x 3) = 0 ; solve( gl, {x, y } ); { x = x, y = ln(x 3) } Die Antwort ist folgendermassen zu interpretieren: Sie dürfen x beliebig wählen. Dann erfüllt das Zahlenpaar (x, y) = (x, ln(x 3) ) die Gleichung. Wichtig: MAPLE hat nicht ganz recht: Die angegebene Lösung ist nur richtig für x im Definitionsbereich der Gleichung, d.h. für alle x > 3.

5 MAPLE_Mini_09_V1-0.doc Lineare Gleichungssysteme Lineare Gleichungssysteme können sowohl mit dem Kommando solve (genaue Lösung oder mit fsolve (numerische Lösung) gelöst werden. Es gibt zudem noch den Befehl isolve, mit ihm werden nur ganzzahlige Lösungen gefunden. Ein lineares Gleichungssystem: m Gleichungen und n Unbekannte x 1, x 2,...x n. a 11 x 1 + a 21 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b a m1 x 1 + a m2 x a mn x n = b m Ein lineares Gleichungssystem hat entweder genau eine Lösung, oder keine Lösung oder unendlich viele Lösungen. Beispiel 8: Lineares Gleichungssystem mit genau einer Lösung 5x + y = 2 Bestimmen Sie die Lösungsmenge des Gleichungssystems x 2y = 7. Die Gleichungen und die Variablen können wir als Mengen definieren. Die Namen gln und var dürfen sie beliebig wählen. gln := { 5*x + y = 2, x 2*y = 7 }; var := { x, y }; Das Gleichungssystem lösen solve( gln, var ); { x = 1, y = 3 } Beispiel 9: Lineares Gleichungssystem mit unendlich vielen Lösungen x + 2y = 1 Gesucht ist die Lösungsmenge des linearen Gleichungssystems 2x + 4y = 2. restart; # x und y dürfen nicht belegt sein Die Gleichungen und Variablen definieren. gln := { x + 2*y = 1, 2*x + 4*y = 2 }; var := { x, y }; Das Gleichungssystem lösen solve( gln, var ); { x = 2y + 1, y = y }

6 MAPLE_Mini_09_V1-0.doc 9-6 Interpretation: Das Gleichungssystem hat unendlich viele Lösungen, die Lösungsmenge lautet {(x; y) x = 2y + 1; y = y mit y IR } Beispiel 10: Das folgende lineare Gleichungssystem besitzt keine Lösung x + 2y = 1 Gesucht ist die Lösungsmenge des linearen Gleichungssystems 2x + 4y = 3. restart; Die Gleichungen und Variablen definieren. gln := { x1 + 2*x2 = 1, 2*x1 + 4*x2 = 3 }; var := { x1, x2 }; solve( gln, var); MAPLE zeigt keine Reaktion. Unbefriedigend! Aufgabe 4: Ändern Sie das Beispiel 10 so ab, dass das Gleichungssystem genau eine, resp. unendlich viele Lösungen hat. Ausblick in die Matrizenrechnung: Wir werden mit Hilfe der Matrizenrechnung sehen, dass es noch weitere Befehle gibt, ein lineares Gleichungssystem zu lösen. Dazu muss aber zuerst ein Package geladen werden: Laden wir das veraltete Package mit with(linalg), dann heisst der Befehl linsolve. Laden wir das neuere Package mit with(linearalgebra), dann heisst der Befehl LinearSolve. Die Details besprechen im Rahmen der Matrizenrechnung

7 MAPLE_Mini_09_V1-0.doc Nichtlineare Gleichungssysteme exakt lösen Beispiel 11: Lösen Sie das nichtlineare Gleichungssystem Die Menge der Gleichungen und der Variablen definieren gln := {x y = 1, x^2 + y^2 = 5}; var := {x, y }; x y = 1 x 2 + y 2 = 5 Das Gleichungssystem lösen; die Lösungen der Variablen lsg zuweisen lsg := solve( gln, var ); lsg := {x =, y = 2}, {x = 2, y = 1} Es gibt zwei Lösungen. Diese sind folgendermassen ansprechbar. lsg [1] = {x =, y = 2} und lsg [2] = {x = 2, y = 1}. 9.7 Nichtlineare Gleichungssysteme grafisch und numerisch lösen Beispiel 11: Lösen Sie das Gleichungssystem Die Gleichungen definieren gl1 := x y = 1; gl2 := x^2 + y^2 = 5; Das Gleichungssystem analytisch lösen x y = 1 x 2 + y 2 = 5 var := {x, y }; fsolve( {gl1, gl2}, var ); {x =, y = 2} {x = 2, y = 1} Wir wollen die Graphen obiger implizit gegebener Funktionen des Gleichungssystems zeichnen. Beachten Sie wie man mehrere Graphen in einer Zeichnung darstellen kann. Idee: Die Graphen werden in p1, resp. p2 gespeichert und mit display gezeichnet. with( plots) p1 := implicitplot( gl1, x = 3..3, y= 3..3): p2 := implicitplot( gl2, x = 3..3, y= 3..3): display( [ p1, p2 ] ); Näherungslösungen: {x = 2, y = 1}, {x =, y = 2}.

