INTELLIGENTE DATENANALYSE IN MATLAB. Objekterkennung

Größe: px
Ab Seite anzeigen:

Download "INTELLIGENTE DATENANALYSE IN MATLAB. Objekterkennung"

Transkript

1 INTELLIGENTE DATENANALYSE IN MATLAB Objekterkennung

2 Objekterkennung Problemstellung Gegeben: Ein Bild. Fragestellungen: Klassifikationsproblem Ist ein bestimmtes Objekt (z.b. Flugzeug) auf dem Bild? Welches Objekt ist auf dem Bild? Multiklassenproblem

3 Objekterkennung Lösungsansätze Gegeben: Ein Bild. Haar-like - Ansatz Bag of Visual Words - Ansatz Deformable Part Models - Ansatz 3

4 Haar-like Ansatz Pipeline Idee: Bild wird klassifiziert, indem Bildausschnitte nach einem Objekt durchsucht werden. Ein Bildausschnitt wird als Vektor von Haar-like Merkmalen repräsentiert. Gelerntes Modell bestimmt, ob Bildausschnitt (Vektor) ein bestimmtes Objekt enthält. f( ) Flugzeug Bildausschnitte entstehen, indem Fenster über Bild geschoben wird. 4 Bildausschnitt Vektor von Haar-like Merkmalen

5 Haar-like Merkmale Berechnung Haar-like Merkmale wurden im ersten Echtzeit- Gesichtserkenner verwendet. Werden aus Graustufenbild etrahiert. Jedes Haar-like Merkmal besteht aus oder 3 zusammenhängenden schwarzen und weißen Rechtecken. Fünf Basis Haar-like Merkmale: Rand-Merkmale Linien-Merkmale Rechteck-Merkmale 5

6 Haar-like Merkmale Berechnung Der Wert eines Haar-like Merkmals wird als Differenz zwischen der Summe der Graustufen für die Piel des weißen und schwarzen Rechtecks berechnet: F = Grauwert von Piel i Piel i in schw. Rechteck Grauwert von Piel j Piel j in weiß.rechteck Haar-like Merkmale erhöhen bzw. verringern die Interklassen- bzw. Intraklassenvariabilität. Klassifikator kann auf diesen Merkmalen gelernt werden. 6

7 Haar-like Merkmale Berechnung - Integralbild Haar-like Merkmale können effizient mit Hilfe des Integralbildes berechnet werden. Jedem Eintrag des Integralbildes ist die Summe aller Piel innerhalb des Rechtecks zwischen dem aktuellen Punkt und dem Ursprung des Bildes zugeordnet Graustufenbild Integralbild

8 Haar-like Merkmale Beispiel Differenz im Integralbild muss berechnet werden, um bestimmtes Haar-like Merkmal zu bestimmen. Etrem effizient, da nur Lookups im Integralbild nötig. Beispiel: weiß schwarz Graustufenbild F() = = 65 Integralbild 14

9 Haar-like Merkmale Bildrepräsentation Jedes Bild wird als Menge von Bildausschnitten mit den dazugehörigen Vektoren von Haar-like Merkmalen repräsentiert. Durch unterschiedliche Größen der Rechtecke (z.b. 1,, ) und unterschiedliche Formen (,, ) entsteht so hochdimensionaler Vektor. Normalisierung der Haar-like Merkmale oft sinnvoll. 9 Graustufenbild Vektor mit Haar-like Merkmalen

10 Haar-like Ansatz Vor- und Nachteile Haar-like Merkmale sind sehr einfach. Translation, Rotation und Skalierung wird nicht beachtet. Für einige Objektklassen ungeeignet. Autos, Flugzeuge. Höhere Erkennungsraten, werden mit kompleeren Merkmalen erreicht. SIFT-Merkmale. Gabor Wavelets. 1

11 Objekterkennung Bag of Visual Words Objekt Bag of Visual Words 11

12 Objekterkennung Bag of Visual Words Visual Words werden unabhängig voneinander betrachtet. Räumliche Informationen werden ignoriert. Objekt wird als Histogramm über Visual Words repräsentiert. 1

13 Bag of Visual Words Pipeline 1. Erkennung markanter Punkte (Interest Points) Local Interest Operator, Gitter über Bild.. Merkmalsrepräsentation Bildausschnitt (Patches), SIFT-Merkmale, Gabor Wavelets. 3. Erstellung eines Visual Word Dictionaries. 4. Jedem etrahierten Merkmal wird ein Visual Word zugewiesen (Bag of Visual Words). 13

14 Bag of Visual Words Erkennung markanter Punkte (Interest Points) 1. Möglichkeit: Local Interest Operator: Harris Laplace Förstner Operator Canny Edge Detector. Möglichkeit: Gitter über Bild legen. Alle (z.b. ) Piel ein Merkmal etrahieren. 14

15 Bag of Visual Words Merkmalsrepräsentation Bildausschnitt: Beschreibt charakteristischen Teil eines Objekts. Durch Ähnlichkeitsfunktion wird festgestellt, ob ein Bildausschnitt in einem Bild enthalten ist. SIFT-Merkmale: 18-dimensionaler Vektor kodiert die Umgebung (Farbübergänge, Kanten, ) an einem markanten Punkt. SIFT-Merkmale sind unempfindlich gegenüber: Translation, Rotation und Skalierung. 15

16 SIFT-Merkmale Berechnung von SIFT-Merkmalen SIFT-Merkmale sind lokale Bildmerkmale. Auf dieser Folie: Grid von Histogrammen mit 8 Ausrichtungs-Bins = 8 = 3 Dimensionen. Original: 44 Grid von Histogrammen mit 8 Ausrichtungs-Bins = 448 = 18 Dimensionen. 16

17 SIFT-Merkmale Bildrepräsentation Jedes Bild (Bildausschnitt) besteht aus der Menge seiner SIFT- Merkmale für alle Interest Points. SIFT Merkmale 17

18 Bag of Visual Words Klassifikation Bild wird als Vektor von Visual Words repräsentiert. Vektoren für positive und negative Beispiele. Mithilfe dieser Vektoren kann ein Modell gelernt werden. Lineares Modell (RegERM). Nichtlineare Modelle (Kernel). Fragestellung: Wie kann ein Bild in einen Vektor von Visual Words umgewandelt werden? Patches. SIFT-Merkmale. 18

