MEDA 42 Inhalt Analogien Technik Mathematik Analog Digital Digitalisierung des Analogen Beispiele

Größe: px
Ab Seite anzeigen:

Download "MEDA 42 Inhalt Analogien Technik Mathematik Analog Digital Digitalisierung des Analogen Beispiele"

Transkript

1 TA Frank Winkler, Manfred Günther Berlin, Inhalt Analogien Technische Probleme: Ausgleich Mathematik: Differentialgleichungen Analoge Rechnung: Spannungen Digitale Rechnung: Zahlen Digitale Simulation analoger Rechner Beispiele Berlin,

2 Analogien 1 - Phänomen: Planetenbahnen - Wissenschaft: Mathematik, Physik (Keplersche Gesetze, Gravitationsgesetz) - Modellierung: Kalender, Eintrag Wintersonnenwende Berlin, Analogien 2 - Modellierung: Analogrechner (Telefunken 1966) Berlin,

3 Analogien 3 Berechnung der Planetenbahnen nach Kepler auf RAT 740 Berlin, Analogien 4 - Physik: Ausgleichvorgänge (Temperatur, Konzentration) Schwingungen, Schwingungsdämpfung Regelungen,... - Biochemie: Konzentrationsausgleich, Zellwachstum,... - Elektrotechnik Ausgleichvorgänge (Kondensator), Schwingungen (Kondensator, Spule: Schwingkreis ) Regelungen,... Gemeinsames Beispiel: Ausgleichsproblem Berlin,

4 Natur und Technik Beispiel: Ausgleichsproblem: Beobachtung, Messung: Transportgeschwindigkeit (x/t) eines Mediums x ist vom Konzentrationsgefälle x-x 0 abhängig. Modellierung, Mathematik: Differentialgleichung / = k (x - x 0 ) k: Ausgleichskonstante Ist x 0 und k bekannt (oder Null) kann x zu jeder Zeit t von einem Mathematiker berechnet werden. Fragen: 1. kann man diese Gleichung von einer Maschine berechnen lassen? 2 kann die Maschine mindestens so schnell oder schneller rechnen, als der Transportvorgang dauert? Berlin, Mathematik = k ( x x0) Der Mathematiker sagt: inhomogene lineare Differentialgleichung oder, wenn x 0 = 0 homogene lineare Differentialgleichung : = k x... stellt die Gleichung um,... und löst sie: k x = 0 x = x e A k t Anmerkung: meist ist k negativ Ausgleich, positives k ergibt eine Kettenreaktion Berlin,

5 kann man diese Gleichung von einer Maschine berechnen lassen? Analogrechner 1 + k x = 0 Ausgleich: negatives k, daher positiv in der Formel Die Differentation / ist nicht gut technisch realisierbar, aber die Integration! + k x = 0 x + k x = 0 Oder: x = k x Ja: wir bilden das Problem analog auf Spannungen U ab: U = Integrator k U Berlin, Analogrechner 2 Beobachtung der Spannung in der Modellschaltung: Berlin,

6 kann man diese Gleichung von einer Maschine berechnen lassen? Analogrechner 3 + k x du = U = RC 0 Elektrotechnik: du C = C I du U = R U I = R * Kann ein Kondensator rechnen? * Kirchhoff scher Satz: die Summe der Ströme in einem Verbindungspunkt ist 0 Berlin, kann man diese Gleichung von einer Maschine berechnen lassen? Digitalrechner + k x = 0 Mathematik: = lim x ( t x 1 0 ( t1 t0 ) 0 1 t0 ) x t x k x = 1 1 t0 0 Ist k sowie x 0 zur Zeit t 0 bekannt, So kann x 1 für die Zeit t 1 berechnet werden. Dann x 2, x 3 usw. bis zur gewünschten Zeit t Ja: wir bilden das Problem auf die Addition und Subtraktion ab. Dann kann jeder Rechner, der +, und * im Zahlensystem beherrscht, die Gleichung lösen. Er muss es mehrfach, schrittweise tun. Am besten (am genauesten, dann aber auch am langsamsten) in unendlich kleinen Schritten! Berlin,

7 Ein Digitalrechner simuliert den Analogrechner PSPICE Simulator schematic entry Modellierung des Analogrechners Ist eine Digitalsimulation eines analogen Rechners sinnvoll? (also eine Simulation 2. Ordnung?) Berlin, Ein Digitalrechner simuliert den Analogrechner PSPICE Simulator Probe Alle inneren Spannungsverläufe im Analogrechner Berlin,

8 Differentialanalysator TA Hersteller: Tesla, kg, 200 W Genauigkeit: 0,2 % Verstärker Inverter Addierer Integratoren Multiplikatoren Quadrierer Komparatoren Standort: HU Berlin,Adlershof Berlin, TA Programmierfeld der Integratoren Berlin,

9 TA 2-fach Operationsverstärker Berlin, TA Differentialgleichung 1. Ordnung (Ausgleich): Entwurf Berlin,

10 TA Differentialgleichung 2. Ordnung: Entwurf Berlin, TA Oszilloskopbild: Rechendauer: 60 ms Oben: Lösung der Dgl. 2. Ordnung Untern: Dgl. 1. Ordnung Die Rechnung wiederholt sich periodisch. (Repetiermodus) Berlin,