8 MAPLE_Mini_09_V1-0.doc Ungleichungen lösen Beispiel 12: Gesucht ist die Lösungsmenge der Ungleichung x4 + x + 1 x 2 + x Wir definieren die Ungleichung ugl := ( x^4 + x + 1) / (x^2 + x + 1) <= 1; Die Ungleichung lösen solve( ugl, x ); RealRange( 1, 1), d.h. L = [ 1; 1 ] Beispiel 13: Lösen Sie die Ungleichung 2x 1 x solve( (2*x 1) / (-x + 2) < 3,x ); RealRange (, Open( 7 5 ) ), RealRange (Open( 2 ), ) Damit ist die Lösung der Ungleichung die Menge L = (, 7 5 ) (2, ) Die Angabe Open bedeutet, dass die Intervallgrenze offen ist.

9 MAPLE_Mini_09_V1-0.doc 9-9 Aufgaben Testat-(Haus-)aufgaben Das Lösen der folgenden Aufgaben gehört zu den Testatbedingungen. (901) Lösen Sie die Gleichungen a) e 2x = 3, b) e x = 4e x + 1 analytisch und numerisch. (902) Lösen Sie die Gleichung x 8 + x = 2. Setzen Sie die Lösung ein. (903) Lösen Sie die quadratische Gleichung ax2 + bx + c = 0. (904) Lösen Sie die Gleichung sin(x) = cos(x). Haben Sie alle Lösungen bekommen? (905) Bestimmen Sie die alle negativen Lösungen der Gleichung sin(x) = x/2. (906) Suchen Sie alle Lösungen der Gleichung 23x x4 10x2 + 17x = 0 im Intervall [ 1; 0]. (907) Lösen Sie das lineare Gleichungssystem 3x + 4y = 12 4x 3y = 10. (908) Bestimmen Sie die Lösungsmenge 2x2 y2 = x4 + y4 = 2 (909) Lösen Sie x + ay = 2 x y = 0 (a ist ein Parameter). (910) Bestimmen Sie die Schnittpunkte zwischen dem Kreis mit der Gleichung (x 2)2 + (y 3)2 = 16 und der Geraden 3x 2y = 3.

7 Grafik in der Ebene (2D-Graphik)

7 Grafik in der Ebene (2D-Graphik) MAPLE_Mini_07_08_V1-0.DOC 7-1 7 Grafik in der Ebene (2D-Graphik) 7.1 Einfache grafische Darstellungen Aufgabe: Die Funktion f: x e x sin( x ) im Intervall (-3; 3) grafisch darstellen. f := x exp( -x )*

Mehr

Bearbeitung von Polynomen und rationalen Funktionen

Bearbeitung von Polynomen und rationalen Funktionen Bearbeitung von Polynomen und rationalen Funktionen Polynom.mw Neue MAPLE-Befehle: coeff, lcoeff, degree, completesquare, solve(identity(...), roots, quo, rem, convert(..., parfrac,...) ---------------------------------------------------------------------------------------------

Mehr

6 Gleichungen und Gleichungssysteme

6 Gleichungen und Gleichungssysteme 03.05.0 6 Gleichungen und Gleichungssysteme Äquivalente Gleichungsumformungen ( ohne Änderung der Lösungsmenge ).) a = b a c = b c Addition eines beliebigen Summanden c.) a = b a - c = b - c Subtraktion

Mehr

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz. FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f

Mehr

Univariate Analysis. Analysis und nichtlineare Modelle Sommersemester

Univariate Analysis. Analysis und nichtlineare Modelle Sommersemester Analysis und nichtlineare Modelle Sommersemester 9 5 Univariate Analysis C. Berechnen Sie ohne Taschenrechner(!). Runden Sie die Ergebnisse auf ganze Zahlen. (a) 7 :, (b) 795 :.. Berechnen Sie ohne Taschenrechner(!):

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Betriebswirtschaft International Business Dresden 05 . Mengen

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Ungleichungen Inhalt: 1. Grundlegendes 2. Lineare Ungleichungen 3. Ungleichungen mit