19 Bag of Visual Words Visual Word Dictionary Jedem markantem Punkt im Bild wird ein Visual Word zugewiesen werden. Problem: SIFT-Merkmale spannen 18-dimensionalen Raum auf. Zuweisung zu einem Visual Word nicht einfach möglich. Lösung: Cluster SIFT-Merkmale um Visual Word Dictionary zu erhalten. Clusteranzahl steuert, wie fein die SIFT-Merkmale unterschieden werden. 19

20 Bag of Visual Words Visual Word Dictionary - Erstellung Wähle zufällig SIFT-Merkmale aus einer Trainingsmenge und finde k Clustermittelpunkte (Visual Words). Visual Words Vector Quatization + + +

21 Bag of Visual Words Visual Word Dictionary Typischerweise besteht die Trainingsmenge aus vielen 1 Bildern. Daraus ergeben sich Millionen von SIFT-Merkmalen. Problem: Standard K-Means Algorithmus für Millionen von Instanzen mit 18 Attributen sehr rechenaufwändig. Lösung: Hierarchical K-Means. Idee: Konstruiere Baum, der Daten in jeder Stufe in gleich viele ähnliche Gruppen aufteilt. 1

22 Bag of Visual Words Hierarchical K-Means Algorithmus: Hierarchical-K-Means(Instanzen X, Splitfaktor k, Belegung R) IF i j R i,j RETURN R ELSE mininde = arg min i R 1,i IF mininde = 1 clusters = K-Means(X, k) FOR j = 1 clusters R j,1 = clusters j + 1 R = Hierarchical-K-Means(X, k, R) ELSE FOR i = 1 kmininde 1 indelist = sort( l R l,mininde 1 = k mininde 1 + i 1 clusters = K-Means({ l l indelist}, k) FOR j = 1 indelist, ascending) R indelist j,mininde = clusters j + k mininde + i 1 k 1 R = Hierarchical-K-Means(X, k, R) Bestimme aktuell zu bearbeitende Tiefe Schleife über alle vorigen Cluster Neu zu clusternde Instanzen Bestimme Clusterzuweisung

23 1.Schritt: Aufruf K-Means(X,k) 3 Bag of Visual Words Hierarchical K-Means - Beispiel R X k Tiefe Daten Splitfaktor Clusterzuordnung R ,,,,,,, ,,, ,,,

24 .Schritt: Aufruf K-Means({ },k) Aufruf K-Means({ },k) 4 Bag of Visual Words Hierarchical K-Means - Beispiel R X ,,,,,,, R ,,, ,,, 4 3 1,,, , 4 3, 6 5, 8 7, ,,, k

25 Häufigkeit Bag of Visual Words Bildrepräsentation Ein Bild wird als Histogramm der Visual Words repräsentiert. Visual Words.. 5

26 Bag of Visual Words Klassifikation Ein Bild wird als Bag of Visual Words Vektor repräsentiert. Lerne lineares/nicht-lineares Modell, um positive von negativen Bildern zu diskriminieren. Entscheidungsebene Hintergrund Bildschirm 6 In some feature space

27 Bag of Visual Words Klassifikation - Kernel Häufig verwendete Kernel: Linearer Kern (lineares Modell), RBF-Kern, Chi-Square-Kern, Earth Mover s Distance. k, y = 1 n i=1 ( i y i ) 1 ( i + y i ) 7

28 Bag of Visual Words Probleme Räumliche Informationen gehen verloren. Wo befindet sich ein bestimmtes Visual Word? Es wird nur gezählt wie oft jedes Visual Word auftaucht. Clusteranzahl muss vorgegeben werden. Überanpassung. Merkmalsetraktion häufig sehr teuer. 8

29 Spatial Pyramid Matching Problem: Räumliche Information werden nicht genutzt. Lösung: Spatial Pyramid Matching. Idee: Betrachte die räumliche Position der Visual Words. 9

30 Spatial Pyramid Matching 3

31 Spatial Pyramid Matching Pyramid Matching Kernel Pyramid Matching Kernel: Bestimmt Ähnlichkeit zwischen zwei Bildern. Idee: Je genauer die Positionen zweier gleicher Visual Words übereinstimmen, desto besser. Berechnung: Bestimme den höchsten Level (Größe und Lage der Rechtecke) auf dem zwei Visual Words zusammen gehören. K 1w N i i L i Schwierigkeit in Level i zwei Paare zu matchen. Anzahl neu gematchter Paare in Level i. 31

32 ( X ) ( Spatial Pyramid Matching Pyramid Matching Kernel Aufbau des Merkmalsvektors X = Bild Ψ X =,,,, T H H H H H 5 3

33 Spatial Pyramid Matching Pyramid Matching Kernel Histogrammdurchschnitt Histogrammdurchschnitt gibt an, wie viele Visual Words in einem Rechteck übereinstimmen. Histogrammdurchschnitt r Ι H X, H Y = min (H X j, H(Y) j ) j=1 Bild 1 Bild H(X) H(Y) Ι H X, H Y = 4 33

34 Spatial Pyramid Matching Pyramid Matching Kernel Genaue Berechnung: L i Ι H i X,H i (Y) Ι(H i 1 X,H i 1 (Y) ) i=1 Anzahl neu matchender Paare auf Level i Schwierigkeit in Level i zwei Paare zu matchen K Δ Ψ X, Ψ Y = 34

35 Zusammenfassung Haar-like Ansatz Etrahiere Haar-like Merkmale für Teilbilder. Klassifikation anhand der Haar-like Merkmale in Teilbild. Bag of Visual Words Ansatz SIFT-Merkmale / Patches werden etrahiert. Hierarchical K-Means um Visual Word Dictionary für SIFT- Merkmale zu erstellen. Klassifikation anhand der Visual Words, die in einem Bild (Teilbild) vorkommen. Spatial Pyramid Matching Nutze räumliche Informationen, die bei Bag of Visual Word Ansatz verworfen werden. 35

Vorlesung Digitale Bildverarbeitung Sommersemester 2013

Vorlesung Digitale Bildverarbeitung Sommersemester 2013 Vorlesung Digitale Bildverarbeitung Sommersemester 2013 Sebastian Houben (Marc Schlipsing) Institut für Neuroinformatik Inhalt Crash-Course in Machine Learning Klassifikationsverfahren Grundsätzliches