11 Testaufbau Kondensatorentladung (Dgl. 1. Ordnung) R C Der Testaufbau liefert ein ähnliches Oszilloskopbild wie auf Seite 20 unten, nur ohne Repetierung Berlin, Testaufbau 2 Schwingkreis (Dgl. 2. Ordnung) L R C Der Testaufbau liefert ein ähnliches Oszilloskopbild wie auf Seite 20 oben, nur ohne Repetierung Berlin,

12 Vielen Dank für das Interesse, und für Ihre Neugier, Technik aus verschiedenen Blickwinkeln zu betrachten. Dr.-Ing. Frank Winkler Berlin,

Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. Daten: U AB. der Induktivität L! und I 2. , wenn Z L. = j40 Ω ist? an!

Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. Daten: U AB. der Induktivität L! und I 2. , wenn Z L. = j40 Ω ist? an! Grundlagen der Elektrotechnik I Aufgabe K4 Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. R 1 A R 2 Daten R 1 30 Ω R 3 L R 2 20 Ω B R 3 30 Ω L 40 mh 1500 V f 159,15 Hz 1. Berechnen Sie

Mehr

6.1.2 Summe von drei Variablen Lösung eines linearen Gleichungssystemes mit zwei Unbekannten

6.1.2 Summe von drei Variablen Lösung eines linearen Gleichungssystemes mit zwei Unbekannten 6. Rechenbeispiele Die nachfolgenden einfachen Demonstrationsbeispiele aus dem Gebiet der Analog-Rechentechnik zeigen die Funktion dieses kleinen Analogrechners, der nur mit einer minimalen Anzahl von

Mehr

C7.3' Allgemeine Lösungstrategien für Differentialgleichungen 1. Ordnung. rechte Seite der DG ist unabhängig von x

C7.3' Allgemeine Lösungstrategien für Differentialgleichungen 1. Ordnung. rechte Seite der DG ist unabhängig von x C7.3' Allgemeine Lösungstrategien für Differentialgleichungen 1. Ordnung (a) Trivialfall: rechte Seite der DG ist unabhängig von x Integration: Substitution auf linker Seite: Lösung: Fazit: Das Lösen von

Mehr

Ein- und Ausschaltvorgang am Kondensator ******

Ein- und Ausschaltvorgang am Kondensator ****** 6.2.3 ****** Motivation Bei diesem Versuch werden Ein- und Ausschaltvorgänge an RC-Schaltkreisen am PC vorgeführt. 2 Experiment Abbildung : Versuchsaufbau zum Eine variable Kapazität (C = (0 bis 82) nf)

Mehr

Versuch E Bei einer unbelasteten Spannungsquelle liegt kein geschlossener Stromkreis vor. Außer dem Innenwiderstand

Versuch E Bei einer unbelasteten Spannungsquelle liegt kein geschlossener Stromkreis vor. Außer dem Innenwiderstand 1 Spannungsquelle Belastete und unbelastete Spannungsquelle: Unbelastete Spannungsquelle Bei einer unbelasteten Spannungsquelle liegt kein geschlossener Stromkreis vor. Außer dem Innenwiderstand R i der

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

Anwendung: gedämpfter harmonischer Oszillator (ohne Antrieb) Exponentialansatz: Eigenwertproblem: Charakteristisches Polynom: Zwischenbemerkung:

Anwendung: gedämpfter harmonischer Oszillator (ohne Antrieb) Exponentialansatz: Eigenwertproblem: Charakteristisches Polynom: Zwischenbemerkung: Anwendung: gedämpfter harmonischer Oszillator (ohne Antrieb) Exponentialansatz: Eigenwertproblem: Charakteristisches Polynom: Zwischenbemerkung: (3q.6) folgt auch direkt, wenn ein exp-ansatz für x(t),

Mehr

Beispiele zu Teil 3: Differentialgleichungen

Beispiele zu Teil 3: Differentialgleichungen Beispiele zu Teil 3: Differentialgleichungen 1. Geben Sie die Ordnung der nachstehenden DGL an und geben Sie an ob die DGL in ihrer impliziten oder in ihrer expliziten Form vorliegt. x 2 tx 2 0 xx t 0

Mehr

Systemtheorie. Vorlesung 6: Lösung linearer Differentialgleichungen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 6: Lösung linearer Differentialgleichungen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 6: Lösung linearer Differentialgleichungen Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Einführung Viele technischen Anwendungen lassen sich zumindest näherungsweise

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

Outline. 1 Anwendungen. 2 Trennung der Variablen. 3 Variation der Konstanten. 4 Differentialgleichungssysteme

Outline. 1 Anwendungen. 2 Trennung der Variablen. 3 Variation der Konstanten. 4 Differentialgleichungssysteme Outline 1 Anwendungen 2 Trennung der Variablen 3 Variation der Konstanten 4 Differentialgleichungssysteme 5 Lösungsansatz vom Typ der rechten Seite Roman Wienands (Universität zu Köln) Mathematik II für