Mehr

Vorkurs Mathematik Übungen zu linearen Gleichungssystemen

Vorkurs Mathematik Übungen zu linearen Gleichungssystemen Vorkurs Mathematik Übungen zu linearen Gleichungssystemen Lineare Gleichungssysteme lösen Aufgabe. Lösen sie jeweils das LGS A x = b mit ( ( a A =, b = b A =, b = 6 Aufgabe. Berechnen Sie für die folgenden

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengang Bauingenieurwesen Dresden 2005 . Mengen Kenntnisse

Mehr

Einführung und Überblick

Einführung und Überblick Einführung und Überblick Thomas Zehrt Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Thomas Zehrt (Universität Basel) Einführung und Überblick 1 / 33 Outline 1

Mehr

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016 Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler. (a) Bestimmen Sie die kartesische Form von Wintersemester 7/8 (..8) z = ( + i)( i) + ( + i). (b) Bestimmen Sie sämtliche komplexen Lösungen

Mehr

Aufgabe zum Thema: Gebrochen - rationale Funktionen

Aufgabe zum Thema: Gebrochen - rationale Funktionen Aufgabe zum Thema: Gebrochen - rationale Funktionen Eine gebrochen-rationale Funktion Z (x) hat als Zähler- N (x) funktion Z (x) eine lineare Funktion und als Nennerfunktion N (x) eine ganz-rationale Funktion

Mehr

Lineare Funktionen. Das rechtwinklige (kartesische) Koordinatensystem. Funktionen

Lineare Funktionen. Das rechtwinklige (kartesische) Koordinatensystem. Funktionen Das rechtwinklige (kartesische) Koordinatensystem Funktionen Funktion: Eine Funktion ist eine eindeutige Zuordnung. Jedem x D wird genau eine reelle Zahl zugeordnet. Schreibweise: Funktion: f: x f (x)

Mehr

Analytische Lösung algebraischer Gleichungen dritten und vierten Grades

Analytische Lösung algebraischer Gleichungen dritten und vierten Grades Analytische Lösung algebraischer Gleichungen dritten und vierten Grades Inhaltsverzeichnis 1 Einführung 1 2 Gleichungen dritten Grades 3 3 Gleichungen vierten Grades 7 1 Einführung In diesem Skript werden

Mehr

Lineare Gleichungssysteme mit 2 Variablen

Lineare Gleichungssysteme mit 2 Variablen Lineare Gleichungssysteme mit 2 Variablen Lineare Gleichungssysteme mit 2 Variablen Einzelne lineare Gleichungen mit zwei Variablen Bis jetzt haben wir nur lineare Gleichungen mit einer Unbekannten (x)

Mehr

Mathematik-Vorkurs. Übungsaufgaben. im Sommersemester 2012

Mathematik-Vorkurs. Übungsaufgaben. im Sommersemester 2012 Mathematik-Vorkurs Übungsaufgaben im Sommersemester 2012 Goethe Universität-Frankfurt am Main Prof. Dr. Heinz D. Mathes Professur für Produktionswirtschaft 1 Aufgaben zu Thema 1 Aufgabe 1.1: Lesen Sie

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Kartographie/Geoinformatik Vermessung/Geoinformatik Dresden

Mehr

18.2 Implizit definierte Funktionen

18.2 Implizit definierte Funktionen 18.2 Implizit definierte Funktionen Ziel: Untersuche Lösungsmengen von nichtlinearen Gleichungssystemen g(x) = 0 mit g : D R m, D R n, d.h. betrachte m Gleichungen für n Unbekannte mit m < n, d.h. wir

Mehr

1 Geometrie - Lösungen von linearen Gleichungen

1 Geometrie - Lösungen von linearen Gleichungen Übungsmaterial Geometrie - Lösungen von linearen Gleichungen Lineare Gleichungen sind von der Form y = f(x) = 3x + oder y = g(x) = x + 3. Zwei oder mehr Gleichungen bilden ein Gleichungssystem. Ein Gleichungssystem

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Allgemeiner Maschinenbau Fahrzeugtechnik Dresden 2002

Mehr

Vorkurs Mathematik (Allgemein) Übungsaufgaben

Vorkurs Mathematik (Allgemein) Übungsaufgaben Justus-Liebig-Universität Gießen Fachbereich 07 Mathematisches Institut Vorkurs Mathematik (Allgemein) Übungsaufgaben PD Dr. Elena Berdysheva Aufgabe. a) Schreiben Sie die folgenden periodischen Dezimalzahlen