Mehr

Computer Vision: SVM-Anwendungsbeispiele, Generalisierbarkeit

Computer Vision: SVM-Anwendungsbeispiele, Generalisierbarkeit Computer Vision: SVM-Anwendungsbeispiele, Generalisierbarkeit D. Schlesinger TUD/INF/KI/IS Visual Categorization with Bags of Keypoints Recognizing Human Actions: A Local SVM Approach Shape Matching and

Mehr

How To Create A Panorama Image From A Photoelectric Image From An Image From The Camera (I)

How To Create A Panorama Image From A Photoelectric Image From An Image From The Camera (I) Chapter 3 Image Registration Distributed Algorithms for Einführung (I) Definition: Image Registration Gegeben: 2 Bilder der gleichen Szene aber aufgenommen aus unterschiedlichen Perspektiven Gesucht: Transformation,

Mehr

3. Analyse der Kamerabewegung Video - Inhaltsanalyse

3. Analyse der Kamerabewegung Video - Inhaltsanalyse 3. Analyse der Kamerabewegung Video - Inhaltsanalyse Stephan Kopf Bewegungen in Videos Objektbewegungen (object motion) Kameraoperationen bzw. Kamerabewegungen (camera motion) Semantische Informationen

Mehr

Suche nach korrespondierenden Pixeln

Suche nach korrespondierenden Pixeln Suche nach korrespondierenden Pixeln Seminar Algorithmen zur Erzeugung von Panoramabildern Philip Mildner, Gliederung 1. Motivation 2. Anforderungen 3. Moravec Detektor 4. Harris Detektor 5. Scale Invariant

Mehr

Proseminar "Aufgabenstellungen der Bildanalyse und Mustererkennung"

Proseminar Aufgabenstellungen der Bildanalyse und Mustererkennung Fakultät Informatik, Institut für künstliche Intelligenz, Intelligent Systems Proseminar "Aufgabenstellungen der Bildanalyse und Mustererkennung" Lokale Merkmalsdeskriptoren Jens Stormberg - Dresden, 19.06.2009

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Bildanalyse Literatur David A. Forsyth: Computer Vision i A Modern Approach. Mark S. Nixon und Alberto S. Aguado: Feature Extraction and Image Processing. Ulrich Schwanecke:

Mehr

Navigation anhand natürlicher Landmarken mit Hilfe der Scale Invariant Feature Transform. Thorsten Jost INF-M2 AW1 Sommersemester

Navigation anhand natürlicher Landmarken mit Hilfe der Scale Invariant Feature Transform. Thorsten Jost INF-M2 AW1 Sommersemester Navigation anhand natürlicher Landmarken mit Hilfe der Scale Invariant Feature Transform Thorsten Jost INF-M2 AW1 Sommersemester 2008 Agenda Motivation Feature Detection Beispiele Posenbestimmung in Räumen

Mehr

Interaktive Lokalisierung durch Objekterkennung

Interaktive Lokalisierung durch Objekterkennung Interaktive Lokalisierung durch Objekterkennung Bachelor Thesis Adrian Batzill Motivation GPS Abweichungen - Guter Tag: ~5m - Wahrscheinlicher: >15m Kompass Abweichungen: - Normal ~3-10 Für Augmented Reality

Mehr

Ahnlichkeitsbestimmung von Bildern

Ahnlichkeitsbestimmung von Bildern Seminar: Content Based Image Retrieval Lehrstuhl fur Mustererkennung und Bildverarbeitung 10. Januar 2005 Ubersicht Einfuhrung Problemstellung: Vergleiche Merkmale verschiedener Bilder und bewerte deren

Mehr

1 Einleitung Definitionen, Begriffe Grundsätzliche Vorgehensweise... 3

1 Einleitung Definitionen, Begriffe Grundsätzliche Vorgehensweise... 3 Inhaltsverzeichnis 1 Einleitung 1 1.1 Definitionen, Begriffe........................... 1 1.2 Grundsätzliche Vorgehensweise.................... 3 2 Intuitive Klassifikation 6 2.1 Abstandsmessung zur Klassifikation..................

Mehr

Scene Reconstruction with Multiple View Geometry

Scene Reconstruction with Multiple View Geometry Scene Reconstruction with Multiple View Geometry Anwendungen 2 16.06.2010 Nikolaus Rusitska nikolausrusitska@gmx.de Inhalt Rückblick Techniken Related Work Fazit 1 Rückblick Techniken Related Work Fazit

Mehr

Seminar: Multi-Core Architectures and Programming. Viola-Jones Gesichtsdetektor

Seminar: Multi-Core Architectures and Programming. Viola-Jones Gesichtsdetektor Seminar: Multi-Core Architectures and Programming Viola-Jones Gesichtsdetektor Hardware-Software-Co-Design Universität Erlangen-Nürnberg 1 Übersicht Einleitung Viola-Jones Gesichtsdetektor Aufbau Blockmerkmale

Mehr

Vorlesung Digitale Bildverarbeitung Sommersemester 2013

Vorlesung Digitale Bildverarbeitung Sommersemester 2013 Vorlesung Digitale Bildverarbeitung Sommersemester 2013 Sebastian Houben Institut für Neuroinformatik Sliding-Window Idee: Trainiere einen binären Klassifikator mit zwei Klassen von Bildausschnitten: dem

Mehr

3. Analyse der Kamerabewegung Video - Inhaltsanalyse

3. Analyse der Kamerabewegung Video - Inhaltsanalyse 3. Analyse der Kamerabewegung Video - Inhaltsanalyse Stephan Kopf Bewegungen in Videos Objektbewegungen (object motion) Kameraoperationen bzw. Kamerabewegungen (camera motion) Semantische Informationen

Mehr

Klassifikation durch direkten Vergleich (Matching)

Klassifikation durch direkten Vergleich (Matching) Klassifikation durch direkten Vergleich (Matching) Eine triviale Lösung für die Klassifikation ergibt sich durch direkten Vergleich des unbekannten Musters in allen Erscheinungsformen der Äquivalenzklasse

Mehr

Bildverarbeitung Herbstsemester. Mustererkennung

Bildverarbeitung Herbstsemester. Mustererkennung Bildverarbeitung Herbstsemester Herbstsemester 2009 2012 Mustererkennung 1 Inhalt Einführung Mustererkennung in Grauwertbildern Ähnlichkeitsmasse Normalisierte Korrelation Korrelationskoeffizient Mustererkennung

Mehr

Clustering. Clustering:

Clustering. Clustering: Clustering Clustering: Gruppierung und Einteilung einer Datenmenge nach ähnlichen Merkmalen Unüberwachte Klassifizierung (Neuronale Netze- Terminologie) Distanzkriterium: Ein Datenvektor ist zu anderen

Mehr

{0,1} rekursive Aufteilung des Datenraums in die Quadranten NW, NE, SW und SE feste Auflösung des Datenraums in 2 p 2 p Gitterzellen

{0,1} rekursive Aufteilung des Datenraums in die Quadranten NW, NE, SW und SE feste Auflösung des Datenraums in 2 p 2 p Gitterzellen 4.4 MX-Quadtrees (I) MatriX Quadtree Verwaltung 2-dimensionaler Punkte Punkte als 1-Elemente in einer quadratischen Matrix mit Wertebereich {0,1} rekursive Aufteilung des Datenraums in die Quadranten NW,

Mehr

Neuronale Netze. Christian Böhm.