Mehr

Lineare Differentialgleichungen 1. Ordnung

Lineare Differentialgleichungen 1. Ordnung Lineare Differentialgleichungen 1. Ordnung Eine lineare Differentialgleichung 1. Ordnung hat folgende Gestalt: +f() = r(). Dabei sind f() und r() gewisse, nur von abhängige Funktionen. Wichtig: sowohl

Mehr

Elektrotechnik: Übungsblatt 3 - Gleichstromschaltungen

Elektrotechnik: Übungsblatt 3 - Gleichstromschaltungen Elektrotechnik: Übungsblatt 3 - Gleichstromschaltungen 1. Aufgabe: Nennen sie die Kirchhoffschen Gesetzte und erläutern sie ihre physikalischen Prinzipien mit eigenen Worten. Lösung: Knotenregel: Die vorzeichenrichtige

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( )

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( ) TU München Prof. P. Vogl Beispiel 1: Übungen Theoretische Physik I (Mechanik) Blatt 5 (26.08.11) Nach Gompertz (1825) wird die Ausbreitung von Rostfraß auf einem Werkstück aus Stahl durch eine lineare

Mehr

Lineare Differenzengleichungen und Polynome. Franz Pauer

Lineare Differenzengleichungen und Polynome. Franz Pauer Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 13/7, A-600 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at Vortrag beim ÖMG-LehrerInnenfortbildungstag

Mehr

Fundamentale Lösungen von linearen homogenen Differentialgleichungen. 1-E Ma 2 Lubov Vassilevskaya

Fundamentale Lösungen von linearen homogenen Differentialgleichungen. 1-E Ma 2 Lubov Vassilevskaya Fundamentale Lösungen von linearen homogenen Differentialgleichungen 1-E Eigenschaften einer linearen DGL 2. Ordnung Eine homogene lineare Differenzialgleichung 2. Ordnung mit konstanten Koeffizienten

Mehr

HOCHSCHULBÜCHER FÜR MATHEMATIK H.GRELL, K.MARUHN U N D W.RINOW BAND 14 FOURIERREIHEN VON G.P. TOLSTOW MIT 51 A B B I L D U N G E N

HOCHSCHULBÜCHER FÜR MATHEMATIK H.GRELL, K.MARUHN U N D W.RINOW BAND 14 FOURIERREIHEN VON G.P. TOLSTOW MIT 51 A B B I L D U N G E N fc HOCHSCHULBÜCHER FÜR MATHEMATIK H E R A U S G E G E B E N VON H.GRELL, K.MARUHN U N D W.RINOW BAND 14 FOURIERREIHEN VON G.P. TOLSTOW MIT 51 A B B I L D U N G E N 1955 VEB DEUTSCHER VERLAG DER WISSENSCHAFTEN

Mehr

Lineare Differenzengleichungen. Franz Pauer. Vortrag beim LehrerInnenfortbildungstag West 2010 in Innsbruck

Lineare Differenzengleichungen. Franz Pauer. Vortrag beim LehrerInnenfortbildungstag West 2010 in Innsbruck Lineare Differenzengleichungen Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 13/7, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at Vortrag beim LehrerInnenfortbildungstag

Mehr

Bearbeitungszeit: 30 Minuten

Bearbeitungszeit: 30 Minuten Vorname: Studiengang: Platz: Aufgabe: 1 2 3 Gesamt Punkte: Bearbeitungszeit: 30 Minuten Zugelassene Hilfsmittel: - eine selbsterstellte, handgeschriebene Formelsammlung (1 Blatt DIN A4, einseitig beschrieben,

Mehr

Operationsverstärker. 1.) OP als Komparator. Verstärkt wird die Differenzeingangsspannung U D mit der entsprechenden Verstärkung.

Operationsverstärker. 1.) OP als Komparator. Verstärkt wird die Differenzeingangsspannung U D mit der entsprechenden Verstärkung. Der OP wurde einst für Rechenoperationen entwickelt. zb. differenzieren, integrieren, addieren, subtrahieren, multiplizieren usw. Anwendungen eines OP: Komparator Verstärker Aktive Filter Regler Oszillator

Mehr

Bearbeitungszeit: 30 Minuten

Bearbeitungszeit: 30 Minuten Vorname: Studiengang: Platz: Aufgabe: 1 2 3 Gesamt Punkte: Bearbeitungszeit: 30 Minuten Zugelassene Hilfsmittel: - eine selbsterstellte, handgeschriebene Formelsammlung (1 Blatt DIN A4, einseitig beschrieben,

Mehr

Rechteckoszillator. Outline Theorie Beispiel invertierender Diskriminator Tipps zu den Aufgaben. ET2 Serie 4

Rechteckoszillator. Outline Theorie Beispiel invertierender Diskriminator Tipps zu den Aufgaben. ET2 Serie 4 Rechteckoszillator 1 Umschaltpunkt beim nicht invertierenden 2 3 Wiederholung Operationsverstärker Betriebsmodi U B Umschaltpunkt beim nicht invertierenden u P u N U B a) Negative Rückkopplung Gegenkopplung

Mehr

9.4 Lineare gewöhnliche DGL

9.4 Lineare gewöhnliche DGL 9.4 Lineare gewöhnliche DGL Allgemeinste Form einer gewöhnlichen DGL: Falls linear in ist, sprechen wir von einer "linearen" DGL: und eine Matrix zeitabhängigen Komponenten ein zeitabhängiger Vektor In