Mehr

ELEMENTE. Grundkompetenzen DER MATHEMATIK. für die neue Reifeprüfung. Mit Lösungen

ELEMENTE. Grundkompetenzen DER MATHEMATIK. für die neue Reifeprüfung. Mit Lösungen 5 ELEMENTE DER MATHEMATIK GK Grundkompetenzen für die neue Reifeprüfung Mit Lösungen Die Formulierung der Grundkompetenzen (GK) bezieht sich auf den Stand von August 2010. 1. Auflage, 2010 Gesamtherstellung:

Mehr

Inhalt. Übersicht über das Gerät 6. Die Hauptanwendung "Main" 7. Das Interaktivmenü 10. Variablen und Funktionen 15

Inhalt. Übersicht über das Gerät 6. Die Hauptanwendung Main 7. Das Interaktivmenü 10. Variablen und Funktionen 15 3 Inhalt Übersicht über das Gerät 6 Die Hauptanwendung "Main" 7 Das Edit-Menü 8 Die Software-Tastatur 8 Kopieren und Einfügen 10 Das Interaktivmenü 10 Der Gleichlösungs-Befehl "solve" 11 Umformungen 12

Mehr

4.1 Stammfunktionen: das unbestimmte Integral

4.1 Stammfunktionen: das unbestimmte Integral Kapitel 4 Integration 4. Stammfunktionen: das unbestimmte Integral Die Integration ist die Umkehrung der Differentiation: zu einer gegebenen Funktion f(x) sucht man eine Funktion F (x), deren Ableitung

Mehr

Kapitel 3. Kapitel 3 Gleichungen

Kapitel 3. Kapitel 3 Gleichungen Gleichungen Inhalt 3.1 3.1 Terme, Gleichungen, Lösungen x 2 2 + y 2 2 3.2 3.2 Verfahren zur zur Lösung von von Gleichungen 3x 3x + 5 = 14 14 3.3 3.3 Gleichungssysteme Seite 2 3.1 Terme, Gleichungen, Lösungen

Mehr

1.7 lineare Gleichungen und Ungleichungen mit 2 Unbekannten

1.7 lineare Gleichungen und Ungleichungen mit 2 Unbekannten 1.7 lineare Gleichungen und Ungleichungen mit 2 Unbekannten Inhaltsverzeichnis 1 Lineare Gleichungen mit 2 Unbekannten 2 1.1 Was ist eine lineare Gleichung mit 2 Unbekannten?..................... 2 1.2

Mehr

Gleichungsarten. Quadratische Gleichungen

Gleichungsarten. Quadratische Gleichungen Gleichungsarten Quadratische Gleichungen Normalform: Dividiert man die allgemeine Form einer quadratischen Gleichung durch a, erhält man die Normalform der quadratischen Gleichung. x 2 +px+q=0 Lösungsformel:

Mehr

Gemischte Aufgaben zur Differentialund Integralrechnung

Gemischte Aufgaben zur Differentialund Integralrechnung Gemischte Aufgaben zur Differentialund Integralrechnung W. Kippels 0. Mai 04 Inhaltsverzeichnis Aufgaben. Aufgabe.................................... Aufgabe.................................... Aufgabe...................................

Mehr

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 25 1. Wie lautet die charakteristische Gleichung der Differentialgleichung y + 2y + y = 0? (a) λ 3 + 2λ + 1 = 0 (b) λ 3 + 2λ = 0 (c)

Mehr

D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi. Musterlösung 10. y(x) = Ae ( 3+2i)x + Be ( 3 2i)x. λ 2 2λ + 1 = (λ 1) 2. y(x) = Ae x + Bxe x.

D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi. Musterlösung 10. y(x) = Ae ( 3+2i)x + Be ( 3 2i)x. λ 2 2λ + 1 = (λ 1) 2. y(x) = Ae x + Bxe x. D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi Musterlösung 10 1. a) Das charakteristische Polynom ist λ 2 + λ 2 = (λ + 2)(λ 1) mit den beiden verschiedenen Nullstellen λ = 2 λ = 1. Die allgemeine Lösung

Mehr

= T 2. Lösungsmenge ist die Menge aller Elemente des Definitionsbereiches D G, die die Gleichung zu einer Wahre Aussage machen.