Neuronale Netze. Christian Böhm. Ludwig Maximilians Universität München Institut für Informatik Forschungsgruppe Data Mining in der Medizin Neuronale Netze Christian Böhm http://dmm.dbs.ifi.lmu.de/dbs 1 Lehrbuch zur Vorlesung Lehrbuch

Mehr

Human Detection Based On Part Models

Human Detection Based On Part Models Human Detection Based On Part Models Seminar: Mobile Human Detection Systems William Basilien Kom MatrNr: 3098186 Institute of Computer Engineering 13. März 2017 1 / 25 Motivation 2 / 25 Inhaltsverzeichnis

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB. Zusammenfassung

INTELLIGENTE DATENANALYSE IN MATLAB. Zusammenfassung INTELLIGENTE DATENANALYSE IN MATLAB Zusammenfassung Überwachtes Lernen Gegeben: Trainingsdaten mit bekannten Zielattributen (gelabelte Daten). Eingabe: Instanz (Objekt, Beispiel, Datenpunkt, Merkmalsvektor)

Mehr

Projektdokumentation Gesichtserkennung per Eigengesichtsanalyse

Projektdokumentation Gesichtserkennung per Eigengesichtsanalyse Hochschule RheinMain Master Informatik Digitale Bildanalyse bei Prof. Dr. U. Schwanecke Projektdokumentation Gesichtserkennung per Eigengesichtsanalyse von Florian Feuerstein (florian feuerstein@web.de)

Mehr

Mathematische Grundlagen III

Mathematische Grundlagen III Mathematische Grundlagen III Maschinelles Lernen III: Clustering Vera Demberg Universität des Saarlandes 7. Juli 202 Vera Demberg (UdS) Mathe III 7. Juli 202 / 35 Clustering vs. Klassifikation In den letzten

Mehr

Neue Ansätze für Mustererkennung und automatisches Lernen

Neue Ansätze für Mustererkennung und automatisches Lernen Z Y X Neue Ansätze für Mustererkennung und automatisches Lernen Vortrag im Rahmen des 2. Technologieforums Bildverarbeitung am 03./04. November 2015 Johannes Zügner STEMMER IMAGING GmbH, Puchheim GLIEDERUNG

Mehr

Implizite Modellierung zur Objekterkennung in der Fernerkundung

Implizite Modellierung zur Objekterkennung in der Fernerkundung Implizite Modellierung zur Objekterkennung in der Fernerkundung Mitarbeiterseminar 20.01.2011 (IPF) Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften KIT Universität des Landes Baden-Württemberg

Mehr

Einführung in Support Vector Machines (SVMs)

Einführung in Support Vector Machines (SVMs) Einführung in (SVM) Januar 31, 2011 Einführung in (SVMs) Table of contents Motivation Einführung in (SVMs) Outline Motivation Vektorrepräsentation Klassifikation Motivation Einführung in (SVMs) Vektorrepräsentation

Mehr

Mustererkennung. Übersicht. Unüberwachtes Lernen. (Un-) Überwachtes Lernen Clustering im Allgemeinen k-means-verfahren Gaussian-Mixture Modelle

Mustererkennung. Übersicht. Unüberwachtes Lernen. (Un-) Überwachtes Lernen Clustering im Allgemeinen k-means-verfahren Gaussian-Mixture Modelle Mustererkennung Unüberwachtes Lernen R. Neubecker, WS 01 / 01 Übersicht (Un-) Überwachtes Lernen Clustering im Allgemeinen k-means-verfahren 1 Lernen Überwachtes Lernen Zum Training des Klassifikators

Mehr

Bachelorverteidigung Marco Franke

Bachelorverteidigung Marco Franke Bachelorverteidigung Java EE Webservice basiert auf RESTlet, JaxB und JPA/Hibernate zur Bilderkennung mit Hilfe der SURF-Merkmalsextraktion Verantwortlicher Professor: Prof. Dr. rer. nat. Klaus Hering

Mehr

4.3 R-Bäume (I) Idee. basiert auf der Technik überlappender Seitenregionen verallgemeinert die Idee des B + -Baums auf den 2-dimensionalen Raum

4.3 R-Bäume (I) Idee. basiert auf der Technik überlappender Seitenregionen verallgemeinert die Idee des B + -Baums auf den 2-dimensionalen Raum 4.3 R-Bäume (I) Idee basiert auf der Technik überlappender Seitenregionen verallgemeinert die Idee des B + -Baums auf den 2-dimensionalen Raum Geo-Informationssysteme 98 4.3 R-Bäume (I) Definition Ein

Mehr

5. Objekterkennung in Bildern und Videos Videoanalyse

5. Objekterkennung in Bildern und Videos Videoanalyse 5. Objekterkennung in Bildern und Videos Videoanalyse Stephan Kopf 1 Übersicht Motivation Anforderungen an Objekterkennungsalgorithmen Objekterkennung mittels Konturen Helligkeiten Farben Formen Objekterkennung

Mehr

Projektgruppe. Clustering und Fingerprinting zur Erkennung von Ähnlichkeiten

Projektgruppe. Clustering und Fingerprinting zur Erkennung von Ähnlichkeiten Projektgruppe Jennifer Post Clustering und Fingerprinting zur Erkennung von Ähnlichkeiten 2. Juni 2010 Motivation Immer mehr Internet-Seiten Immer mehr digitale Texte Viele Inhalte ähnlich oder gleich