Mehr

Elektromagnetische Schwingkreise

Elektromagnetische Schwingkreise Grundpraktikum der Physik Versuch Nr. 28 Elektromagnetische Schwingkreise Versuchsziel: Bestimmung der Kenngrößen der Elemente im Schwingkreis 1 1. Einführung Ein elektromagnetischer Schwingkreis entsteht

Mehr

Hochschule Düsseldorf University of Applied Sciences. 29. September 2016 HSD. Physik. Donec quis nunc. Quelle: Wikipedia

Hochschule Düsseldorf University of Applied Sciences. 29. September 2016 HSD. Physik. Donec quis nunc. Quelle: Wikipedia Physik Donec quis nunc Quelle: Wikipedia Wie lerne ich erfolgreich? Gruppenarbeit Lernerfolg überprüfen Gegenseitig,aus dem Kopf erklären Arbeitsbelastung einteilen Schwere Fächer zuerst Wie lerne ich

Mehr

Die inhomogene Differentialgleichung höherer Ordnung.

Die inhomogene Differentialgleichung höherer Ordnung. Die inhomogene Differentialgleichung höherer Ordnung. Ist das Funktionensystem (y 1,..., y n ) ein Fundamentalsystem, so ist die Matrix Y(t) = y (0) 1... y n (0). y (n 1) 1... y n (n 1) eine Fundamentalmatrix

Mehr

(2 π f C ) I eff Z = 25 V

(2 π f C ) I eff Z = 25 V Physik Induktion, Selbstinduktion, Wechselstrom, mechanische Schwingung ösungen 1. Eine Spule mit der Induktivität = 0,20 mh und ein Kondensator der Kapazität C = 30 µf werden in Reihe an eine Wechselspannung

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

4.5 Gekoppelte LC-Schwingkreise

4.5 Gekoppelte LC-Schwingkreise 4.5. GEKOPPELTE LC-SCHWINGKEISE 27 4.5 Gekoppelte LC-Schwingkreise 4.5. Versuchsbeschreibung Ein elektrischer Schwingkreis kann induktiv mit einem zweiten erregten Schwingkreis 2 koppeln. Der Kreis wird

Mehr

BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND KAPAZITIVEM WIDERSTAND.

BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND KAPAZITIVEM WIDERSTAND. Elektrizitätslehre Gleich- und Wechselstrom Wechselstromwiderstände BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND KAPAZITIVEM WIDERSTAND. Bestimmung des Wechselstromwiderstandes

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Eine einfache Differentialgleichung löst man bereits beim Integrieren in der Oberstufe. Sie hat die Form y (x) = f(x) und y wird gesucht. Beispiel: y (x) = 6x² - 4x + 1 fl y(x)

Mehr

R C 1s =0, C T 1

R C 1s =0, C T 1 Aufgaben zum Themengebiet Aufladen und Entladen eines Kondensators Theorie und nummerierte Formeln auf den Seiten 5 bis 8 Ein Kondensator mit der Kapazität = 00μF wurde mit der Spannung U = 60V aufgeladen

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

2. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB

2. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB Fachbereich Mathematik Prof. Dr. J. Lang Dipl.-Math. C. Schönberger Dipl.-Math. L. Kamenski WS 007/08 6.Oktober 007. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB Gruppenübung Aufgabe G4

Mehr

Homogene lineare Differentialgleichung 1. Ordnung

Homogene lineare Differentialgleichung 1. Ordnung Homogene lineare Differentialgleichung. Ordnung Sanddünen und Integralkurven E Ma Lubov Vassilevskaa E Ma Lubov Vassilevskaa E3 Ma Lubov Vassilevskaa Lineare DGL. Ordnung Definition: Eine Differenzialgleichung.

Mehr

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 23

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 23 D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 23 1. Gegeben ist eine lineare und homogene Differenzialgleichung, welche y : sin als Lösung besitzt. Welche der folgenden Aussagen

Mehr

Lösungsskizzen zur Nachklausur

Lösungsskizzen zur Nachklausur sskizzen zur Nachklausur Mathematik II für die Fachrichtungen Biologie und Chemie Sommersemester 22 Aufgabe Es seien die folgenden Vektoren 2 v = 2, v 2 = und v 3 = 2 im R 3 gegeben. (a) Zeigen Sie, dass

Mehr

Inhomogene lineare Differentialgleichung 1. Ordnung Variation der Konstanten

Inhomogene lineare Differentialgleichung 1. Ordnung Variation der Konstanten http://farm2.static.flickr.com/1126/1106887574_afb6b55b4e.jpg?v=0 Inhomogene lineare Differentialgleichung 1. Ordnung Variation der Konstanten 1-E Joseph Louis Lagrange (1736-1813), ein italienischer Mathematiker

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 3

Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)

Mehr

Formelanhang Mathematik II

Formelanhang Mathematik II Formelanhang Mathematik II Mechatronik 2. Sem. Prof. Dr. K. Blankenbach Wichtige Formeln: - Euler: e j = cos() + j sin() ; e -j = cos() - j sin() - Sinus mit Phase: Übersicht Differentialgleichungen (DGL)