= T 2. Lösungsmenge ist die Menge aller Elemente des Definitionsbereiches D G, die die Gleichung zu einer Wahre Aussage machen. Gleichungen Eine Gleichung ist eine Aussage, in der die Gleichheit zweier Terme durch Mathematische Symbol ausgedrückt wird. Dies wird durch das Gleichheitssymbol = symbolisiert G : = T 2 Definitionsmenge

Mehr

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 4

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 4 Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieur Innen WS 017/018 Übung Aufgabe 1 : Äquivalenzumformungen Bestimmen Sie ohne Taschenrechner die Lösungsmengen für folgende Gleichungen/Ungleichungen

Mehr

Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie

Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie Dr. Michael Stiglmayr Teresa Schnepper, M.Sc. WS 014/015 Bergische Universität Wuppertal Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie Aufgabe 1

Mehr

Vorkurs Mathematik für Ingenieure WS 2015/2016 Übung 4. (iii) = 33. (iv)

Vorkurs Mathematik für Ingenieure WS 2015/2016 Übung 4. (iii) = 33. (iv) Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieure WS 01/016 Übung Aufgabe 1 : Lineare Gleichungen (a) Für welche x R gilt (i) 31 6(x + 1) = 9 (ii) 11(x ) = ( + 1x) (iii) + = 33

Mehr

Michael Kofler, Gerhard Bitsch, Michael Komma. Maple. Einführung, Anwendung, Referenz. 5., vollständig überarbeitete Auflage

Michael Kofler, Gerhard Bitsch, Michael Komma. Maple. Einführung, Anwendung, Referenz. 5., vollständig überarbeitete Auflage Michael Kofler, Gerhard Bitsch, Michael Komma Maple Einführung, Anwendung, Referenz 5., vollständig überarbeitete Auflage ein Imprint der Pearson Education Deutschland GmbH Kapitel 3 Gleichungen analytisch

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Mathematik für Wirtschaftswissenschaftler Yves Schneider Universität Luzern Frühjahr 2016 Repetition Kapitel 1 bis 3 2 / 54 Repetition Kapitel 1 bis 3 Ausgewählte Themen Kapitel 1 Ausgewählte Themen Kapitel

Mehr

6 Polynomielle Gleichungen und Polynomfunktionen

6 Polynomielle Gleichungen und Polynomfunktionen 6 Polynomielle Gleichungen und Polynomfunktionen Lineare Gleichungen Eine lineare Gleichung in einer Variablen ist eine Gleichung der Form ax + b = cx + d mit festen Zahlen a und c mit a c. Dies kann man

Mehr

De Taschäräschnr Casio (Reihe: 9860G)

De Taschäräschnr Casio (Reihe: 9860G) De Taschäräschnr Casio (Reihe: 9860G) Übersicht: 1. Nullstellen 2. Gleichungen 2. oder 3. Grades lösen 3. Gleichungen lösen 4. Schnittpunkte bestimmen 5. Extrempunkte 6. Wendepunkte 7. Steigung einer Funktion

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version 1.0 (11.

Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version 1.0 (11. Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version.0. September 05) E. Cramer, U. Kamps, M. Kateri, M. Burkschat 05 Cramer, Kamps, Kateri, Burkschat

Mehr

Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik 007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (8 Punkte) Das Schaubild einer Polynomfunktion. Grades geht durch den Punkt S(0/) und hat den 3 Wendepunkt

Mehr

Klausur zur Mathematik für Maschinentechniker

Klausur zur Mathematik für Maschinentechniker SS 04. 09. 004 Klausur zur Mathematik für Maschinentechniker Apl. Prof. Dr. G. Herbort Aufgabe. Es sei f die folgende Funktion f(x) = 4x 4x 9x 6 x (i) Was ist der Definitionsbereich von f? Woistf differenzierbar,

Mehr

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( )

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( ) 64 Die Tangente in x 0 eignet sich also als lokale (lineare) Näherung der Funktion in der Nähe des Punktes P. Oder gibt es eine noch besser approximierende Gerade? Satz 4.9 Unter allen Geraden durch den

Mehr

Kapitel 5. Reelle Funktionen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 5 Reelle Funktionen 1 / 81

Kapitel 5. Reelle Funktionen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 5 Reelle Funktionen 1 / 81 Kapitel 5 Reelle Funktionen Josef Leydold Auffrischungskurs Mathematik WS 207/8 5 Reelle Funktionen / 8 Reelle Funktion Reelle Funktionen sind Abbildungen, in denen sowohl die Definitionsmenge als auch

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme. Kapitel 3 Gleichungen und Ungleichungen linke Seite = rechte Seite Grundmenge: Menge aller Zahlen, die wir als Lösung der Gleichung

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Kapitel 3 Gleichungen und Ungleichungen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 3 Gleichungen und Ungleichungen 1 / 58 Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme.

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Kapitel 3 Gleichungen und Ungleichungen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 3 Gleichungen und Ungleichungen 1 / 58 Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme.