Mehr

Visual Servoing using Mutual Information

Visual Servoing using Mutual Information Visual Servoing using Mutual Information Christian Rupprecht Robotics and Embedded Systems Technische Universität München Outline 1 Visual Servoing Was ist Visual Servoing? Typische Lösungsansätze 2 Mutual

Mehr

Structure-from-Motion. Christina Mundhenk Leo Sylvio Rüdian Marcel Kliemannel

Structure-from-Motion. Christina Mundhenk Leo Sylvio Rüdian Marcel Kliemannel Structure-from-Motion Christina Mundhenk Leo Sylvio Rüdian Marcel Kliemannel Fahrplan Structure-from Motion Workflow mit SIFT & Bundle Adjustment mit SURE Probleme/ Grenzen Technik Metrik und Vergleich

Mehr

4.3 Splitstrategien für R-Bäume (I)

4.3 Splitstrategien für R-Bäume (I) 4.3 Splitstrategien für R-Bäume (I) Der Knoten K läuft mit K = M+1 über: Aufteilung auf zwei Knoten K 1 und K 2, sodaß K 1 m und K 2 m Erschöpfender Algorithmus Suche unter den O(2 M ) Möglichkeiten die

Mehr

Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern

Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern Chahine Abid Bachelor Arbeit Betreuer: Prof. Johannes Fürnkranz Frederik Janssen 28. November 2013 Fachbereich Informatik Fachgebiet Knowledge

Mehr

4. Segmentierung von Objekten Video - Inhaltsanalyse

4. Segmentierung von Objekten Video - Inhaltsanalyse 4. Segmentierung von Objekten Video - Inhaltsanalyse Stephan Kopf Inhalt Vorgehensweise Berechnung der Kamerabewegungen zwischen beliebigen Bildern Transformation eines Bildes Hintergrundbilder / Panoramabilder

Mehr

Bildverarbeitung: Filterung. D. Schlesinger () Bildverarbeitung: Filterung 1 / 17

Bildverarbeitung: Filterung. D. Schlesinger () Bildverarbeitung: Filterung 1 / 17 Bildverarbeitung: Filterung D. Schlesinger () Bildverarbeitung: Filterung 1 / 17 Allgemeines Klassische Anwendung: Entrauschung (Fast) jeder Filter basiert auf einem Modell (Annahme): Signal + Rauschen

Mehr

Mathematische Grundlagen der Computerlinguistik III: Statistische Methoden Probeklausur

Mathematische Grundlagen der Computerlinguistik III: Statistische Methoden Probeklausur Mathematische Grundlagen der Computerlinguistik III: Statistische Methoden Probeklausur Crocker/Demberg/Staudte Sommersemester 2014 17.07.2014 1. Sie haben 90 Minuten Zeit zur Bearbeitung der Aufgaben.

Mehr

Bildmerkmalssuche. Seminar Computational Photography. Visual Computing Department of Computer Science

Bildmerkmalssuche. Seminar Computational Photography. Visual Computing Department of Computer Science Bildmerkmalssuche Seminar Computational Photography EINFÜHRUNG 2 Einführung Bildmerkmalssuche: sehr wichtiges Thema des künstlichen Sehens Erkennen von Objekten auf dem Bild oder in einer Bildsequenz anhand

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB. Überwachtes Lernen: Entscheidungsbäume

INTELLIGENTE DATENANALYSE IN MATLAB. Überwachtes Lernen: Entscheidungsbäume INTELLIGENTE DATENANALYSE IN MATLAB Überwachtes Lernen: Entscheidungsbäume Literatur Stuart Russell und Peter Norvig: Artificial Intelligence. Andrew W. Moore: http://www.autonlab.org/tutorials. 2 Überblick

Mehr

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität Datenstrukturen und Algorithmen Christian Sohler FG Algorithmen & Komplexität 1 Clustering: Partitioniere Objektmenge in Gruppen(Cluster), so dass sich Objekte in einer Gruppe ähnlich sind und Objekte

Mehr

Indizierung von Geodaten - Raumbezogene Indexstrukturen. Seminar mobile Geoinformationssystem Vortrag von Markus Steger

Indizierung von Geodaten - Raumbezogene Indexstrukturen. Seminar mobile Geoinformationssystem Vortrag von Markus Steger Indizierung von Geodaten - Raumbezogene Indexstrukturen Seminar mobile Geoinformationssystem Vortrag von Markus Steger Index wozu ist er gut? Index allgemein Effizienter Zugriff auf Daten, i.d.r. mit B-Baum

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Überwachtes Lernen: Entscheidungsbäume Literatur Stuart Russell und Peter Norvig: Artificial i Intelligence. Andrew W. Moore: http://www.autonlab.org/tutorials. 2 Überblick

Mehr

Ideen und Konzepte der Informatik. Maschinelles Lernen. Kurt Mehlhorn

Ideen und Konzepte der Informatik. Maschinelles Lernen. Kurt Mehlhorn Ideen und Konzepte der Informatik Maschinelles Lernen Kurt Mehlhorn Übersicht Lernen: Begriff Beispiele für den Stand der Kunst Spamerkennung Handschriftenerkennung mit und ohne Trainingsdaten Gesichts-

Mehr

Inhaltsbasierte Bildsuche. Matthias Spiller. 17. Dezember 2004

Inhaltsbasierte Bildsuche. Matthias Spiller. 17. Dezember 2004 Kantenbasierte Merkmale für die Bildsuche Inhaltsbasierte Bildsuche Matthias Spiller 17. Dezember 2004 Übersicht Übersicht Einleitung Was sind Kanten? Kantenrichtungs Histogramm Der Canny-Algorithmus Feature-Erzeugung

Mehr

Modellbasiertes Suchen von Objekten

Modellbasiertes Suchen von Objekten Modellbasiertes Suchen von Objekten Anwendung 1 Vortrag HAW-Hamburg Betreuende Professoren Hosnia Najem Kai von Luck Gunter Klemke Agenda Welches Projekt? Motivation Szenario Technologische Anforderungen

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 21 (29.7.2014) String Matching (Textsuche) II Algorithmen und Komplexität Textsuche / String Matching Gegeben: Zwei Zeichenketten (Strings)

Mehr

Objekterkennung mit SIFT-Merkmalen

Objekterkennung mit SIFT-Merkmalen Hochschule für Angewandte Wissenschaften Hamburg 06. Januar 2010 Gliederung Problemstellung SIFT-Verfahren Merkmalsvergleich zur Identifikation von Gegenständen Zusammenfassung und Ausblick Problemstellung