Mehr

Physikalische und 1 mathematische Grundlagen Formeln der Mechanik Formeln der Elektrotechnik

Physikalische und 1 mathematische Grundlagen Formeln der Mechanik Formeln der Elektrotechnik Physikalische und 1 mathematische Grundlagen 11...48 Formeln der Mechanik 49...70 2 Formeln der Elektrotechnik 71...122 3 Formeln der Elektronik 123...154 4 Sachwortregister 155...160 5 Bibliografische

Mehr

1 Transponieren, Diagonal- und Dreiecksmatrizen

1 Transponieren, Diagonal- und Dreiecksmatrizen Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix

Mehr

IMST-PROJEKT. Messwerterfassung und Modellbildung im Mathematikunterricht

IMST-PROJEKT. Messwerterfassung und Modellbildung im Mathematikunterricht Beispiel 1: Springender Ball (siehe englischsprachige Versuchsvorschrift!) Der Ball wird fallen gelassen und der Abstand des Balls vom Ultraschallsensor CBR gemessen. Die Software LoggerPro liefert folgenden

Mehr

Fachhochschule Dortmund FB Informations und Elektrotechnik KLAUSUR LN/FP Sensortechnik/Applikation

Fachhochschule Dortmund FB Informations und Elektrotechnik KLAUSUR LN/FP Sensortechnik/Applikation KLAUSUR LN/FP Sensortechnik/Applikation Name: Matr.-Nr.: Vorname: Note: Datum: Beginn: 8:15 Uhr Dauer: 120 Min. Aufgabe 1 2 3 4 Summe max. Pkt 22 18 14 10 64 err. Pkt Allgemeine Hinweise: Erlaubte Hilfsmittel:

Mehr

Analogtechnik Kontinuierliche Signale. Informationstechnik für Luft- und Raumfahrt Aerospace Information Technology

Analogtechnik Kontinuierliche Signale. Informationstechnik für Luft- und Raumfahrt Aerospace Information Technology Analogtechnik Kontinuierliche Signale Nutzung der Analogtechnik Input Vx(0), Vy(0) (V = Geschwindigkeit) Output: Vx(t), Vy(t), Vieles mit differential Gleichung (von Time) alles was sich bewegt -> differential

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B1 A WS SS 17 13/14 Inhalt der Vorlesung A1 1. Einführung Methode der Physik Physikalische Größen Übersicht über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung

Mehr

Hochschule Düsseldorf University of Applied Sciences. 01. Oktober 2015 HSD. Physik. Quelle: Wikipedia

Hochschule Düsseldorf University of Applied Sciences. 01. Oktober 2015 HSD. Physik. Quelle: Wikipedia Physik Quelle: Wikipedia Wie lerne ich erfolgreich? Gruppenarbeit Lernerfolg überprüfen Gegenseitig,aus dem Kopf erklären Arbeitsbelastung einteilen Schwere Fächer zuerst Lernen Sie nie allein! Selber

Mehr

Kondensator und Spule

Kondensator und Spule Hochschule für angewandte Wissenschaften Hamburg Naturwissenschaftliche Technik - Physiklabor http://www.haw-hamburg.de/?3430 Physikalisches Praktikum ----------------------------------------------------------------------------------------------------------------

Mehr

Die Differentialgleichung :

Die Differentialgleichung : Die Differentialgleichung : Erstellt von Judith Ackermann 1.) Definition, Zweck 1.1) verschiedene Arten von Differentialgleichungen 2.) Beispiele und Lösungswege 2.1) gewöhnliche Differentialgleichungen

Mehr

2.5 Lineare Differentialgleichungen n-ter Ordnung

2.5 Lineare Differentialgleichungen n-ter Ordnung 2.5 Lineare Differentialgleichungen n-ter Ordnung Eine Dgl der Gestalt a n (x)y (n) +a n 1 (x)y (n 1) +...+a 2 (x)y +a 1 (x)y +a 0 (x)y = b(x) heißt lineare Dgl n-ter Ordnung. ( ) Dabei sind a 0, a 1,...,

Mehr

Vektoren. Vektorrechnung

Vektoren. Vektorrechnung Vektoren Dieser Text behandelt das Thema Vektoren, sowei es die gymnasiale Oberstufe betrifft. Vektoren können mehr als das, aber das würde in diesem Überblich zu weit führen. Ein großes Defizit der meisten

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/2013 Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Aufgabe 1: Bruchrechnung Lösen Sie die folgenden Gleichungen nach x auf (a) x x 2 1

Mehr

6 Elektromagnetische Schwingungen und Wellen

6 Elektromagnetische Schwingungen und Wellen 6 Elektromagnetische Schwingungen und Wellen Gegen Ende des 19.Jahrhunterts gelang dem berühmten deutschen Physiker Heinrich Rudolph Hertz (1857-1894) zum ersten Mal in der Geschichte der Menschheit der

Mehr

Übung 4.1: Dynamische Systeme

Übung 4.1: Dynamische Systeme Übung 4.1: Dynamische Systeme c M. Schlup, 18. Mai 16 Aufgabe 1 RC-Schaltung Zur Zeitpunkt t = wird der Schalter in der Schaltung nach Abb. 1 geschlossen. Vor dem Schliessen des Schalters, betrage die

Mehr

Grolik Benno, Kopp Joachim. 2. Januar 2003 R 1 R 2 = R 3 R 4. herleiten, aus der man wiederum den unbekannten Widerstand sehr genau berechnen kann.