Mehr

Zahlen und Funktionen

Zahlen und Funktionen Kapitel Zahlen und Funktionen. Mengen und etwas Logik Aufgabe. : Kreuzen Sie an, ob die Aussagen wahr oder falsch sind:. Alle ganzen Zahlen sind auch rationale Zahlen.. R beschreibt die Menge aller natürlichen

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Mathematik I für MB und ME Übungsaufgaben Serie 5: Folgen Funktionen Dierentialrechnung Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 206/207 Bestimmen Sie die Grenzwerte der nachstehenden

Mehr

Klausur Wirtschaftsmathematik VO

Klausur Wirtschaftsmathematik VO Klausur Wirtschaftsmathematik VO 02. Februar 2019 Bitte leserlich in Druckbuchstaben ausfüllen! NACHNAME: VORNAME: MATRIKELNUMMER: ERLAUBT: nur die Formelsammlung des Instituts! VERBOTEN: Taschenrechner

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen

Mehr

Newton-Verfahren für ein Skalarfunktion

Newton-Verfahren für ein Skalarfunktion Newton-Verfahren für ein Skalarfunktion Für eine Näherungsberechnung von Nullstellen einer reellen Funktion f(x) : R R benutzt man das Newton-Verfahren: x (n+1) = x (n) f(x (n) )/f (x (n) ). Das Newton-Verfahren

Mehr

7 Integralrechnung für Funktionen einer Variablen

7 Integralrechnung für Funktionen einer Variablen 7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie Übungsaufgaben Lineare Gleichungssysteme Oberstufe Alexander Schwarz www.mathe-aufgaben.com Oktober 05 Pflichtteilaufgaben (ohne GTR) Aufgabe : Löse die folgenden linearen Gleichungssysteme:

Mehr

Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben

Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben Fachbereich Mathematik Vorkurs Mathematik WS 2012/13 Dies ist eine Sammlung von Aufgaben, die hauptsächlich Mittelstufenstoff wiederholen. Dabei

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung ( y

Mehr

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten!

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten! Fakultät für Mathematik Institut für Algebra und Geometrie Prof. Dr. Martin Henk, Dr. Michael Höding Modulprüfung Mathematik III Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik,

Mehr

f(x) = x + 1 ±(x + 1) für 1 x < 0 ±( x + 1) für 0 x 1

f(x) = x + 1 ±(x + 1) für 1 x < 0 ±( x + 1) für 0 x 1 Problemstellung. Die gesuchte lineare Funktion durch die Punkte (0, ) und (, 0) lautet f(x) = x + im Intervall [0, ]. Die Gleichungen für die Begrenzungslinien sind: Λ(x) = { ±(x + ) für x < 0 ±( x + )

Mehr

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 1. (a) Lösen Sie das lineare Gleichungssystem für die Werte a = 1, b = 2. x + 3y + 2z = 0 2x + ay + 3z = 1 3x + 4y + z = b (b) Für welche Werte von

Mehr

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA Dienstag: (Un)Gleichungen in einer Variable, Reelle Funktionen Reelle Funktionen und Lineare Gleichungen. Funktionen sind von

Mehr

Analysis 2. f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt:

Analysis 2.  f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: Analysis 2 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f durch f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: f (x) = 6(x

Mehr

VIII Gleichungen & Ungleichungen

VIII Gleichungen & Ungleichungen Propädeutikum 018 5./6. September 018 Quadratische Gleichungen Logarithmengleichungen Gleichungen Äquivalente Umformungen Seien T 1 und T zwei mathematische Terme. Gleichungen (T 1 = T ) können durch äquivalente

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis. 3

Inhaltsverzeichnis. Inhaltsverzeichnis.   3 Inhaltsverzeichnis Inhaltsverzeichnis Vorwort 4 1 Grundsätzliche Tipps 5 1.1 Erläuterungen zur Schreibweise.......................... 5 1.2 Die Menüstruktur.................................. 5 1.3 Wichtige

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (

Mehr

Übungsaufgaben zur Kurvendiskussion

Übungsaufgaben zur Kurvendiskussion SZ Neustadt Mathematik Torsten Warncke FOS 12c 30.01.2008 Übungsaufgaben zur Kurvendiskussion 1. Gegeben ist die Funktion f(x) = x(x 3) 2. (a) Untersuchen Sie die Funktion auf Symmetrie. (b) Bestimmen

Mehr

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x. Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (

Mehr

Lineare Gleichungen Exkurs: Binomische Formeln Quadratische Gleichungen Exkurs: Polynomdivision Polynomgleichungen