Mehr

Computergrafik 2: Übung 8. Corner-Detektoren, Bildsegmentierung

Computergrafik 2: Übung 8. Corner-Detektoren, Bildsegmentierung Computergrafik 2: Übung 8 Corner-Detektoren, Bildsegmentierung Organisation KLAUSURANMELDUNG (UNIWORX) NICHT VERGESSEN! Computergrafik 2 SS2012 2 Besprechung Übung 7 Anmerkungen? Computergrafik 2 SS2012

Mehr

Support Vector Machines (SVM)

Support Vector Machines (SVM) Universität Ulm 12. Juni 2007 Inhalt 1 2 3 Grundlegende Idee Der Kern-Trick 4 5 Multi-Klassen-Einteilung Vor- und Nachteile der SVM 1 2 3 Grundlegende Idee Der Kern-Trick 4 5 Multi-Klassen-Einteilung Vor-

Mehr

... Text Clustern. Clustern. Einführung Clustern. Einführung Clustern

... Text Clustern. Clustern. Einführung Clustern. Einführung Clustern Clustern Tet Clustern Teile nicht kategorisierte Beispiele in disjunkte Untermengen, so genannte Cluster, ein, so daß: Beispiele innerhalb eines Clusters sich sehr ähnlich Beispiele in verschiedenen Clustern

Mehr

Erkennung von Fußgängern

Erkennung von Fußgängern Erkennung von Fußgängern Sensoren Radar Laserscanner Kameras sichtbares Spektrum Infrarot Verwandte Forschungsgebiete Automatische Überwachung oft feste Kamera Wiedererkennung von Personen Interesse an

Mehr

Algorithmen & Datenstrukturen Midterm Test 2

Algorithmen & Datenstrukturen Midterm Test 2 Algorithmen & Datenstrukturen Midterm Test 2 Martin Avanzini Thomas Bauereiß Herbert Jordan René Thiemann

Mehr

Support Vector Machines, Kernels

Support Vector Machines, Kernels Support Vector Machines, Kernels Katja Kunze 13.01.04 19.03.2004 1 Inhalt: Grundlagen/Allgemeines Lineare Trennung/Separation - Maximum Margin Hyperplane - Soft Margin SVM Kernels Praktische Anwendungen

Mehr

Projektionen für f r die Scanregistrierung mit Hilfe von Bildmerkmalen

Projektionen für f r die Scanregistrierung mit Hilfe von Bildmerkmalen Projektionen für f r die Scanregistrierung mit Hilfe von Bildmerkmalen Prof. Dr. Andreas Nüchter Jacobs University Bremen Campus Ring 1 28759 Bremen 1 Hintergrund (1) Automatisierung von terrestrischen

Mehr

SIFT Flow Dense Correspondence across Different Scenes

SIFT Flow Dense Correspondence across Different Scenes Moritz Schmidt SIFT Flow Dense Correspondence across Different Scenes 1 Motivation Bildregistrierung Bilder ähnlicher Szenen in Übereinstimmung bringen Transformation eines Bildes zu Referenzbild Optimierungsproblem

Mehr

Vorlesung 7 GRAPHBASIERTE BILDSEGMENTIERUNG

Vorlesung 7 GRAPHBASIERTE BILDSEGMENTIERUNG Vorlesung 7 GRAPHBASIERTE BILDSEGMENTIERUNG 195 Bildsegmentierung! Aufgabe: Bestimme inhaltlich zusammenhängende, homogene Bereiche eines Bildes! Weit verbreitetes Problem in der Bildverarbeitung! Viele

Mehr

Klasse räumlicher Indexstrukturen, die den Datenraum rekursiv in 4 gleich große Zellen unterteilen (Quadranten NW, NE, SW, SE)

Klasse räumlicher Indexstrukturen, die den Datenraum rekursiv in 4 gleich große Zellen unterteilen (Quadranten NW, NE, SW, SE) 4.4 Quadtrees Überblick Klasse räumlicher Indexstrukturen, die den Datenraum rekursiv in 4 gleich große Zellen unterteilen (Quadranten NW, NE, SW, SE) Verwaltung von Punkten, Kurven, Flächen usw., häufig

Mehr

4.4 Quadtrees. Literatur

4.4 Quadtrees. Literatur 4.4 Quadtrees Überblick Klasse räumlicher Indexstrukturen, die den Datenraum rekursiv in 4 gleich große Zellen unterteilen (Quadranten NW, NE, SW, SE) Verwaltung von Punkten, Kurven, Flächen usw., häufig

Mehr

Kamerabasierte Erkennung von Fußgängern in urbanen Verkehrsszenen

Kamerabasierte Erkennung von Fußgängern in urbanen Verkehrsszenen Kamerabasierte Erkennung von Fußgängern in urbanen Verkehrsszenen Vortragender: Studiengang: Betreuer: Yeyi Qiu Fahrzeugtechnik Prof. Dr. rer. nat. Toralf Trautmann M. Sc. Patrick Richter Seite 01 von

Mehr

Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion

Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion Vortrag Seminararbeit David Pogorzelski Aachen, 22.01.2015 Agenda 1 2 3 4 5 Ziel der

Mehr

23. November Betweenness Centrality Closeness Centrality. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108

23. November Betweenness Centrality Closeness Centrality. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108 23. November 2011 Betweenness Centrality Closeness Centrality H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108 Betweenness Centrality Grundlegende Idee: Ein Knoten ist wichtig, wenn er auf

Mehr

Vorlesung Datenbanken II SS 2006

Vorlesung Datenbanken II SS 2006 Vorlesung Datenbanken II SS 2006 1 Vorlesung Datenbanken II SS 2006 Sven Wachsmuth, Technische Fakultät, AG Angewandte Informatik Vorlesung Datenbanken II SS 2006 2 Suche in Bilddatenbanken Verschlagwortete

Mehr

Einführung in das Maschinelle Lernen I

Einführung in das Maschinelle Lernen I Einführung in das Maschinelle Lernen I Vorlesung Computerlinguistische Techniken Alexander Koller 26. Januar 2015 Maschinelles Lernen Maschinelles Lernen (Machine Learning): äußerst aktiver und für CL