Grolik Benno, Kopp Joachim. 2. Januar 2003 R 1 R 2 = R 3 R 4. herleiten, aus der man wiederum den unbekannten Widerstand sehr genau berechnen kann. Brückenschaltungen Grolik Benno, Kopp Joachim 2. Januar 2003 Grundlagen des Versuchs. Brückenschaltung für Gleichstromwiderstände Zur genauen Bestimmung ohmscher Widerstände eignet sich die klassische

Mehr

OPV Grundschaltungen. Von Philipp Scholze

OPV Grundschaltungen. Von Philipp Scholze OPV Grundschaltungen Von Philipp Scholze Gliederung 1) Einleitung 1) Allgemeine Funktion eines OPVs 2) Idealer und realer OPV 3) Schaltsymbol und Kennlinie 2) Betriebsarten 3) Zusammenfassung 4) Quellen

Mehr

Das wissen Sie: 6. Welche Möglichkeiten zur Darstellung periodischer Funktionen (Signalen) kennen Sie?

Das wissen Sie: 6. Welche Möglichkeiten zur Darstellung periodischer Funktionen (Signalen) kennen Sie? Das wissen Sie: 1. Wann ist eine Funktion (Signal) gerade, ungerade, harmonisch, periodisch (Kombinationsbeispiele)? 2. Wie lassen sich harmonische Schwingungen mathematisch beschreiben und welche Beziehungen

Mehr

Gleichstromtechnik. Vorlesung 17: Grundschaltungen mit Operationsverstärkern. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Gleichstromtechnik. Vorlesung 17: Grundschaltungen mit Operationsverstärkern. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Gleichstromtechnik Vorlesung 7: Grundschaltungen mit Operationsverstärkern Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Übertragungsfunktion für invertierende Verstärker Verstärker

Mehr

Physik III - Anfängerpraktikum- Versuch 355

Physik III - Anfängerpraktikum- Versuch 355 Physik III - Anfängerpraktikum- Versuch 355 Sebastian Rollke (03095) und Daniel Brenner (05292) 2. September 2005 Inhaltsverzeichnis Einleitung 2 2 Theorie 2 2. Die Resonanzfrequenz gekoppelter Schwingkreise..................

Mehr

Lösungsvorschläge zum 4. Übungsblatt, WS 2012/2013 Höhere Mathematik III für die Fachrichtung Physik

Lösungsvorschläge zum 4. Übungsblatt, WS 2012/2013 Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt, WS 202/203 Höhere Mathematik III für die Fachrichtung Physik Aufgabe 6 Bei allen Aufgabenteilen handelt es sich um (homogene bzw. inhomogene) lineare Differentialgleichungen

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben. ( Punkte) a) Wir berechnen lim sin(x ) x 3 + 4x L Hôpital = lim x cos(x ) 3x + 8x = 4. b) Wir benutzen L Hôpital lim

Mehr

Technische Informatik

Technische Informatik Günter Kemnitz Technische Informatik Band 1: Elektronik < } Springer Schaltungen im stationären Zustand 1 1.1 Physikalische Grundlagen 2 1.1.1 Energie, Potenzial und Spannung 3 1.1.2 Strom 6 1.1.3 Ohmsches

Mehr

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 25 1. Wie lautet die charakteristische Gleichung der Differentialgleichung y + 2y + y = 0? (a) λ 3 + 2λ + 1 = 0 (b) λ 3 + 2λ = 0 (c)

Mehr

1.3 Lösung eines linearen Gleichungssystemes mit zwei Unbekannten

1.3 Lösung eines linearen Gleichungssystemes mit zwei Unbekannten Rechenbeispiele 1. Grundoperationen mit Summierern 1.1 Multiplikation mit einer Konstanten 1.2 Summe von drei Variablen 1.3 Lösung eines linearen Gleichungssstemes mit zwei Unbekannten 2. Grundoperationen

Mehr

Aufgabensammlung zur Elektrotechnik und Elektronik

Aufgabensammlung zur Elektrotechnik und Elektronik Leonhard Stiny Aufgabensammlung zur Elektrotechnik und Elektronik Übungsaufgaben mit ausführlichen Musterlösungen 3., überarbeitete und erweiterte Auflage Mit 560 Aufgaben und 517 Abbildungen Inhaltsverzeichnis

Mehr

Nachzulesen unter: Kirchhoff sche Gesetze, Ohm'sches Gesetz für Gleich- und Wechselstrom, Operationsverstärker.