Lineare Gleichungen Exkurs: Binomische Formeln Quadratische Gleichungen Exkurs: Polynomdivision Polynomgleichungen Gleichungen Lineare Gleichungen Exkurs: Binomische Formeln Quadratische Gleichungen Exkurs: Polynomdivision Polynomgleichungen Lineare Gleichungen Lineare Gleichungen ax + b = 0 Lineare Gleichungen ax

Mehr

Kapitel 19 Partialbruchzerlegung

Kapitel 19 Partialbruchzerlegung Kapitel 19 Partialbruchzerlegung Mathematischer Vorkurs TU Dortmund Seite 1 / 15 Zur Erinnerung wiederholen wir Definition 4.5 [part] Es sei n N 0 und a 0, a 1,..., a n R mit a n 0. Dann heißt die Funktion

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 5. MC-Aufgaben Online-Abgabe. Durch zweifache Anwendung der Regel von Bernoulli-de l Hôpital folgt Stimmt diese Überlegung? lim x x 3 +

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester 26 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 2 Aufgabe 2 Welche der folgenden Aussagen sind korrekt? (i) Jedes

Mehr

Aufgaben zur Funktionsdiskussion: Grundkurs Nr. 2 a 2 +b 2 =c 2 Materialbörse Mathematik

Aufgaben zur Funktionsdiskussion: Grundkurs Nr. 2 a 2 +b 2 =c 2 Materialbörse Mathematik Zeichenerklärung: [ ] - Drücken Sie die entsprechende Taste des Graphikrechners! [ ] S - Drücken Sie erst die Taste [SHIFT] und dann die entsprechende Taste! [ ] A - Drücken Sie erst die Taste [ALPHA]

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 26/7 (2.3.27). (a) Bestimmen Sie die kartesische Form von z = 5i 2i und z 2 = ( ) 9 3 2 2 i. (b) Bestimmen Sie sämtliche

Mehr

Grundanforderungen beim Umgang mit CAS bis Ende Klassenstufe 12 Casio ClassPad 400

Grundanforderungen beim Umgang mit CAS bis Ende Klassenstufe 12 Casio ClassPad 400 Grundanforderungen beim Umgang mit CAS bis Ende Klassenstufe 12 Casio ClassPad 400 Die Bildschirmabdrucke veranschaulichen die aufgeführten Kompetenzen. Sie erheben keinen Anspruch auf Vollständigkeit

Mehr

7. Einige Typen von speziellen Funktionen [Kö 8]

7. Einige Typen von speziellen Funktionen [Kö 8] 39 7. Einige Typen von speziellen Funktionen [Kö 8] 7. Analytische Funktionen [Kö 7.3, 4.] Definition. Es sei D C, f : D C und z 0 D ein Häufungspunkt von D. Die Funktion f heißt im Punkt z 0 analytisch,

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Eine Dokumentation von Sandro Antoniol Klasse 3f Mai 2003 Inhaltsverzeichnis: 1. Einleitung...3 2. Grundlagen...4 2.1. Symmetrieeigenschaften von Kurven...4 2.1.1. gerade Exponenten...4 2.1.2. ungerade

Mehr

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 4. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching June 6, 207 Erinnerung Die Reihe a k konvergiert falls, lim S n = lim n n n a k =: a k existiert. Satz (Majoranten/Minorantenkriterium)

Mehr

Polynomgleichungen. Gesetzmäßigkeiten

Polynomgleichungen. Gesetzmäßigkeiten Polynomgleichungen Gesetzmäßigkeiten Werden zwei Terme durch ein Gleichheitszeichen miteinander verbunden, so entsteht eine Gleichung. Enthält die Gleichung die Variable x nur in der 1. Potenz, so spricht

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten Mathematik Rechenfertigkeiten Lösungen zu den Übungen Freitag Dominik Tasnady, Mathematik Institut, Universität Zürich Winterthurerstrasse 9, 857 Zürich Erstellt von Dr. Irmgard Bühler 9.August Integration,

Mehr

Grundwissensblatt 8. Klasse. IV. Lineare Gleichungen mit zwei Variablen 1. Eigenschaften von linearen Gleichungen mit zwei Variablen

Grundwissensblatt 8. Klasse. IV. Lineare Gleichungen mit zwei Variablen 1. Eigenschaften von linearen Gleichungen mit zwei Variablen Grundwissensblatt 8. Klasse IV. Lineare Gleichungen mit zwei Variablen. Eigenschaften von linearen Gleichungen mit zwei Variablen Alle linearen Gleichungen der Form a + by = c (oder auch y = m + t) erfüllen:

Mehr

11 Gleichungssysteme. 5y 5z = 10 (G 1) 10y + 8z = 12 (G 3) 2(5 3y 2z) + y z = 0 (G 1) 2(5 3y 2z) + 4y + 4z = 2 (G (G 3) y = 6 4z

11 Gleichungssysteme. 5y 5z = 10 (G 1) 10y + 8z = 12 (G 3) 2(5 3y 2z) + y z = 0 (G 1) 2(5 3y 2z) + 4y + 4z = 2 (G (G 3) y = 6 4z Mathematik. Klasse Gleichungssysteme Beispiel: Für welche Werte von x und y sind beide der folgenden Gleichungen wahr? x + y = 60 (G ) x y = 40 (G ). Lösungsmethoden Es gibt verschiedene Lösungsmethoden

Mehr

4x 1 + 2x 2 + 3x 3 = 1, x 2 + ax 3 = 1, ax 2 + x 3 = a 1. 0 a 1 1 Wir führen nun den Gauÿalgorithmus durch:

4x 1 + 2x 2 + 3x 3 = 1, x 2 + ax 3 = 1, ax 2 + x 3 = a 1. 0 a 1 1 Wir führen nun den Gauÿalgorithmus durch: Aufgabe 8 Punkte Bestimmen Sie die Lösungsmenge in R in Abhängigkeit von a R des folgenden linearen Gleichungssystems: 4x + x + 3x 3 =, x + ax 3 =, ax + x 3 =. Lösung. Wir schreiben das lineare Gleichungssystem

Mehr

Lineare Gleichungssystem

Lineare Gleichungssystem Lineare Gleichungssystem 8. Juli 07 Inhaltsverzeichnis Einleitung Der Gauß-Algorithmus 4 3 Lösbarkeit von Gleichungssystemen 6 Einleitung Wir haben uns bisher hauptsächlich mit dem Finden von Nullstellen

Mehr

Quadratische Funktion

Quadratische Funktion Quadratische Funktion Wolfgang Kippels 6. Oktober 018 Inhaltsverzeichnis 1 Vorwort Zusammenstellung der Grundlagen 3.1 Nullstellen................................... 3. Scheitelpunkt.................................

Mehr

GMFH - Gesellschaft für Mathematik an Schweizer Fachhochschulen SMHES - Société pour les Mathématiques dans les Hautes Ecoles Spécialisées suisses

GMFH - Gesellschaft für Mathematik an Schweizer Fachhochschulen SMHES - Société pour les Mathématiques dans les Hautes Ecoles Spécialisées suisses GMFH - Gesellschaft für Mathematik an Schweizer Fachhochschulen SMHES - Société pour les Mathématiques dans les Hautes Ecoles Spécialisées suisses Mathematik-Referenzaufgaben zum Rahmenlehrplan für die

Mehr

Flächenberechnung mit Integralen

Flächenberechnung mit Integralen Flächenberechnung mit Integralen W. Kippels 30. April 204 Inhaltsverzeichnis Übungsaufgaben 2. Aufgabe................................... 2.2 Aufgabe 2................................... 2.3 Aufgabe 3...................................

Mehr

Elementare Funktionen. Analysis I November 28, / 101

Elementare Funktionen. Analysis I November 28, / 101 Elementare Funktionen Analysis I November 28, 2017 76 / 101 Exponentialfunktion Buch Kap. 2.3 Exponentialfunktionen f(x) = a x, a > 0, D = R. Ist a = e (Eulerzahl e = 2, 71828...), sprechen wir von der

Mehr

Lineare Algebra und Numerische Mathematik D-BAUG. Sommer 2012 Prof. H.-R. Künsch

Lineare Algebra und Numerische Mathematik D-BAUG. Sommer 2012 Prof. H.-R. Künsch b Prüfung Lineare Algebra und Numerische Mathematik D-BAUG. Multiple Choice: Sommer Prof. H.-R. Künsch Gegeben sei die folgende Matrix A = 4. 4 (a) x AA T ist eine 4 4 Matrix mit ( AA T) = 4. AA T ist

Mehr

Boris Girnat Wintersemester 2008/09 Westfälische Wilhelmsuniversität Münster Institut für Didaktik der Mathematik und der Informatik

Boris Girnat Wintersemester 2008/09 Westfälische Wilhelmsuniversität Münster Institut für Didaktik der Mathematik und der Informatik RECHNERÜBUNG ZUR ANALYSIS Boris Girnat Wintersemester 008/09 Westfälische Wilhelmsuniversität Münster Institut für Didaktik der Mathematik und der Informatik Themen und Aufgaben Grundlagen Die technischen

Mehr