Mehr

10.5 Maximum-Likelihood Klassifikation (I)

10.5 Maximum-Likelihood Klassifikation (I) Klassifikation (I) Idee Für die Klassifikation sind wir interessiert an den bedingten Wahrscheinlichkeiten p(c i (x,y) D(x,y)). y Wenn man diese bedingten Wahrscheinlichkeiten kennt, dann ordnet man einem

Mehr

Was bisher geschah. Definition digitaler Bilder B : pos col Bildanalyse, statistische Merkmale Signale im Orts- und Frequenzraum Bildbearbeitung durch

Was bisher geschah. Definition digitaler Bilder B : pos col Bildanalyse, statistische Merkmale Signale im Orts- und Frequenzraum Bildbearbeitung durch Was bisher geschah Definition digitaler Bilder B : pos col Bildanalyse, statistische Merkmale Signale im Orts- und Frequenzraum Bildbearbeitung durch Punktoperationen (Farbtransformation) f : col1 col

Mehr

Uberblick 1. Problemstellung 2. Kongurationsraum 3. Bewegungsplanung fur einen Punktroboter 4. Minkowski Summen 5. Pseudo-Scheiben 6. Bewegungsplanung

Uberblick 1. Problemstellung 2. Kongurationsraum 3. Bewegungsplanung fur einen Punktroboter 4. Minkowski Summen 5. Pseudo-Scheiben 6. Bewegungsplanung Vorlesung Geometrische Algorithmen Bewegungsplanung fur Roboter (Robot Motion Planning) Sven Schuierer Uberblick 1. Problemstellung 2. Kongurationsraum 3. Bewegungsplanung fur einen Punktroboter 4. Minkowski

Mehr

Bildverarbeitung Herbstsemester 2012. Kanten und Ecken

Bildverarbeitung Herbstsemester 2012. Kanten und Ecken Bildverarbeitung Herbstsemester 01 Kanten und Ecken 1 Inhalt Einführung Kantendetektierung Gradientenbasierende Verfahren Verfahren basierend auf der zweiten Ableitung Eckpunkterkennung Harris Corner Detector

Mehr

Moderne Methoden der KI: Maschinelles Lernen

Moderne Methoden der KI: Maschinelles Lernen Moderne Methoden der KI: Maschinelles Lernen Prof. Dr.Hans-Dieter Burkhard Vorlesung Sommer-Semester 2008 Konzept-Lernen Konzept-Lernen Lernen als Suche Inductive Bias Konzept-Lernen: Problemstellung Ausgangspunkt:

Mehr

Methoden zur Erzeugung von Kernen

Methoden zur Erzeugung von Kernen Methoden zur Erzeugung von Kernen Stefan Frommer 03.07.2007 1. Theoretische Konstruktion von Kernen 1.1 Wiederholung: Kerne 1.2 Auswahl eines Kerns 1.3 Kern-Kompositionen 2. Rechenbeispiele für Kerne 2.1

Mehr

Primzahlen und Programmieren

Primzahlen und Programmieren Primzahlen Wir wollen heute gemeinsam einen (sehr grundlegenden) Zusammenhang zwischen Programmieren und Mathematik herstellen. Die Zeiten in denen Mathematiker nur mit Zettel und Stift (oder Tafel und

Mehr

1 Einleitung Einordnung des Gebietes Aufbau des Buches Philosophie Inhalte Einige Lehrbücher...

1 Einleitung Einordnung des Gebietes Aufbau des Buches Philosophie Inhalte Einige Lehrbücher... Inhaltsverzeichnis 1 Einleitung... 1 1.1 Einordnung des Gebietes... 1 1.2 Aufbau des Buches... 3 1.2.1 Philosophie... 3 1.2.2 Inhalte... 5 1.3 Einige Lehrbücher... 6 2 Allgemeine Begriffe... 11 2.1 Einige

Mehr

Singular Value Decomposition

Singular Value Decomposition Singular Value Decomposition (Singulärwertzerlegung) Seminar Robust Design Vitali Müller 2 Inhalt Was ist die SVD? Interpretationen Anwendungsmöglichkeiten Berechnung 3 Datenmatrix Experiment mit n Objekten

Mehr

Wie findet man interessante Punkte? Martin Herrmann, Philipp Gaschler

Wie findet man interessante Punkte? Martin Herrmann, Philipp Gaschler Wie findet man interessante Punkte? Martin Herrmann, Philipp Gaschler Wenn man sie denn gefunden hat, was kann man mit den interessanten Punkten anfangen? /Anwendungsgebiete Wenn man sie denn gefunden

Mehr

Objekterkennung. David Pansch Robert Wieczoreck Seminar Intelligent Robotics Fachbereich Informatik Universität Hamburg

Objekterkennung. David Pansch Robert Wieczoreck Seminar Intelligent Robotics Fachbereich Informatik Universität Hamburg David Pansch Robert Wieczoreck Seminar Intelligent Robotics 05.05.2011 Fachbereich Informatik Universität Hamburg Gliederung 1 Parameter Geometrische und topologische Merkmale Formparameter 2 Klassifikation

Mehr

Nutzung maschinellen Lernens zur Extraktion von Paragraphen aus PDF-Dokumenten

Nutzung maschinellen Lernens zur Extraktion von Paragraphen aus PDF-Dokumenten Nutzung maschinellen Lernens zur Extraktion von Paragraphen aus PDF-Dokumenten Albert-Ludwigs-Universität zu Freiburg 13.09.2016 Maximilian Dippel max.dippel@tf.uni-freiburg.de Überblick I Einführung Problemstellung

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 21 (15.7.2016) String Matching (Textsuche) Approximate String Matching Algorithmen und Komplexität Textsuche / String Matching Gegeben:

Mehr

R.Wagner, Mathematik in der Astronomie

R.Wagner, Mathematik in der Astronomie Mathematik in der Astronomie Roland Wagner Johann Radon Institute for Computational and Applied Mathematics (RICAM) Österreichische Akademie der Wissenschaften (ÖAW) Linz, Austria Linz, 20.Mai 2016 Übersicht

Mehr

Mustererkennung. Support Vector Machines. R. Neubecker, WS 2018 / Support Vector Machines

Mustererkennung. Support Vector Machines. R. Neubecker, WS 2018 / Support Vector Machines Mustererkennung R. Neubecker, WS 018 / 019 (SVM) kommen aus der statistischen Lerntheorie gehören zu den optimalen Klassifikatoren = SVMs minimieren nicht nur den Trainingsfehler, sondern auch den (voraussichtlichen)

Mehr

Übersicht der Vorlesung

Übersicht der Vorlesung Übersicht der Vorlesung. Einführung. Bildverarbeitung. Morphologische Operationen 4. Bildsegmentierung 5. Merkmale von Objekten 6. Klassifikation 7. Dreidimensionale Bildinterpretation 8. Bewegungsanalyse

Mehr

Mustererkennung: Neuronale Netze. D. Schlesinger ()Mustererkennung: Neuronale Netze 1 / 12

Mustererkennung: Neuronale Netze. D. Schlesinger ()Mustererkennung: Neuronale Netze 1 / 12 Mustererkennung: Neuronale Netze D. Schlesinger ()Mustererkennung: Neuronale Netze 1 / 12 Feed-Forward Netze y 1 y 2 y m...... x 1 x 2 x n Output Schicht i max... Zwischenschicht i... Zwischenschicht 1

Mehr

Pareto optimale lineare Klassifikation

Pareto optimale lineare Klassifikation Seminar aus Maschinellem Lernen Pareto optimale lineare Klassifikation Vesselina Poulkova Betreuer: Eneldo Loza Mencía Gliederung 1. Einleitung 2. Pareto optimale lineare Klassifizierer 3. Generelle Voraussetzung

Mehr

Entwicklung einer robusten Methode zur Berechnung von Stereokorrespondenzen

Entwicklung einer robusten Methode zur Berechnung von Stereokorrespondenzen Entwicklung einer robusten Methode zur Berechnung von Stereokorrespondenzen Seminar - Wintersemester 2010/2011 Fakultät Technik und Informatik Department Informatik Gregory Föll Übersicht Rückblick Stereo

Mehr

Clustering 2010/06/11 Sebastian Koch 1

Clustering 2010/06/11 Sebastian Koch 1 Clustering 2010/06/11 1 Motivation Quelle: http://www.ha-w.de/media/schulung01.jpg 2010/06/11 2 Was ist Clustering Idee: Gruppierung von Objekten so, dass: Innerhalb einer Gruppe sollen die Objekte möglichst

Mehr

Invariante Merkmale. Seminar Inhaltsbasierte Bildsuche 22. Dezember 2004 Marei Hopert

Invariante Merkmale. Seminar Inhaltsbasierte Bildsuche 22. Dezember 2004 Marei Hopert Invariante Merkmale Seminar Inhaltsbasierte Bildsuche 22. Dezember 2004 Marei Hopert Übersicht Motivation Invariante Merkmale Idee Berechnung Kernfunktionen Ergebnisse Ausblick Motivation Gedrehtes oder

Mehr

Bild-Erkennung & -Interpretation

Bild-Erkennung & -Interpretation Kapitel I Bild-Erkennung & -Interpretation FH Aachen / Jülich, FB 9 Prof. Dr. rer.nat. Walter Hillen (Dig Img I) 1 Einführung Schritte zur Bilderkennung und Interpretation: Bild-Erfassung Vorverarbeitung

Mehr

Grundlagen: Bildbearbeitung / Objekterkennung. Julia Peterwitz zum Seminar: Videobasierte Erkennung und Analyse menschlicher Aktionen

Grundlagen: Bildbearbeitung / Objekterkennung. Julia Peterwitz zum Seminar: Videobasierte Erkennung und Analyse menschlicher Aktionen Grundlagen: Bildbearbeitung / Objekterkennung Julia Peterwitz zum Seminar: Videobasierte Erkennung und Analyse menschlicher Aktionen Videoerkennung! Warum? Live-Übertragung von Veranstaltungen Überwachung

Mehr

Entscheidungsbäume aus großen Datenbanken: SLIQ

Entscheidungsbäume aus großen Datenbanken: SLIQ Entscheidungsbäume aus großen Datenbanken: SLIQ C4.5 iteriert häufig über die Trainingsmenge Wie häufig? Wenn die Trainingsmenge nicht in den Hauptspeicher passt, wird das Swapping unpraktikabel! SLIQ:

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Deep Learning (II) Nico Piatkowski und Uwe Ligges Informatik Künstliche Intelligenz 25.07.2017 1 von 14 Überblick Faltungsnetze Dropout Autoencoder Generative Adversarial

Mehr

Bilder: Eigenschaften

Bilder: Eigenschaften Bilder: Eigenschaften Images M. Thaler TG208 tham@zhaw.ch Juni 17 1 1 Um was geht es? Juni 17 2 Was ist ein Bild? - hier sehen sie verschiedene Ausschnitte eines digitalen Bildes -das Bild besteht aus

Mehr

Algorithmen für schwierige Probleme

Algorithmen für schwierige Probleme Algorithmen für schwierige Probleme Britta Dorn Wintersemester 2011/12 30. November 2011 Wiederholung Baumzerlegung G = (V, E) Eine Baumzerlegung von G ist ein Paar {X i i V T }, T, wobei T Baum mit Knotenmenge

Mehr

k-nächste-nachbarn-schätzung

k-nächste-nachbarn-schätzung k-nächste-nachbarn-schätzung Mustererkennung und Klassifikation, Vorlesung No. 7 1 M. O. Franz 29.11.2007 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Duda et al., 2001. Übersicht

Mehr

Effizienter Planaritätstest Vorlesung am

Effizienter Planaritätstest Vorlesung am Effizienter Planaritätstest Vorlesung am 23.04.2014 INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER Satz Gegebenen einen Graphen G = (V, E) mit n Kanten und m Knoten, kann in O(n + m) Zeit

Mehr

Topologieerkennung von Sensornetzwerken

Topologieerkennung von Sensornetzwerken looz@ira.uka.de Institut für Theoretische Informatik - Algorithmik I 26. Januar 2010 Übersicht Motivation Definitionen Überlegungen Algorithmus Resultate Motivation Definitionen Überlegungen Algorithmus

Mehr

Recognizing Cars. André Justus. 7.Juni Louka Dlagnekov, Serge Belongie. Visuelle Überwachung Universität Bielefeld

Recognizing Cars. André Justus. 7.Juni Louka Dlagnekov, Serge Belongie. Visuelle Überwachung Universität Bielefeld Louka Dlagnekov, Serge Belongie Visuelle Überwachung Universität Bielefeld 7.Juni 2006 Überblick Überblick Szenario Hardware Überblick Szenario Hardware Nummernschildentdeckung Nummernschilderkennung Erkennung

Mehr