Nachzulesen unter: Kirchhoff sche Gesetze, Ohm'sches Gesetz für Gleich- und Wechselstrom, Operationsverstärker. 248/ 248/2 248 Spannungsverstärker Ziel des Versuchs: Man soll sich mit den grundlegenden Eigenschaften eines idealen und realen Operationsverstärkers vertraut machen und die Kennlinien des Verstärkers

Mehr

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion Aufgabe EStrich ist Lennard Jones Potential mit Exponentialfunktion Ansatz: Exponentialfunktion mit 3 Variablen einführen: a: Amplitude b:stauchung c:verschiebung_entlang_x_achse EStrich r_, ro_, _ : a

Mehr

Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik

Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik Axel Arnold Institut für Computerphysik Universität Stuttgart Wintersemester 2010/11 Wie rechnet ein Computer? Ein Mikroprozessor ist ein

Mehr

Vorlesung. Inhalt. Lineare Algebra und Wahrscheinlichkeitsrechnung für Informatik Gunter Ochs, Nico Rompos Sommersemester 2016

Vorlesung. Inhalt. Lineare Algebra und Wahrscheinlichkeitsrechnung für Informatik Gunter Ochs, Nico Rompos Sommersemester 2016 Vorlesung Lineare Algebra und Wahrscheinlichkeitsrechnung für Informatik Gunter Ochs, Nico Rompos Sommersemester 2016 Inhalt Polynome, Algebraische Strukturen Vektorrechnung Lineare Algebra Elementare

Mehr

Übungsaufgaben Mathematik III MST

Übungsaufgaben Mathematik III MST Übungsaufgaben Mathematik III MST Lösungen zu Blatt Differentialgleichungen Prof. Dr. B.Grabowski Zu Aufgabe ) Zu a) lassifizieren Sie folgende Differentialgleichungen nach folgenden riterien: -Ordnung

Mehr

Gleichstromtechnik. Vorlesung 16: Einführung Operationsverstärker. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Gleichstromtechnik. Vorlesung 16: Einführung Operationsverstärker. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Gleichstromtechnik Vorlesung 6: Einführung Operationsverstärker Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Einführung Elektronische Verstärker wurde dem Verhalten eines Elektronenröhrenverstärkers

Mehr

Resonanz Versuchsvorbereitung

Resonanz Versuchsvorbereitung Versuche P1-1,, Resonanz Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 0.1.010 1 1 Vorwort Im Praktikumsversuch,,Resonanz geht es um freie

Mehr

6. Niederfrequente Wechselfelder

6. Niederfrequente Wechselfelder 6. Niederfrequente Wechselfelder 6.1. Der Skin-Effekt Übergang zu niedrigen Frequenzen und leitfähigem Material -> Wechselstromtechnik Wir starten von der Telegraphen-Gleichung: E = 1 c 2 E µ E mit 1 c

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Gewöhnliche Differentialgleichungen Prof.

Mehr

UniversitätPOsnabrück Vorlesung Elektronik Dr. W. Bodenberger 1. RC-Tiefpaß. Übertragung harmonischer Schwingungen mit einem RC-Tiefpaß

UniversitätPOsnabrück Vorlesung Elektronik Dr. W. Bodenberger 1. RC-Tiefpaß. Übertragung harmonischer Schwingungen mit einem RC-Tiefpaß UniversitätPOsnabrück Vorlesung lektronik Dr. W. Bodenberger 1 RC-Tiefpaß Die folgende Abbildung stellt einen RC-Tiefpaß dar. + in Tiefpaß sperrt hohe Frequenzen d.h. er hat einen großen Widerstand bei

Mehr

Gewöhnliche Differentialgleichungen. Teil II: Lineare DGLs mit konstanten Koeffizienten

Gewöhnliche Differentialgleichungen. Teil II: Lineare DGLs mit konstanten Koeffizienten - 1 - Gewöhnliche Differentialgleichungen Teil II: Lineare DGLs mit konstanten Koeffizienten Wir wenden uns jetzt einer speziellen, einfachen Klasse von DGLs zu, die allerdings in der Physik durchaus beträchtliche

Mehr

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren Länge eines Vektors und Abstand von zwei Punkten Aufgabe Bestimme die Länge des Vektors x. Die Länge beträgt: x ( ) =. Skalarprodukt und Winkel zwischen Vektoren Aufgabe Es sind die Eckpunkte A(; ), B(

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie Institut für Analsis Dr. I. Anapolitanos Dipl.-Math. Sebastian Schwarz SS 07.05.07 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr

11.4. Lineare Differentialgleichungen höherer Ordnung

11.4. Lineare Differentialgleichungen höherer Ordnung 4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in

Mehr

Lösung zur Übung 19 SS 2012

Lösung zur Übung 19 SS 2012 Lösung zur Übung 19 SS 01 69) Beim radioaktiven Zerfall ist die Anzahl der pro Zeiteinheit zerfallenden Kerne dn/dt direkt proportional zur momentanen Anzahl der Kerne N(t). a) Formulieren Sie dazu die

Mehr

Grundlagen der Elektrotechnik Teil 3

Grundlagen der Elektrotechnik Teil 3 Grundlagen der Elektrotechnik Teil 3 Dipl.-Ing. Ulrich M. Menne ulrich.menne@ini.de 18. Januar 2015 Zusammenfassung: Dieses Dokument ist eine Einführung in die Grundlagen der Elektrotechnik die dazu dienen

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 12 8. Juni 2010 Kapitel 10. Lineare Gleichungssysteme (Fortsetzung) Umformung auf obere Dreiecksgestalt Determinantenberechnung mit dem Gauß-Verfahren

Mehr

Lineare Algebra. Wintersemester 2018/19. Berechnen Sie die Determinanten der folgenden Matrizen mit Einträgen in R: 4 2 = = 18.

Lineare Algebra. Wintersemester 2018/19. Berechnen Sie die Determinanten der folgenden Matrizen mit Einträgen in R: 4 2 = = 18. Goethe-Universität Frankfurt Institut für Mathematik Lineare Algebra Wintersemester 218/19 Prof Dr Jakob Stix Martin Lüdtke Übungsblatt 11 15 Januar 219 Aufgabe 1 (5=1+1+1,5+1,5 Punkte) Berechnen Sie die

Mehr

Lineare Gleichungssysteme (Teschl/Teschl 11.1)

Lineare Gleichungssysteme (Teschl/Teschl 11.1) Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...

Mehr

DIFFERENTIALGLEICHUNGEN (DGL)

DIFFERENTIALGLEICHUNGEN (DGL) DIFFERENTIALGLEICHUNGEN (DGL) Definition und Klassifikation und Beispiele Definition und Klassifikation Definition Gleichung, deren Unbekannte eine Funktion ist und die Ableitungen der gesuchten Funktion

Mehr

Lineare Differentialgleichungen erster und zweiter Ordnung

Lineare Differentialgleichungen erster und zweiter Ordnung Lineare Differentialgleichungen erster und zweiter Ordnung Jörn Loviscach Versionsstand: 11. Mai 2009, 18:13 1 DGLn erster Ordnung mit konstanten Koeffizienten Eine Differentialgleichung hat zwei Zutaten:

Mehr

Analoge CMOS-Schaltungen

Analoge CMOS-Schaltungen Analoge CMOS-Schaltungen Von dem Großsignalschaltbild (Transienten-Analyse) zum Kleinsignalersatzschaltbild (AC-Analyse) 2. Vorlesung Schaltungen: analog Schaltungen: analog Analoge (Verstärker-)Schaltungen

Mehr

Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen 1. und 2. Ordnung mit konstanten Koeffizienten

Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen 1. und 2. Ordnung mit konstanten Koeffizienten Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen und Ordnung mit konstanten Koeffizienten Prof Dr BGrabowski Lösung linearer Dgl Ordnung mittels Zerlegungssatz Aufgabe ) Lösen Sie

Mehr

Regelungstechnik für Ingenieure

Regelungstechnik für Ingenieure Manfred Reuter Regelungstechnik für Ingenieure 7., überarbeitete und erweiterte Auflage Mit 322 Bildern Friedr. Vieweg & Sohn Braunschweig/Wiesbaden Inhaltsverzeichnis Formelzeichen 1 Einführung 1 1.1

Mehr

Entladung eines Kondensators

Entladung eines Kondensators 3.11.5 Entladung eines Kondensators Im Gegensatz zu einer Batterie kann mit einem Kondensator innerhalb von kurzer Zeit eine hohe Stromstärke erzeugt werden. Dies wird zum Beispiel beim Blitz eines Fotoapparates

Mehr

Klausur zur Mathematik für Maschinentechniker

Klausur zur Mathematik für Maschinentechniker SS 04. 09. 004 Klausur zur Mathematik für Maschinentechniker Apl. Prof. Dr. G. Herbort Aufgabe. Es sei f die folgende Funktion f(x) = 4x 4x 9x 6 x (i) Was ist der Definitionsbereich von f? Woistf differenzierbar,

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie D-MAVT Lineare Algebra I HS 7 Prof. Dr. N. Hungerbühler Lösungen Serie 4: Ferienserie . Finden Sie ein Erzeugendensystem des Lösungsraums L R 5 des Systems x + x x 3 + 3x 4 x 5 = 3x x + 4x 3 x 4 + 5x 5

Mehr

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 85 Punkte. Die Klausureinsicht findet am Montag, den 5..8 ab : Uhr im H3 statt. Aufgabe. (a) Lösen Sie

Mehr

KSR, Matura 2011, SF Physik/Mathematik

KSR, Matura 2011, SF Physik/Mathematik Schriftliche Maturitätsprüfung 2011 Kantonsschule Reussbühl Luzern Fach Prüfende Lehrpersonen Klassen Schwerpunktfach Physik/Mathematik Bernhard Berchtold Luigi Brovelli 6c / 6K Prüfungsdatum 30. Mai 2011

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min. cos(x), y(0) = 1.

Apl. Prof. Dr. N. Knarr Musterlösung , 120min. cos(x), y(0) = 1. Apl. Prof. Dr. N. Knarr Musterlösung.9.6, min Aufgabe ( Punkte) Lösen Sie das folgende Anfangswertproblem: y = e y cos(x), y() =. Sei y : I R die maximale Lösung des gegebenen Anfangswertproblems (diese

Mehr

numerische Berechnungen von Wurzeln

numerische Berechnungen von Wurzeln numerische Berechnungen von Wurzeln. a) Berechne x = 7 mit dem Newtonverfahren und dem Startwert x = 4. Mache die Probe nach jedem Iterationsschritt. b) h sei eine kleine Zahl, d.h. h. Wir suchen einen

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr